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Abstract: In this research, we propose the use of mathematical models in determining harvesting strategies for fish farming. 

The work considered three logistic growth models, namely constant harvesting, periodic harvesting, and proportional harvesting 

model. For each of the scheme, it is estimated the optimal amount of fish harvested to protect the population from extinction. The 

data for this work are obtained from fish owners of selected pond in Bade (Gashua). Although, fish farming has been 

commercialized in Bade but there is little or no literature available in studying fish harvesting strategies. The Logistic model is 

appropriate for population growth of fishes when overcrowding and competition for the resource are taken into consideration. 

The objectives of the study where to estimate the highest continuing yield from fish harvesting strategies implemented. We 

compare the results obtained between the three strategies and observed the best harvesting strategy for the selected fish farm is 

periodic (seasonal) harvesting. The periodic harvesting strategy optimizes the harvest while maintaining stable the population of 

fish if the harvesting is lower or equal with the bifurcation point. Our findings can assist fish farmers in Bade, Yobe State, North 

East Nigeria, to increase fish supply to meet its demand and positively affect the economic growth of the area. 
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1. Introduction 

For quite some time, fishery business has become an 

enterprise cherished by the Yobe State Government, most 

especially in the ancient city of Bade (Gashua). It is a known 

fact that fish is one of the chief sources of human diet and the 

main source of protein and fat [1]. Lately, consumers have 

developed a relative interest in fish as healthy alternative meat 

that prevents the so-called problem of overweight and 

cardiovascular diseases in human health [2]. However, 

fisheries around the world make essential contributions to 

human wellbeing, providing basic food supplies, employment, 

livelihoods, recreational opportunities, sources of a foreign 

currency or recreational opportunities for hundreds of millions 

of people. There is an integral component of communities and 

societies almost wherever humans have access to water bodies: 

oceans, seas, lakes, and rivers [3]. According to [4], the fish 

available for human consumption comes either from the ocean 

or the sea but unfortunately, the natural supply cannot satisfy 

the human needs. On the other hand, the cost of fish harvesting 

is increasing, making aquaculture an important source for fish 

supply. Aquaculture production is playing an increasing role 

in satisfying demand for human consumption of fish and 

fishery products. In fact, fisheries, in general, provide many 

benefits to human beings and overfishing can reduce the fish 

stock or business of reproductive age below sustainability. 

Fisheries management is the process that has evolved to 

ensure that fisheries operate in a manner that not only provides 

the immediate benefits but also does not result in excessive or 

irreversible damage to the exploited fish stocks or the diversity, 

integrity and structure of the ecosystem, so that the stocks and 
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ecosystem will continue to provide the full range of benefits in 

the future [5]. Historically, marine fishery resources were 

assumed to be almost limitless, and fishing was taught to have 

little impact on fish biomass and marine ecosystems. However, 

in recent years, concern about the condition of fisheries has 

increased. Hence, many fisheries experts and fishermen now 

realize that fishing can have serious effects on marine fish 

stocks and the ecosystem they inhabit. In addition, the 

management of a renewable resource, such as fishery requires 

a strategy that will allow an optimum harvest rate and yet not 

extinct the population below a sustainable level. 

A Mathematical model has been used widely to estimate the 

population dynamics of animals for so many years as well as 

the human population dynamics. In recent years, the use of 

mathematical models has been extended to the agriculture 

sector especially in cattle farming to ensure continuous and 

optimum supply [2]. Thus, Fisheries management policies and 

practices are usually based on catch effort dynamics with little 

consideration for the ecosystem variations. 

The management has been successful in some cases but in 

recent decades there have also been many cases of failure. As 

a result, there is global concern about the state of most aquatic 

ecosystems and their ability to continue to provide benefits, 

not least the production of fish for human use. 

The Food and Agricultural Organization of the United 

Nation [3] gave reasons for this widespread problem to, 

include amongst others: scientific uncertainty; an inherent 

conflict between short-term social and economic needs and 

goals and the longer-term need for sustainability; poor 

management practices in the past, particularly the absence of 

long-term rights and failing to ensure that stakeholders 

participate in management; insufficient capacity within the 

management agencies and others. 

Harvesting has been an area of much interest with regards to 

the population as well as in community dynamics [6]. The use 

of mathematical models in fishery harvesting helps the 

aqua-culturists to estimate the fish population for a given 

period. In addition, the models provide effective solutions 

with regard to the consumer’s demand [4]. 

According to [7], the first to formulate the theoretical 

treatment of population dynamics in 1798 was Thomas 

Malthus, Essay on the Principle of Population. Malthus had 

argued that, while populations grow logarithmically, the 

resources on which they depend remain constant or only 

increase arithmetically. Forty years later, in 1838, Verhulst 

formed the Malthus’ theory (principle of population) into a 

mathematical model called the logistic equation that led to a 

nonlinear differential equation. References [8-11] all agreed 

that there is a need to develop an ecologically suitable strategy 

for harvesting any renewable resource. References [12-15] 

studied the optimal harvesting policies as their management 

intention over a random harvesting time perspective. 

Constant harvesting is where fixed numbers of fish were 

removed each year, while periodic harvesting is usually 

thought of a sequence of periodic closure and openings of 

different fishing grounds [16, 12]. In proportional harvesting, 

a constant fraction of fish is removed each year, thus, the 

quantity harvested is proportional to the population [15, 4]. 

Harvesting has been considered a factor of stabilization, 

destabilization, improvement of mean population levels, 

induced fluctuations, and control of non-native predators [17]. 

Further reference on harvesting strategies can be found in 

[18-21]. 

Meanwhile, fish farming in Bade has a pronounced 

prospective in economic contribution and supplying fish for 

food consumption. It has been commercialized but there is 

little or no literature available in studying fish harvesting 

strategy in Bade. Thus, mathematical models do not widely 

feature in studying fish harvesting management strategy in 

Bade. Hence, the need to use mathematical model to estimate 

fish harvesting management strategies that will ensure the 

catch fish supply is relatively continuous and not get to 

extinction but fulfill the consumer demand. 

The main aim of this work is to study three harvesting 

management techniques (constant harvesting, periodic 

(seasoning) harvesting and proportional harvesting model) of 

the fish population in fishing sites (lake or pond) in Bade 

(Gashua), Yobe State. The specific objectives are: 

To develop a modified logistic growth model that includes 

harvesting rates, 

To determine the maximum sustainable yield (MSY) of the 

fish population in a period, 

To compare the results obtained between the three strategies. 

The strategies will ensure the supplies are continuous and the 

fish population stays is stable and make fish farming as a 

consistence source of income to Bade (Gashua) and an 

effective means of economic growth of the area. 

2. Method 

The data for this research has been obtained from the 

primary source from fish owners of the selected pond in Bade 

(Gashua), Yobe State. The selected pond has an area of 1.48Ha, 

which is equivalent to 14800 m
2
, the sustainable or carrying 

capacity, K of the pond is 54000 fish. The period of maturity 

for the catfish is 6 months and estimates that 85% will survive 

to maturity. Also see [22]. We use qualitative analysis to 

estimate how many fish can be harvested and still allow the 

fish population to survive. 

There are some mathematical models that were used to 

model the fish population that is undergoing harvesting [15, 

16, 19]. The following describes some of the models. 

The Gompertz growth model introduced by Benjamin 

Gompertz in 1825 is similar to the logistic growth model 

define as: 

dN N
rNIn

dt K

 =  
 

 0(0)N N=            (1) 

The solution to this initial value problem can be solved as a 

first order separable differential equation and can be written 

as: 

0( )
rtN

N t K
K e

− =  
 

          (2) 
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Gompertz modified this model to as 

0( ( )) ( ( )), (0)
dN

g N t h N t N N
dt

= − =        (3) 

The logistic growth model for our research is described by 

the differential equation [6, 16]. 

1dN
dt

N
rN

K

 = − 
 

                (4) 

Three types of harvesting strategies were developed as 

follows: 

The logistic growth model with constant harvesting; 

1 ( )
d N N

rN H t
d t K

 = − − 
 

           (5) 

The logistic growth model with periodic harvesting;  

1 ( )
d N N

rN H t
d t K

 = − − 
 

            (6) 

Where; 

0 , 0 6

0, 6 12
( ) {

H t

t
H t

≤ ≤

< ≤
=  

( 12) ( )H t H t+ =  

The logistic growth model with proportional harvesting; 

01 , ( 0 )
d N N

rN H N N N
d t K

 = − − = 
 

     (7) 

The parameters for these models are: 

the population sizeN =  

( ) the population size at time tN t =  

the rate of fish survival at maturity stager =  

 the carrying capacity of the populationK =  

harvesting functionH =  

( ) Periodic function of time per yearH t =  

time in monthst =  

fishing sitex =  

0 harvesting functionH =  

3. Results and Discussion 

The values of the parameters in the model are � � 0.85, an 

estimation of the fish that will survive at the maturity stage 

and the pond carrying capacity � � 54000.  At the 

equilibrium point also known as a critical or stationary point, 

the fish population remains unchanged. From the Logistic 

Growth Model without fishing, the equilibrium points were 

obtained as shown: 

0
dN

dt
=  

1 0
N

rN
K

 − = 
 

 

Substituting the values of the parameters, we have 

0.85 1 0
54000

N
N
 − = 
 

 

By the zero property theorem, we have 

0.85 0

0

N

N

=
⇒ =

 

Also 

1 0
54000

N− =  

1
54000

54000

N

N

=

⇒ =
 

Thus, 	 � 0  and 	 � 54000 . This means that if the 

initial population started with say N=0, the population remains 

at that level (N=0). Equally, if the initial population started 

with say N=54000, the population remains at the same. From 

the stability of this equilibrium point, as can be seen from 

Figure 1 were we obtained two values of an equilibrium 

points. 

 

Figure 1. Constant Harvesting. 0.85, 54000r K= = . 

Table 1 is used to illustrate the interval of the equilibrium 

points that shows whether the equilibrium point is stable or 

otherwise. We would see from the interval (0, 54000) that N=0 

is an unstable equilibrium point because solutions near this 

point are repelled or asymptotic. This means, given an initial 

population of fish N�, a little above N=0 and the 
0N  less than 

0, the population grows away from N=0. The equilibrium 

point N� � 54000  is a stable equilibrium point because 

solutions near this point are attracted to it. This means given 

an initial population in the interval (0, 54000), the population 

increases and reaches N=54000, and remains at the same level. 

Likewise, if the population 
0N , is greater than 54000, then the 

population declines and approaches a limiting value 54000. 
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Table 1. Interval of Equilibrium Point for the Logistic Growth Model 

Interval Sign of f (N) N (t) Arrow 
)0,(∞  Plus Decreasing Point Down 

(0, 54000)  Plus Increasing Point Up 
(54000, )∞  Minus Decreasing Point Down 

3.1. Logistic Growth Model with Constant Harvesting 

The Logistic Growth Model with constant harvesting is as 

follows: 

1 ( ),
dN N

rN H t
dt K

 = − − 
 

          (8) 

where 0.85, 564000r K= =  and H is constant. To 

determine the equilibrium points for H, we have 

0.85 1 0
54000

N
N H
 − − = 
 

 

20.85
0.85 0

54000

N
N H− − =  

20.85 0.0000157407 0N N H− − =  

By comparing with the general quadratic equation: 
2 0ax bx c+ + =  

0.000157407, 0.85,a b c H= = − =  

2

1,2

( 0.85 ( 0.85) 4(0.0000157407)

2(0.0000157407)

H
N

− − ± − −
=  

For the maximum sustainable harvesting rate, we let the 

expression under the square root sign equal zero, as follows: 

2
( 0.85) 4(0.0000157407) 0H− − =  

0.7225 0.0000629628 0H− =  

11,475.0297001 11,475H = ≈  

The value 11,475H =  is the maximum sustainable yield 

(MSY) or the total allowance catch that can be harvested from 

the stock or the biomas. The value 11,475H =  is called the 

bifurcation point, and at this point we considered three values 

of harvesting: 

1. 11475

2. 11475

3. 11475

H

H

H

=
>
<

 

For H=11475, we have 

2
( 0.85 ( 0.85) 4(0.0000157407)11475

2(0.0000157407)
N

− − ± − −
=  

26,956.63289165 26,956≈  

For 11475, 26,956,H N= = we could see from Figure 2 we have 

one (1) equilibrium points. For 0N larger than 26,957; the 

equilibrium will decrease and approach to 26,956. Likewise for 

0N 	less than 26,956; the equilibrium will lead to extinction. 

Table 2 is used to illustrate the interval of the equilibrium 

points that shows whether the equilibrium point is stable or 

otherwise. 

 

Figure 2. Harvesting, 11,475H = . 

Table 2. Interval of Equilibrium Point For Harvesting 11,475H = . 

Interval Sign of f (N) N (t) Arrow 
( , 26,956)−∞  Plus Decreasing Point Down 
(26,956, )∞  Minus Decreasing Point Down 

For 11475H > . 

 

Figure 3. Harvesting 12,000,H =  

It could be seen from Figure 3 that the value of harvesting 

say 12,000,H = shows the decreasing trends of catfish 

population. This indicates that the fish population will go to 

extinction notwithstanding of the initial population size. This 

is to say that overfishing during one year can possibly result in 

a sudden fall of the fish catch in succeeding years. Hence, the 

fish farmers need to be cautiously careful not to overcome 

54000 in fishing quotas. 

For 11475H >  

It could be seen from Figure 4 with the value of harvesting 

as 11000,H =  there will be two equilibrium points with an 

interval (32,494, )∞ showing a decrease in the population of 

fish and the interval (21506,32494) showing an increase in the 

fish population. The instability of the lower equilibrium point 

is due to the repelling solution near the point. 
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Figure 4. Harvesting 11,000H = . 

Table 3 is used to illustrate the interval of the equilibrium 

points that shows whether the equilibrium point is stable or 

otherwise. 

Table 3. Interval Of Equilibrium Point Harvesting 11,000H = . 

Interval Sign of ( )f N  ( )N t  Arrow 

( ,21506)−∞  Minus Decreasing Point Down 
(21506,32494)  Plus Increasing Point Up 
(32494, )∞  Minus Decreasing Point Down 

Table 4 is the summary illustration of the results obtained 

from the constant harvesting strategies. 

Table 4. Results from the Constant Harvesting Strategies. 

Constant Harvesting Strategies 

11,475H =  11,475H >  11,475H <  
One equilibrium 
point 

0 26,956N =  

No equilibrium point 

exist 

Two equilibrium point exist 

0

0

32494

21596

N

N

=
=  

The equilibrium 

point give the 

initial population 

The considered initial 

population values will 

all lead to extinction 

The upper equilibrium point 

is stable; else the lower 
equilibrium point gives the 

unstable population. 

3.2. Logistic Growth Model With Periodic Harvesting 

Another very used form of harvesting is when harvesting is 

done during a period of time within a year. The fish population 

will not be able to extinct during the fishing time since the 

harvesting rate is a periodic function and varies from season to 

season. If in some season the fishing is stopped, the population 

of fish might be able to increase again. The mathematical 

model can be written: 

1 (1 s in )
d N N

r N H t
d t K

ω = − − + 
 

         (9) 

Where the value of 0.85, 54000, 11475 2 .r K H and ω π= = = =  

The pond has a full carrying capacity of 54000 catfish in the 

pond as an initial population. For the first 6 months, 11475 

catfish are assumed for harvesting until the population of 

catfish remains 32494 and followed by no harvesting for the 

next six (6) months and continuous in this pattern repeatedly 

for several years. Staying out of harvesting in the next 6 

months ensures the increasing population of the catfish. The 

population of the catfish increases until it approaches the 

carrying capacity 54000K = . 

We have two solutions that oscillate about the equilibrium point 

(Figure 5). Here, the solution converges to one periodic solution 

that oscillates around the stable fixed point. When H=11475, we 

have only one fixed point (Figure 6). The fish population reaches 

the fixed point and stay there. When H increases more the fish 

population will extinct (Figure 7). Hence, this periodic equation 

has the same bifurcation point as model (8). 

 

Figure 5. Harvesting 11,000H = . 

 

Figure 6. Harvesting 11,475H = . 

 

Figure 7. Harvesting 12,000H = . 

It is noticed that the periodic seasonal strategy optimizes the 

harvest while the fish population maintains a stable equilibrium. 
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According to [2], a harvesting strategy using logistic periodic 

seasonal strategy can be used to improved productivity, shorten 

investment return time and reduce risk from changes in sale 

price and cost of production, particularly when comparatively 

short return period are used. In order frequent cases, we have 

some months, say, 3 months, where substantial fishing is 

allowed and other months where only low fishing is allowed. 

The population still recovers to equilibrium point but it 

generally takes longer duration to reach the stable fixed point. 

This is so because there are still a limited fish that are being 

harvested during the other part of the year. 

3.3. Logistic Growth Model With Proportional Harvesting 

Another common form of harvesting is when one puts in a 

constant effort to harvest. In this case, the quantity harvested is 

proportional to the population. Hence, the mathematical 

model can be written as: 

0
1 , ( 0 )

d N N
r N H N P P

d t K

 = − − = 
 

      (10) 

where again � is the rate of fish survival, � is the carrying 

capacity with no harvesting and now � is the proportional 

rate of harvesting. 

The Algebraic solution is complex and difficult to interpret; 

hence we again turn to the geometric analysis of the model. 

The equilibrium points of (8) are the solution of the equation:
*

* *1
N

rN HN
K

 − = 
 

, that is * 0N =  and * ( )
.

r H K
N

r

−=  The 

extinction equilibrium point * 0N = , is unstable for the value 

of .H r<  As H increases, the larger equilibrium (carrying 

capacity, K) shrink, but it remains stable for .H r<  For 
*

0, 54000.H N K= = =  
As the harvesting increases, the nontrivial equilibrium point 

will move closer to an extinction equilibrium point. As H 

moves toward the growth rate (0.85), the nonzero equilibrium 

point will diminishes to zero, which indicates that there is 

extinction because the harvesting rate approaches the growth 

rate. When ( 0.85),H r> = the rate of harvesting surpasses the 

reproduction rate and extinction automatically follows. This 

model illustrates a typical example of a transcritical bifurcation. 

The bifurcation point is ( 0.85)H r= =  (Figures 8, 9, 10). 

 

Figure 8. Harvesting 0.50H = . 

 

Figure 9. Harvesting 0.85H = . 

 

Figure 10. Harvesting 1.05H = . 

The results indicate that overfishing (in the model H r> ), 

during one year can potentially extinct the fish in the lake or 

pond. Accordingly, the statutory bodies (government and 

other agencies) involved in the area need to be cautiously 

careful not to exceed the fishing quotas. 

4. Conclusion 

When dealing with practical applications that involve 

differential equations, it is very often that the differential 

equation contains parameters and the values of these 

parameters are often only known approximately. Hence, it 

becomes necessary to study the behavior of solutions and 

examine their dependence on the parameters. In most cases, a 

slight variation in a parameter can have a significant impact on 

the solution. 

In this work, we have studied the sustainable harvesting 

strategies of the catfish population in a pond. We intended to 

explore harvesting strategies that optimize catch while still 

maintain a sustainable catfish fishing industry. We discussed 

three types of logistic growth models: logistic growth model 

with constant harvesting, logistic growth model with periodic 

harvesting, and logistic growth model with proportional 

harvesting. For successful management of harvesting, the 

population is very important that harvesting strategies are 

sustainable, not leading to instabilities or extinctions and 
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produces great results for the year with little variation between 

the years. 

From our discussion of the three harvesting strategies, the 

implementation of the logistic constant harvesting strategy of 

the selected fish pond with carrying capacity of 54000 m
2
, the 

maximum sustainable yield (MSY) or the total allowable 

catch that can be harvested from the population is 11475 tons 

of fish. If the MSY is constantly removed from the population, 

the fish population does not have time to recover the fish 

population; as such the fish population gets to extinction. 

However, for the logistic periodic (seasonal) harvesting 

strategy, 11475 tones catfish is assumed for harvesting for the 

first six (6) months until the population of catfish remains 

32494. This is followed by no harvesting for the next 6 months 

in order to allow the fish to repopulate until it approaches the 

carrying capacity of 54000 m
2
. This pattern is being repeated 

for several years. Hence, the periodic harvesting strategy 

optimizes the harvest while maintaining stable the population 

of fish if the harvesting is lower or equal with the bifurcation 

point. The logistic periodic (seasonal) harvesting strategy can 

be used to improve productivity, shorten investment return 

time and reduce risk from changes in the sale price of fish and 

costs of productions of fish, particularly when comparatively 

short return periods are used. 

Concerning the proportional harvesting strategy, the fish 

populations will extinct if the proportional rate of harvesting is 

greater than the growth rate of the population or the 

bifurcation point. 

The development of appropriate fishery harvesting strategy 

perhaps can supply the market demand throughout the year. It 

can also improve the commercial return to farmers before 

harvesting while successful management of harvested 

population helps the fishery industry to grow both 

qualitatively and quantitatively. The supply of fish cannot rely 

only on the ocean/seas fishing activities. Commercializing the 

aquaculture could be a good alternative. 

5. Recommendation 

Based on the results of the study, we, therefore recommend 

the following: 

A periodic harvesting strategy for fish farmers, since it is a 

more stainable technique in fishery management practices. 

The Government, particularly the Ministry of Agriculture 

and Rural Development, is encouraged to use this study as part 

of its guidance for training prospective fisher farmers. 

Workshops and seminars should be regularly organized to 

educate fish harvesters and other stakeholders on a more 

sustainable harvesting strategy and be well monitored to 

ensure its usage. 

Entrepreneurs in Bade (Gashua) town and Yobe State, in 

general, will know the effect of constant harvesting and thus 

should be able to choose the one that is more beneficial. 

Artisanal should form themselves into cooperatives to be 

able to access credits and other inputs in order to enter into the 

fishery industry. 

Finally, we recommend for further study, the extension of 

our models to include issuing of Fishing Licenses and the 

oxygen content of the body of water in the pond. 
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