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Abstract: Seepage analysis forms an important and basic part of geotechnical engineering owing to its importance in ground 

water contamination control, slope stability analysis and dam design. Furthermore, It is important for determining the 

distribution of seepage uplift pressures and the resulting seepage forces as well as the estimation of the volume of seepage 

losses through the body and the foundation of earth dams. Casagrande (1940) and Schaffernak (1916) improved on Dupuit’s 

solution of seepage through earth dam without considering tail water. In this work, modification of Schaffernak’s model was 

done to accommodate tail water. Values obtained using the new model though similar to that of the three other models (Dupuit, 

Casagrande and Schaffernak) shows that existence of tail water affects the value of seepage. The new model is very consistent 

from 3-6 m height. Though the seepage equation from the new model is similar to that of Casagrande, they differ because the 

value of seepage face for the tail water ‘a’, used for computations are not the same. For each of the model, there is a linear 

relationship between the seepage and the height of water upsream. Interestingly, there is a sharp change in seepage at 6m 

height of dam with increase in slope between 6 m and 9 m for each model except at the slope of 1:2.5 where a decrease in 

slope was recorded for the new model. 
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1. Introduction 

Seepage is the flow of fluid usually water through 

permeable soils under hydraulic gradient. Seepage analysis 

and computations is important in ground water contamination 

control, slope stability analysis and estimation of seepage 

forces and their distribution throughout the body and the 

foundation of earth dams. It is also essential for assessing the 

suitability of soil materials, determining the distribution of 

seepage uplift pressures and the resulting seepage forces as 

well as the estimation of the volume of seepage losses 

through the body and the foundation of earth dams, dykes or 

levees [1-8]. 

According to Budhu [9], many catastrophic failures in 

geotechnical engineering result from instability of soil 

masses due to seepage which results in loss of lives, 

infrastructural damage and in general, huge economic loss. 

Several researches have been carried out on seepage 

through dam using different methods such as neural network 

[10], element free method [11], natural element method [12], 

boundary fitted coordinate [12], and self-potential and 

electrical resistivity [13]. Other method that have been 

employed in seepage analysis include finite element method 

[1, 13, 14], saturated seepage theory [15] and finite 

difference method [1, 16]. 

Prominent researchers worked on seepage analysis through 

dams. Prominent among them are [17-20]. Moreover, 

Schaffernak’s and Casagrande’s methods are predominantly 

used in seepage analysis through dam.[17] do not take 

cognizance of the entrance or exit conditions of the line of 

seepage or the development of a surface of seepage. With his 

assumptions, the discharge, per unit width, through a vertical 

section of the dam is; 

� � �� ��
��                                    (1) 

Integrating and substituting the boundary conditions, he 
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obtained Dupuits formula, 

� � �	
��

���
��                                   (2) 

Where K is the permeability, h1 is the height of water at the 

entrance h2 is the tail water, d is line BA and �  is angle 

EOA.[19], taking exception to Dupuits assumption that the 

hydraulic gradient is equal to the slope
�� ��� , where S is 

measured along the free surface. Hence for Casagrande’s 

method 

� � ���	 ����                                (3) 

Integrating and substituting the boundary conditions, we 

have 

� � �������                               (4) 

Where; 

� � � � ��� � 
�
�� �!                            (5) 

Casagrande also assumed that there is no tail water. 

[18] is the first approximate method that accounts for the 

development of the surface of seepage. He also assumed the 

absence of tail water. 

Putting his assumptions into consideration he derived that 

discharge per unit width; 

� � ���	 ���� � ������"���                  (6) 

Where 

� � �
#$�! � � ��

%$��! �	 
�
�� �!                     (7) 

These models especially Casagrande and Schaffernak are 

still in use today. Considering the fact that tail water are 

present in some earthdams, this necessitates the need to put 

into consideration the effect of tail water on the resulting 

equation. This research involves the modification of 

Schaffernak’s solution to accommodate the presence of tail 

water. 

2. Methodology 

Considering a homogenous earth dam resting on an 

impervious base with tail water, the cross section of such 

typical earth dam is as shown in figure 1. 

 

Figure 1. Cross-section of homogenous earth dam resting on an impervious 

base. 

From Dupuits assumption, the hydraulic gradient is the 

slope of the free surface [21-22, 3]. 

�� � ��
��                                        (8) 

Where y is the equation of the free surface and x is taken 

as positive to the left of the origin 0 as shown on the figure. 

From Darcy’s law, the velocity of flow in x-direction is; 

&� � ����                                    (9) 

From equation (1) 

&� � �� ����                                 (10) 

Where Kx is the coefficient of permeability of the material 

of the earth dam in the x-direction. Since the dam is 

homogenous, Kx will vary with space on the dam along the 

vertical section of the dam, the discharge per unit width of 

the dam is given as; 

� � &' � �' ��
��                         (11) 

At a vertical section located at an arbitrary distance x from 

the origin, the area of flow is y x 1 for a unit width of the 

dam. 

This implies that discharge per unit width of the dam is: 

� � ��	 ����                              (12) 

Considering ∆)*' from figure 1 as shown in figure 2, 

 

Figure 2. Exit geometry of the model dam. 

+,�� � �
- 	���� � �

- 	� � ."���	
. � �/,��, � � 1� � �����              (13) 

��
�� � "���                             (14) 

Substituting equations 13 and 14 into equation 3, we have 

that 

� � ��	 ���� � �1�"���
1� � �����                    (15) 

� � �. �����	"��� � ����	                         (16) 

Applying boundary conditions. Knowing that the free 

surface started with C and terminated as tail water E 

'"	*: . � �/,��, 1� � � � ����� 
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'"	+: . = �, � = ℎ4 

∴ from equation (16), we have; 

� ���. = �����"��. 

Separating variables 

��� = �����"��.�. 

6 ���	
�

� =	6 (������"���)�

-#$�!                 (17) 

��
� |
�
� = �����"���[.]-#$�!�                 (18) 


��
� −	
�

�
� = �����"���	(� − �/,��)       (19) 


��
	
��
� = �������"��� − ������"���/,��     (20) 

ℎ4� −	ℎ�� = 2������"��� − 2������"���/,��     (21) 

ℎ4� −	ℎ�� = 2������"��� − 2����������     (22) 

ℎ4� −	ℎ�� = 2������"��� − 2�������        (23) 

2������� − 2������"��� = 	ℎ�� −	ℎ4�        (24) 

This is a quadratic equation in a, which is unknown, 

solving for ‘a’ by the quadratic formula, we have: 

⟹ � = 
>? ±	A>? �
B-́#́
�-́                                (25) 

⟹ �́ = 2�D���? , E? = 2�����"���, / =́ (ℎ�� − ℎ4�) [23] 

⟹ � = ���� !F- !	±	�(���� !F- !)�
	G�� �!		
��

���
B�� �!    (26) 

� = ���� !F- !
B�� �! 	± 	�B�

��� �!F- �!
G�� �!	
��

���
B�� �!      (27) 

= ��� !F- !
��� �! 	± 	�B�

��� �!F- �!
G�� �!	
��

���
B�� �!       (28) 

= �F- !	
��� ! 	± 	

�B���� �!F- �!
G�� �!	
��

���
B�� �!        (29) 

= ��� !	
�#$�!�� ! 	± 	

�B���� �!F- �!
G�� �!	
��

���
B�� �!        (30) 

= �
�#$�! 	± 	�B���� �!F- �!

4H�� I! − G�� �	
��

���
4H�� I!          (31) 

= �
�#$�! 	± 	� ��

B#$��! − 	
��

���
��� �!                 (32) 

According to Ike [21], the positive sign gives unrealistic 

result for a, so, we have that; 

� = �
�#$�! −	� ��

B#$��! − 	
��

���
��� �!                   (33) 

� = �
�#$�! − �J �

�#$�!K
� −	 	
��

������ �!                 (34) 

The discharge q can be calculated by substituting equation 

(2.27) into equation (2.9): 

⟹ � = �ℎ�"���                         (35) 

� = 	������"���                       (36) 

Equation (34 and 36) are the modified Schaffernak’s 

equation for seepage through earth dam considering tail 

water. 

With the information obtained from [24]. The specification 

for the earth dam used for the analysis are as follows; 

Length of dam (constant) = 60 m 

Height of dam = 3 – 9 m (varies at intervals of 3 m) 

Freeboard (constant) = 0.5 m 

Height of tail water (constant) = 1 m 

Slope considered = 1:3, 1:2.5 and 1:2 

A Matlab programme written for the calculation of each of 

the method as shown in appendix A, was used in running the 

calculation. Regression analysis was also used in the analysis 

of result. 

3. Results and Discussion 

The results of the seepage discharge with varying dam 

heights are presented in table 1 and figure 3. 

Table 1. Height of dam and the corresponding seepage for each slope. 

a. Slope 1:3 

Height (m) 
Dupuits Model (M1) Casagrande’s Model (M2) (Schaffernak’s Model (M3) New Model (M4) 

Seepage (m3/s) 

3 3.5732x10-4 4.0314x10-4 3.8621x10-4 3.6083x10-4 

6 0.0024 0.0024 0.0022 0.0027 

9 0.0076 0.0084 0.0064 0.0118-0.0064i 

b. Slope 1:2.5 

Height (m) 
Dupuits Model (M1) Casagrande’s Model (M2) (Schaffernak’s Model (M3) New Model (M4) 

Seepage (m3/s) 

3 3.4511x10-4 3.9307x10-4 3.7955x10-4 3.473x10-4 

6 0.0023 0.0023 0.0021 0.0024 

9 0.0066 0.0068 0.0057 0.0034 
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c. Slope 1:2 

Height (m) 
Dupuits Model (M1) Casagrande’s Model (M2) (Schaffernak’s Model (M3) New Model (M4) 

Seepage (m3/s) 

3 3.3372x10-4 3.8363x10-4 3.7322x10-4 3.3498x10-4 

6 0.0021 0.0021 0.0020 0.0022 

9 0.0059 0.0059 0.0052 0.0065 

 

(a) 
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(c) 

Figure 3. Graph of seepage against height of dam. 

NB: M1=Dupuit’s Model M2=Casagrande’s model M3=Schaffernak’s model M4= New model. 

From tables 1 (a-c) and the graphs [figure 3 (a-c)]; for the 

slope of 1:3; at 3 m, the new model gave the second to the 

lowest value of seepage, at 6 m height of dam, it gave the 

highest value of seepage and at 9 m, it gave a complex value. 

For the slope of 1:2.5 at 3 m, second to the lowest value of the 

seepage was computed, at 6 m height of dam, the highest value 

of seepage was obtained and at 9 m the value of seepage was 

lowest. 

For the slope of 1:2 at 3 m, second the lowest value of the 

seepage was obtained, at 6 m, the value of seepage obtained 

using the new model was highest and at 9 m, the model recorded 

the highest value of seepage. 

The new model is very consistent from 3-6 m. Though the 

seepage equation from the new model is similar to that of 

Casagrande, they differ because the value of seepage face for the 

tail water a, used for computations are not the same. 

For each of the model there is a linear relationship between 

the seepage and the height of water upsream. Interestingly, there 

is a sharp change in seepage at 6 m height of dam with increase 

in slope between 6 m and 9 m for each model except at the slope 

of 1:2.5 where a decrease in slope was recorded for the new 

model. The increase in slope evident in all the models is likely to 

be a geometric effect. 

The complex value obtained at 9 m height of dam and slope 

of 1:3 is in order because both the real (∅) and imaginary part (M) 

of an analytic function satisfy perfectly well Laplace equation in 

two dimension [25]. 

To prove this, obtained the gradient of each family of curves, 

obtaining; 

��
�� =


N∅ N��
N∅ N��                                  (37) 

��
�� =


NO N��
NO N��                                  (38) 

Since w = ∅ + �M  is analytic ∅  and M  must satisfy the 

Cauchy-Newmann equations [25]. 

4. Conclusions 

A modification of Schaffernak’s model considering the effect 

of tailwater was achieved. Most importantly, the new model 

which has a regression constant (R = 0.95) shows that tail water 

affects the result of seepage through dam and should be 

considered in seepage analysis. Finally, obtaining both real and 

complex value, which satisfy Laplace equation shows that the 

new model is more encompassing and involving and should be 

incorporated into seepage calculation software for more accurate 

results. In line with recent discoveries requesting that rainstorm 

effect should be considered in seepage analysis [26-27], 

tailwater effect should also be considered. 

Appendix 

clc; 

clearall 

k=1.0*exp(-5); 

h1=2.5; 

h2=1; 

l=49.5; 

q=(k*(h1^2-h2^2))/(2*l) 

h1=5.5; h2=1;l=40.5; 

q1=(k*(h1^2-h2^2))/(2*l) 

h1=8.5;h2=1;l=31.5; 

q2=(k*(h1^2-h2^2))/(2*l) 
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h1=2.5;h2=1;l=51.25; 

q3=(k*(h1^2-h2^2))/(2*l) 

h1=5.5;h2=1;l=43.75; 

q4=(k*(h1^2-h2^2))/(2*l) 

h1=8.5;h2=1;l=36.25; 

q5=(k*(h1^2-h2^2))/(2*l) 

h1=2.5;h2=1;l=53; 

q6=(k*(h1^2-h2^2))/(2*l) 

h1=5.5;h2=1;l=47; 

q7=(k*(h1^2-h2^2))/(2*l) 

h1=8.5;l=41; 

q8=(k*(h1^2-h2^2))/(2*l) 

clc; 

clearall 

h=2.5;d=54.75;r=18.43494882; 

w=r*pi/180;k=1.0*exp(-5); 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q=k*a*sin(w)^2 

h=5.5;d=48.45; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q1=k*a*sin(w)^2 

h=8.5;d=42.15; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q2=k*a*sin(w)^2 

h=2.5;d=55.625;r=21.80140949; 

w=r*pi/180;k=1.0*exp(-5); 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q3=k*a*sin(w)^2 

h=5.5;d=50.375; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q4=k*a*sin(w)^2 

h=8.5;d=45.125; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q5=k*a*sin(w)^2 

h=2.5;d=56.5;r=26.56505118; 

w=r*pi/180;k=1.0*exp(-5); 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q6=k*a*sin(w)^2 

h=5.5;d=52.3; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q7=k*a*sin(w)^2 

h=8.5;d=48.1; 

s=sqrt(h^2+d^2); 

a=s-sqrt(s^2-(h^2/(sin(w)^2))); 

q8=k*a*sin(w)^2 

clc; 

clearall; 

k=1.0*exp(-5); 

d=52.5;h=2.5;r=18.43494882; 

w=r*pi/180; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q=k*a*sin(w)*tan(w) 

h=5.5;d=43.5; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q1=k*a*sin(w)*tan(w) 

h=8.5;d=34.5; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q2=k*a*sin(w)*tan(w) 

d=53.75;h=2.5;r=21.80140949; 

w=r*pi/180; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q3=k*a*sin(w)*tan(w) 

h=5.5;d=46.25; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q4=k*a*sin(w)*tan(w) 

h=8.5;d=38.75; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q5=k*a*sin(w)*tan(w) 

d=55;h=2.5;r=26.56505118; 

w=r*pi/180; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q6=k*a*sin(w)*tan(w) 

h=5.5;d=49; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q7=k*a*sin(w)*tan(w) 

h=8.5;d=43; 

a=(d/cos(w))-sqrt(((d^2)/(cos(w)^2))-((h^2)/(sin(w)^2))); 

q8=k*a*sin(w)*tan(w) 

clc; 

clearall; 

k=1.0*exp(-5); 

h1=2.5;h2=1;d=49.5;r=18.43494882; 

w=r*pi/180; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q=k*a*sin(w)*tan(w) 

h1=5.5;d=40.5; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q1=k*a*sin(w)*tan(w) 

h1=8.5;d=31.5; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q2=k*a*sin(w)*tan(w) 

h1=2.5;d=51.25;r=21.80140949; 

w=r*pi/180; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q3=k*a*sin(w)*tan(w) 

h1=5.5;d=43.75; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q4=k*a*sin(w)*tan(w) 

h1=8.5;d=36.25; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 
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q5=k*a*sin(w)*tan(w) 

h1=2.5;d=53;r=26.56505118; 

w=r*pi/180; 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q6=k*a*sin(w)*tan(w) 

h1=5.5;d=47 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q7=k*a*sin(w)*tan(w) 

h1=8.5;d=41 

m=d/(2*cos(w));n=(h1^2-h2^2)/(2*sin(w)^2); 

a=m-sqrt(m^2-n); 

q8=k*a*sin(w)*tan(w) 
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