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Abstract: In this paper, a two-dimensional finite difference numerical model with time varying coefficient using Alternating 

Direction Implicit Method (ADI) is developed to predict Chloride diffusion in concrete. This model is proved to be 

unconditionally stable and has higher accuracy. And a numerical example is given to show the effectiveness of this model. 
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1. Introduction 

The diffusing mechanism of Chloride ion in reinforced 

concrete structures is very complex. Generally, it includes 

diffusion effect, capillary effect, permeation effect, chemical 

migration effect and their combinations, and the diffusion 

effect plays a leading role. Model of Chloride ion diffusion 

equation is established mainly based on the Fick’s second law 

[1] which can combine Chlorine ion concentration with 

diffusion coefficient and diffusion time. Chloride ion diffusion 

coefficient is often considered to be a constant when we 

calculate the numerical model of the Chloride ion diffusion. 

Considering the two-dimensional diffusion of Chloride ion 

under actual conditions, the equation can be rewritten as [2] 

2 2

2 2

C C C
D

t x y

 ∂ ∂ ∂= + ∂ ∂ ∂ 
               (1) 

where C  is the Chloride ion concentration, D  is the 

constant diffusion coefficient. With the initial conditions  

0
( , ,0) , (0 , )C x y C x y= < < ∞            (2) 

and the boundary conditions  

0

(0, , ) ( ,0, )

( , , ) ( , , )

s
C y t C x t C

C y t C x t C

= =
∞ = ∞ =

           (3) 

the analytical solution [3] of Eq.(1)-Eq.(3) is 

( )0 0

( , , )

1
2 2

s

C x y t

x y
C C C erf erf

Dt Dt

    = + − −    
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    (4) 

when 
0

, ,
s

D C C  are constants, where ( )erf z  

2

0

2 z
se ds

π
−= ∫  is the error function. But the concrete is finite 

in practice, numerical solutions have been concerned for a 

long time, for example, finite difference method in [4-7], finite 

element method in [8-9], and boundary element method in 

[10-11] 

However, in the 1920s, people begin to think that the 

diffusion coefficient is influenced by the environment, a lot of 

research shows that the longer the time is, the smaller the 

diffusion coefficient is. Though the proof of a lot of 

experiments, it is considered that the diffusion coefficient can 

be expressed as follow [12]: 
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t
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 

                (5) 

where α  is related to the water cement ratio and affected by 

itself attribute of the component and the surrounding 

conditions. For example, ( )3 0.55 /w cα = − , 12.06 2.4 /

0
10 w cD − +=  

and 
0

28t =  according to the Life-365 forecast software of 

the United States [13], where /w c is the water cement ratio 

of concrete component. One-dimensional diffusion model 

with time varying diffusion coefficient and some modified 

model are discussed in [14-20]. 

Motivated by the above mentioned studies, we will consider 

a two-dimensional Chloride ion diffusing problem in a finite 

rectangle with time varying diffusion coefficient based on 

Fick’s second law. In this paper, a two-dimensional ADI 

numerical model of Chloride diffusion is established in 

Section 2. At the same time, the truncation error and the 

stability are analyzed in Section 3. A numerical example is 

shown in Section 4, which can effectively predict the diffusion 

of Chloride ion in concrete. At last, in Section 5 the conclusion 

is given. 

2. Establishment of ADI Model 

Based on Fick’s second law, a two -dimensional Chloride 

ion diffusing model in a finite rectangle with time varying 

diffusion coefficient is  
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       (6) 

where ( , , )C x y t  is the Chloride ions concentration of point 

( , )x y  at diffusion time t , ,x yL L  are the length of the 

concrete structure, 
0

C  is the initial Chloride ion 

concentration, 
s

C  is the boundary Chloride ion concentration, 

and all of them with 
0 0
, ,D t α  are constants. 

2.1. Mesh 

First, the finite area ( ){ ,= x yΩ  
x

0<x<L , }y0<y<L  and 

the time [0, ]T  should be meshed, which is the outcome of 

discretely decomposing the continuous space. In the x  

direction it is equally divided into 
x

N  parts, with

, 0,1, ,
i x x

x ih i N= = ⋅⋅⋅ ⋅ ⋅ , and x
x

x

L
h

N
=  is the length of each 

subinterval. Similarly, in the y  direction it is equally divided 

into
yN  parts, with , j 0,1, ,j y yy jh N= = ⋅⋅ ⋅ ⋅ ⋅ , and y

y
y

L
h

N
=  

is the length of each subinterval. Along the time direction, 

select 
t

T
N

τ =  to be the step length, with

, n 0,1,
n t

t n Nτ= = ⋅⋅ ⋅ ⋅⋅ . Thus ,

n

i j
C  approximates the Chloride 

concentration ion ( ), ,i j nC x y t . For simplicity,
x yh h h= = . 

2.2. Discretion 

According to the above mesh and the Taylor expansion, we 

have 
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2.3. ADI Model 

According to ADI method [21], when calculating the 

Chloride ions concentration at 

 

Figure 1. Two half steps of time. 
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time 

1n
t + by that of time

n
t , a middle transition time

1

2

1

2n
t n τ

+

 = + 
 

 is introduced, as shown in Fig. 1. 

The first step: In terms of the first half steps of time, that is, 

from the n time layer to the 
1

2
n +  time layer, using the 

implicit method to solve 
2

2

C

x

∂
∂

, and using the explicit method 

to solve 
2

2
y

C∂
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, and taking t nτ= , according to the equation, 

we can get 
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The second step: And at the second half steps of time, that is, 

from the 
1

2
n +  time layer to the 1n + time layer, using the 

explicit method to solve 
2

2 2

2

C
a b

x

∂ +
∂

, and using the 

implicit method to solve 
2

2
y
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∂

, and taking t nτ= , according 

to the equation, we can get 
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For simplicity, assume 0

2 0
2

n

t
D

nh

ατλ
τ

 
 
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= , we can get the 

following result. 

Theorem 1: The ADI model of Chloride ions diffusion with 

time varying coefficients is 
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where ( )0

02
1,

2
0,n t

t
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n

α

τ
τλ   = 
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=


⋯ , the boundary 

conditions and the initial conditions are respectively 
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, 0
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Thus, a two-dimensional ADI numerical model of Chloride 

diffusion in a finite rectangle with time varying diffusion 

coefficient is established, that is, Eq. (12) and Eq. (13). 

3. Stability and Convergence Analysis of 

ADI Model 

Theorem 2: The truncation error of the ADI model (12) of 

Chloride ions diffusion with time varying coefficients is

( )2 2
O a h

α α ατ τ τ− − −+ + . 

Proof: According to the equations (10) and (11), simplify it 

and get 
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12
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Add the above two equations, we can get 
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And subtract the above two equations, we can get 
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Substitute (16) into (15), we can get 
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Assume ( , , )i j nC x y t  is the actual solution, then let

0

0

t
D D

n

α
 =  
 

ɶ , and we can expand (17) with Taylor series, 

then we can get truncation error of (12). That is 
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2 2
( ).O h

α α αατ τ τ− − −= + +  

So the truncation error is 2 2
( ).O h

α α αατ τ τ− − −+ +  

When 0α = , the coefficient is a constant and the truncation 

error is 2 2
( )O h τ+ , which is in agreement with [7]. 

Theorem 3: The ADI model (12) of Chloride ions diffusion 

with time varying coefficients is unconditionally stable. 

Proof: Let 

1 2

,

ik jh ik lhn n

j lC v e e=  

There is growth factor ( ) ( )( )1 2, , ,G k n k k kτ = , and it 

satisfies 

( ) ( ) ( )1, , , , , ,n nC j l t G k n C j l tτ+ =  

Then we can get  

( )
2 21 2

2 21 2

1 4 sin 4 sin
2 2, , .

1 4 sin 4 sin
2 2

n n

n n

k h k h

G k n
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λ λ
τ

λ λ

− −
=

+ +
     (18) 

From the equation (12), we can get that for any

0

2 0
2

n

t
D

nh

ατλ
τ

 
 
 

= , there is ( ), , 1G k nτ ≤ , so this model is 

unconditionally stable. 

Theorem 4: The ADI model (12) of Chloride ions diffusion 

with time varying coefficients is convergent. 

Proof: Combine with the Lax  equivalence theorem [22], 

we can get the ADI model of Chloride ions diffusion is 

consistent, according to the definition of consistency. And 

base on it, stability is the necessary and sufficient condition 

for convergence. Hence, combine with the theorem 3, we can 

know the differential model is convergent. 

4. Numerical Example 

Now we consider Chloride diffusion in a rectangle 

reinforced concrete, with 
yL  is 2900mm, 

x
L  is 100mm, the 

Chloride ion concentration of the surface of concrete 2sC  

is 45% and 
0

C  is zero. Here take 1h mm=  and 1monthτ = . 

Substitute these parameters to ADI model (12) and (13), then 

we can predict Chloride diffusion in concrete. 

(1) Different α  

 

Figure 2. Chloride ion concentration with different α . 

When 175T month= , 2

0 7.17 /mmD month= , Chloride 

ion concentration along x-direction at 100y mm=  with 

0.2, 0.4, 0.6α α α= = = is shown in Fig. 2. The parameter α  

increases, the concentration decreases, which is in agreement 

with the property of the function 0

0

t
D

t

α
 
 
 

A . 

(2) Different 0
D   

When 175T month= , 0.4α = , Chloride ion concentration 

along x-direction at 100y mm=  with 

0 0

2 2
/ /5 , 7.17 ,D mm month mmD month= =

2

0 /10D mm month=  is shown in Fig.3. 
0

D  is a fundamental 

diffusion coefficient, its increasing results in the acceleration 

of Chloride diffusion. 
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Figure 3. Chloride ion concentration with different 0D
. 

(3) Different T   

When 2

0 7.17 /mmD month= , 0.4α = , Chloride ion concentration along x-direction at 100y mm=  with 

100 , 175 , 300T month T month T month= = =  is shown in Fig. 4. 

 

Figure 4. Chloride ion concentration with different T . 

It is obvious that Chloride ion concentration will 

increase with time T . The larger time T  is, the larger 

Chloride ion diffusion of is, and the worse the durability 

of concrete. 

(4) Contour Distribution 

Fig. 5 shows the contour distribution of Chloride ion 

concentration in different situations, which describes Chloride 

diffusion in concrete more clearly. Figures (a) and (b) is the 

Chloride distribution after 300T month=  and 

175T month=  when, 0.6α = . Figures (c) and (d) is the 

Chloride distribution after 300T month= and 

175T month=  when 2

0 7.17 /mmD month= , 0.2α = . 

Figures (e) and (f) is the Chloride distribution when 
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2

0 /10D mm month= and 2

0 7.17 /mmD month=  after. 

It can be seen that the increasing of the fundamental 

diffusion coefficient 
0D  and time T  accelerates Chloride 

diffusion, while the increasing of the exponent α  blocks 

Chloride diffusion. When 
2

0 7.17 /mmD month= , 

0.6α = , after 300T month= , that is, about 25 years, 

Chloride ion will diffuse to everywhere in concrete, which is 

very dangerous in reality. 

5. Conclusion 

An ADI numerical model of two-dimensional Chloride ion 

diffusing problem in a finite rectangle with time varying 

diffusion coefficient is established, which is Eq. (12). ADI 

model (12) is convergent, with the truncation error

( )2 2
O a h

α α ατ τ τ− − −+ + . And it is unconditionally stable. 

Numerical example shows the effectiveness of ADI model, 

which can predict the diffusion of Chloride ion in concrete and 

reflect the influence of each parameter. 

 

 

 
Figure 5. Contour distribution of Chloride ion concentration. 
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