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Abstract: Digital data objects increasingly take the form of a non-textual nature, and the effective retrieval of these objects 

using their intrinsic contents largely depends on the underlying indexing mechanism. Since current multimedia objects are 

created with ever-increasing speed and ease, they often form the bulk of the data contents in large data repositories. In this study, 

we provide an effective automatic indexing mechanism based on learning reinforcement by systematically exploiting the big data 

obtained from different user interactions. Such human interaction with the search system is able to encode the human intelligence 

in assessing the relevance of a data object against user retrieval intentions and expectations. By methodically exploiting the big 

data and learning from such interactions, we establish an automatic indexing mechanism that allows multimedia data objects to 

be gradually indexed in the normal course of their usage. The proposed method is especially efficient for the search of 

multimedia data objects such as music, photographs and movies, where the use of straightforward string-matching algorithms are 

not applicable. The method also permits the index to respond to change in relation to user feedback, which at the same time 

avoids the system landing in a local optimum. Through the use of the proposed method, the accuracy of searching and retrieval of 

multimedia objects and documents may be significantly enhanced. 

Keywords: Autonomous Agent, Digital Data Objects, Index Generation, Multimedia Information Search,  

Probability Generating Function, Reinforcement Learning, Stochastic Modelling 

 

1. Introduction 

Data objects increasingly take the form of a non-textual 

nature, and the effective retrieval of these objects using their 

intrinsic contents largely depends on the underling indexing 

mechanism. Since current multimedia objects are created with 

ever-increasing ease, they often form the bulk of the data 

contents in large data repositories. The inclusion of users in 

the information search and retrieval loop improves the overall 

return [22]. Markov decision process improves the efficiency 

of locating video frames in a video [23]. The distribution of 

visual words of multimedia data is probabilistic in relation to 

the concept relationship formed [24]. 

Multimedia information retrieval accuracy may be 

improved using a negative pseudo-relevance feedback 

approach in the presence of noisy data, and search results may 

be returned back to the initial retrieval information for refining 

the search results [19, 26]. Various users allocate the results 

with scoring metrics. Linear combination of posterior 

probability is used to refine the search results [25]. 

Reinforcement learning (RL) approach is suitable for users 

exposing to raw and high-dimensional information [20]. 

Instant rewards of the agents improve NDCG in the searching 

process [21]. 

In reinforcement learning (RL), an agent learns through the 

interaction with the dynamic environment to maximize its 

long-term rewards, in order to act optimally. Most of the time, 

when modeling real-world problems, the environment 

involved is non-stationary and noisy [1, 4, 6]. More precisely, 

the next state results from taking the same action in a specific 

state may not necessarily be the same but appears to be 

stochastic [2, 7]. And the exploration strategies adopted in 
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different categories of RL algorithms provide different levels 

of control to the exploration of unknown factors, which in turn 

give various possibilities to the learning results. 

As a result, the observed rewards and punishments are often 

non-deterministic [30, 31, 32]. For example, when one is 

trying to find a video for cooking a dish, a shortening of the 

searching time may be regarded as a reward, while a 

lengthening of the same may be viewed as punishment. 

Likewise, when one is exploring a new advertising channel, a 

resultant significant increase in sales may be viewed as a 

reward, while failure to do so may be regarded as punishment. 

In situations like these, there are stochastic elements 

governing the underlying environment. In the new route to 

work example, whether one receives rewards or punishments 

depends on a variety of chance factors, such as weather 

condition, day of the week, and whether there happens to be 

road works or traffic accidents which may or may not be 

representative. 

Noise in multimedia data is generally numerous and cannot 

be known or enumerated in a practical sense, and these tend to 

mask the underlying pattern. Indeed, if stochastic elements are 

absent, the learning problems involved could be greatly 

simplified and their presence has motivated early research in 

the area. As early as 1990s, mainstream research in RL, such 

as the influential survey assessing existing methods carried 

out by Kaelbling, et al. [2], and the Explicit Explore or Exploit 

(E
3
) Algorithm to solve Markov Decision Process (MDP) in 

polynomial time [3], adopts the common assumption of a 

stationary environment within a RL framework. Later on, with 

further advances in RL, theoretical analyses addressing the 

concern of non-stationary environment attracted great 

interests. One of the works by Brafman and Tennenholtz 

introduces a model-based RL algorithm R-Max to deal with 

stochastic games [5], and the performance effectiveness of 

multimedia information search using the epsilon-greedy 

approach has been exploited in [33]. Such stochastic elements 

can notably increase the complexity in multi-agent systems 

and multi-agent tasks, where agents learn to cooperate and 

compete simultaneously [6, 10]. Autonomous agents are 

required to learn new behaviors online and predict the 

behaviors of other agents in multi-agent systems. As other 

agents adapt and actively adjust their policies, the best policy 

for each agent would evolve dynamically, giving rise to 

non-stationarity [8, 9]. 

In most of the above situations, the cost of a trial or 

observation to receive either a reward or punishment can be 

significant, and preferably, one would like to arrive at the 

correct conclusion by incurring minimum cost. In the case of 

the advertising example, the cost of advertising can be 

considerable and one would therefore like to minimize it while 

acquiring the knowledge whether such advertising channel is 

effective. Similarly, in RL algorithms, we are always in the 

hope to rapidly converge to an optimal policy with least 

volumes of data, calculations, learning iterations, and minimal 

degree of complexity [11, 12]. To do so, one should explicitly 

define the stopping rules for specifying the conditions under 

which learning should terminate and a conclusion drawn as to 

whether the learning has been successful or not based on the 

observations so far. 

The problem of finding termination conditions, or stopping 

rules, is an intensive research topic in RL, which is closely 

linked to the problems of optimal policies and policy 

convergence [13]. Traditional RL algorithms mainly aim for 

relatively small-scale problems with finite states and actions. 

The stopping rules involved are well-defined for each 

category of algorithms, such as utilizing Bellman Equation in 

Q-learning [14]. To deal with continuous action spaces or state 

spaces, new algorithms, such as the Cacla algorithm [15] and 

CMA-ES algorithm [16], are developed with specific stopping 

rules. Still, most studies on stopping rules are 

algorithm-oriented and do not have a unified measurement for 

general comparison. 

In this paper, we present a probabilistic mechanism, which 

explicitly incorporates the stochastic environment in 

multimedia information search and retrieval. Section II 

presents the fundamental model of a predefined general 

stopping rule. The information search and retrieval success 

based on the rewards ratio is then studied in Section III. Based 

on the stochastic model, Section IV analyzes the probability of 

exceeding cost bounds, and the final conclusions are drawn in 

Section V. 

2. A Stochastic Learning Paradigm 

Here, we are dealing with a sequence of iteration feedbacks, 

and these may represent punishment or reward. The former is 

referred to as negative feedback, while the latter is referred to 

as positive feedback. We use the probabilities p and q, with p 

+ q = 1, which correspond respectively to those of getting a 

positive feedback or negative feedback; e.g., for q < p, then 

we would have a successful outcome. An error often 

committed is that when the first few observations are all 

negative, one would terminate prematurely and conclude that 

the multimedia information search and retrieval episode is a 

failure. Let us consider the stopping criterion: 

Criterion A: The process terminates a session after getting s 

feedbacks which are positive. A session is regarded as 

successful when the number of positive feedbacks is 

acceptably more than the number of negative feedbacks. A 

session is regarded as unsuccessful when the number of 

negative feedbacks is acceptably more than the number of 

positive feedbacks. 

Let us examine the stochastic implications of Criterion A. 

We denote by X the random count of feedbacks before the first 

positive feedback is received; thus 

Prob�� = �	 = 	��
, � = 0, 1, 2, 3, …        (1) 

The probability generating function F (z) of X is given by 

���� = ∑ Pr�� = �	 �
�

��   

= �∑ �
�
�

�� =	 �

���� �.            (2) 

We observe that this is a regenerative process, where the 
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sequence replicates itself stochastically, so that the number of 

feedbacks Ns in order to reach s positive feedbacks is,  

"# =	∑ �

#

�� ,                (3) 

where each Xn has the same stochastic property as X. From 

[17], the probability generating function of Fs(z) 

corresponding to Ns may be arrived at by multiplication of the 

underlying probability generating functions for s = 1, 

�#��� = 	�����# = � �
���� �	

#.          (4) 

The statistical properties of Ns may derived easily by 

differentiating the probability generating function and 

substituting the argument z = 1, 

E�"#	 = 	�#%�1� = 	 #�� ,             (5) 

Variance�"#	 = 	�#"�1� +	�#%�1� 	−	�#%�1�/ =	 #��0.	     (6) 

Furthermore, the probability mass function Prob[Xs = n] 

may be derived by undertaking a binomial expansion of 

equation (4),  

Prob�"# = �	 = 1�#
 2�#�−��
, � = 0, 1, …       (7) 

Since Ns is the sum of independent identically distributed 

random variables, when s is appreciable, it may be 

approximated by the normal variate by virtue of the Central 

Limit Theorem [17], so that 

"#	~4567785� 9#�� , #��0	:,               (8) 

where 4567785��;, </�  denotes the Gaussian distribution 

with mean µ and variance σ
2
. Thus, the probability Pr[Wr > b] 

may be approximated by 

Prob�"# 	> 	5		 = > �
√/@

�
ABCDE
FDE

G�
H0
0 	IJ = 1 − 	Φ 9L��#�

√#�
:,	  (9) 

where Φ is the standard Gaussian distribution function having 

zero mean and unit variance. 

3. The Negative Feedback Quotient in a 

Competitive Framework 

We compare the number of the two types of feedbacks, and 

denote it by ω; i.e., 

ω =	NOPQRS	TU	
RVLWXYR	URRZQL[\#
NOPQRS	TU	�T#XWXYR	URRZQL[\# .  

Thus, from this, and making use of the expectation in 

equation (5), we have, 

ω=	]^"7_
7 =	1−�� .             (10) 

We shall refer to this as the negative feedback quotient. We 

see from [18] that this can be viewed as the odds of getting a 

negative feedback.  

In this case, we may view the present situation as a 

competition between an agent and its adversary. The agent 

would win a point with probability p¸ while the adversary 

would win a point with probability q. For a particular 

experiment, the odds of the adversary winning is given by ω, 

while the odds of the agent winning is given by 1/ω. It is 

interesting to determine the optimal strategy for the agent in 

order to maximize the gain if each experiment carries a stake 

of one unit. Obviously, the situation is favorable to the agent 

for ω < 1, and the situation is unfavorable to the agent for ω > 

1. The former indicates that the probability of winning is less 

than the probability of losing for the agent, while the latter 

indicates that the probability of winning is less than the 

probability of losing.  

In an autonomous agent-based context [27, 28, 29], this 

may be viewed as a competition as indicated above between 

the agent and its adversary over a sequence of experiments, 

the question arises what is the best strategy the agent should 

adopt in terms of the amount to bet assuming the agent has a 

total capital of C units, and given that ω < 1. Since ω < 1 

implies q < p, and so p > ½, a simple-minded strategy to 

maximize gain in each experiment is to bet the full capital in 

each experiment. While this strategy of betting the full amount 

seems optimal if the number of experiments is limited to just 

one, it is far from being so in the long run. This is because by 

the law of large numbers, given sufficient time, negative 

feedback is bound to occur, in which case the full capital 

would be loss, so that the long-term gain of the agent would be 

zero even in a situation that  

ω ≈ 0. 

In a learning context, the capital C corresponds to a 

situation where the agent is able to sustain a total of C negative 

feedbacks from the start of the process.  

Thus, even in a situation which is highly favorable to the 

agent, using the expectation maximization will not be optimal. 

From [34], the amount of capital K to place on a particular 

experiment should be 

` =	a��ℎ−11−�2	
ℎ .  

where h is the per unit gain upon a win.  

Viewing the problem from a different perspective, we shall 

estimate p from the observed negative feedback quotient N/s 

and to derive an estimate. From equation for ω, and expressing 

p in terms of the quotient, we have 

�̂ = 	 �
�dN/#,  

and we see that p >1/2 if N/s < 1. Another way to the 

determination of p using interval estimates will not be pursued 

here and will form a different consideration. 

4. Meeting Constraints 

The average, however, is often not sufficient as it fails to 

fully reflect any statistical fluctuations. In many cases, as in 
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the advertising example, the cost of observation is significant. 

Let c be the numerical representation of cost associated with 

an observation. Having specified r, a minimum observation 

cost of rc must therefore be incurred. What is uncertain is the 

number of negative feedbacks obtained, and ideally in order to 

attain the lowest cost, this number should be limited. If we 

allow up to a cost of bc for observing b negative feedbacks, we 

can determine the chance Pb that the cost of learning for this 

element to go above the limit. From (7) above, this is given by 

fQ = 	1 −	∑ Pr�"# = g	Q
h�� = 1 − ∑ 1�#\ 27�−��hQ

h�� .	 (11) 

The computation associated with (11) is somewhat 

laborious. As indicated above, when the value of r is large, we 

can make use of the normal approximation of (9). In many RL 

learning episodes, r tends to be under 100, as a lengthy 

iteration time is not feasible and most learning algorithms aim 

to converge in minimum time. 

Clearly, the selection of the maximum cost weight b will 

have a significant impact on Pb. Very often, it is more 

meaningful to relate b to E[Ns] either additively or 

multiplicatively. Table 1 tabulates the values of Pb for different 

values of b. The first part of Table 1 considers b by adding a 

fixed value d, with d = 5 and d = 10, while the second part 

considers b by multiplying by a fixed multiple α, with α = 1.2 

and α = 1.5; here, b is rounded to the nearest integer. In the 

first part of Table 1, we see that for either value of r, when p is 

appreciably greater than q, the probability of exceeding cost 

bounds tends to be acceptably small, and this is especially so 

for r = 20. The reason is that, since d is a fixed value, its 

relative contribution to b increases as p increases, produces a 

relatively large cost bound weight compared to the average 

one, and accordingly lowers the probability of exceeding the 

bound. However, in the second part of Table 1, the difference 

between E[Ns] and b decreases as E[Ns] decreases, so that Pb 

tends to be large for higher values of p. 

Table 1. The variation of Pb for different values of b. 

b r p q E[Ns] b Pb Pb′ Err 

b = E[Ns] + d 

(d = 5) 

20 

0.5 0.5 20.00 25 0.215 0.186 0.029 

0.8 0.2 5.00 10 0.023 0.026 0.003 

0.9 0.1 2.22 7 0.001 0.004 0.003 

50 

0.5 0.5 50.00 55 0.309 0.279 0.030 

0.8 0.2 12.50 17 0.127 0.108 0.019 

0.9 0.1 05.56 11 0.014 0.017 0.003 

b = E[Ns] + d 

(d = 10) 

20 

0.5 0.5 20.00 30 0.057 0.059 0.002 

0.8 0.2 5.00 15 0.000 0.001 0.001 

0.9 0.1 2.22 12 0.000 0.000 0.000 

50 

0.5 0.5 50.00 60 0.159 0.147 0.012 

0.8 0.2 12.50 22 0.008 0.011 0.003 

0.9 0.1 05.56 16 0.000 0.000 0.000 

b = αE[Ns] 

(α = 1.2) 

20 

0.5 0.5 20.00 24 0.264 0.226 0.038 

0.8 0.2 5.00 6 0.345 0.253 0.092 

0.9 0.1 2.22 2 0.556 0.380 0.176 

50 

0.5 0.5 50.00 50 0.159 0.147 0.012 

0.8 0.2 12.50 15 0.264 0.215 0.049 

0.9 0.1 05.56 7 0.280 0.207 0.073 

b = αE[Ns] 

(α = 1.5) 

20 

0.5 0.5 20.00 30 0.057 0.059 0.002 

0.8 0.2 5.00 7 0.212 0.156 0.056 

0.9 0.1 2.22 3 0.310 0.193 0.117 

50 

0.5 0.5 50.00 75 0.006 0.010 0.004 

0.8 0.2 12.50 19 0.050 0.048 0.002 

0.9 0.1 05.56 8 0.163 0.121 0.042 

 

In Table 1, column Pb′ gives the exact calculation using (11), 

while column Pb employs the normal approximation using (9). 

The absolute error between the exact calculation and the 

normal approximation is given by column Err. We see that the 

normal approximation is quite acceptable in most cases with 

absolute error less than 0.1. Note that no matter whether 

having b additively or multiplicatively related to E[Wr], a 

higher value of d or α always gives smaller absolute error. We 

therefore suggest that the approximation should only be used 

when all of r, d and α are sufficiently large. 

5. Conclusion and Future Work 

Data objects increasingly take the form of a non-textual 

nature, and the effective retrieval of these objects using their 

intrinsic contents largely depends on the underling indexing 

mechanism. Since current multimedia objects are created with 

ever-increasing ease, they often form the bulk of the data 

contents in large data repositories. Moreover, the operating 

environments in which multimedia information is deployed 

are frequently noisy and probabilistic, and the use of 

stochastic models in learning is thus useful and effective.  

In the present study, we examine a scenario where the total 

positive feedbacks required is given, which constitute the 

criterion for terminating the process. By considering the 

positive to negative feedback quotient, a decision of either 

success or failure of the process may be obtained. In addition, 

each experiments also attracts a cost and this is also taken into 
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consideration. 

We also examine a competitive framework where the negative 

and positive feedbacks are handed out by the user and its 

adversary Therefore, the eventual conclusion is viewed as a 

competitive game, and the concluding condition is governed by 

the manner in which the competition is won. The chances of 

success and failure have been derived. Closed-form expressions 

of other relevant measures of interest are derived. So far we have 

made use of the stochastically independence framework. Other 

frameworks which eliminate this restriction such as Markovian 

dependence should be useful in extending the model. 
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