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Abstract: In this paper, we propose two recursive algorithms for closed loop identification under the framework of a tailor 

made parameterization. The closed loop transfer function is parameterized using the parameters of the open loop plant model, 

and utilizing knowledge of the feedback controller. When the plant model and feedback controller are all polynomial forms, a 

recursive least squares method with forgetting schemes is proposed to verify that this recursive method can be regarded as 

regularization least squares problem. Furthermore we also extend the tailor made parameterization method to nonlinear system 

and nonlinear controller, then an iterative least squares algorithm is applied to solve one nonlinear optimization problem. 
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1. Introduction 

The whole automatic control system consists of two basic 

structures-open loop and closed loop structure. As there does 

not exist any feedback effect between controller and plant 

model in open loop structure, so the plant output affects the 

input less. When the effects made by disturbance or external 

noise may be ignored, the open loop structure is used yet. But 

now many systems operate under feedback control. This can 

be due to required safety of operation or to unstable behavior 

of the plant, as occurs in many industrial production 

processes like paper production, glass production, separation 

process like crystallization, etcetera. In closed loop structure, 

the feedback controller is added to return the collected output 

back to the collected input. The error signal coming from the 

input and feedback output can be imposed on the plant to 

generate one correction action which makes the output 

converges to one given value. The essences of closed loop 

structure are to decrease the error using the negative 

feedback controller, and correct the deviation from the given 

value automatically. As the closed loop structure can 

suppress the errors coming from the internal or external 

disturbances to achieve the control goal, so the closed loop 

structure is most needed in all of our engineering. 

Generally two strategies are used to design the feedback 

controller in closed loop structure, i.e. model based design 

and direct data driven design. The primary step of model 

based design is to construct the plant model in closed loop 

using system identification theory and apply this 

mathematical model in the next process of designing 

controller. Conversely for the direct data driven design 

method, the modeling process is not needed and the 

controller is directly designed using only the observed 

input-output data under closed loop condition. Through 

comparing these two strategies, this direct data driven 

method is worth studying deeply in future. But now as the 

first model based design strategy is more applied widely, and 

then we need to do much research on closed loop system 

identification. There are three identification methods 

corresponding to closed loop system identification, i.e. direct 

approach, indirect approach and joint input-output approach, 

where the feedback is neglected in direct approach and the 

plant model is identified directly using input-output data. For 

the indirect approach, the feedback effect is considered and 

the input-output data from the whole closed loop condition 

are used to identify the plant model. The joint input-output 

approach is very similar to indirect approach, see [1]. Indirect 

approach requires two separate steps: (1) identification of the 

closed loop system, and (2) recalculation of the open loop 

model. The two steps can be combined into one, by using a 

tailor made parameterization for the closed loop system. This 
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means that knowledge of the closed loop structure of the 

configuration, and knowledge of the controller are employed 

into the parameterization of the closed loop system. One 

method based on a tailor made parameterization was studied 

intensively in a linear framework, see [2]. This method 

applies knowledge of the controller and minimizes an error 

between the true closed loop transfer function and the model 

closed loop, using a parameterization model of the open loop 

model only. In [3], this method was extended to the case of 

nonlinear systems and nonlinear controllers. The gradient of 

the identification criterion with respect to the model 

parameters can be also computed in the nonlinear framework. 

Further a tailor made instrumental variable parameterization 

was proposed to identify error-in-variables system, see [4]. 

Modeling, identification and prediction are three main 

ubiquitous phenomena in our daily lives. Through our ideas 

and senses, we collect information about the world, then we 

interpret, predict and react actions according to our 

perceptions. In natural science, lots of experiments or 

observations guide us to formulate laws of nature, which 

describe different aspects of the world and let us predict all 

sorts of things, like planet movements or weather forecast. 

Also in modern technology, modeling and identification have 

much benefit to offer us one description corresponding to the 

physical object. Everywhere and everything around us, there 

is a need for automatic control mechanisms such as in 

aero-planes, cars, chemical process plants, mobiles phones, 

heating of houses etc. However to be able to control a system, 

one needs to know at least something about how it behaviors 

and reacts to different actions taken on it. Hence we need a 

model of the system. A system can informally be defined as an 

entity which interacts with the rest of the world through more 

or less well defined input and output data. A model is then an 

approximate description of the system. An ideal model should 

be simple, accurate and general. This approximate description 

of the system can be constructed by system identification 

strategy, as the goal of system identification is to build a 

mathematical model of a dynamic system based on some 

initial information about the system and the measurement data 

collected from the system. According to [5], the process of 

system identification consists of designing and conducting the 

identification experiment in order to collect the measurement 

data, selecting the structure of the model and specifying the 

parameters to be identified and eventually fitting the model 

parameters to the obtained data. Finally the quality of the 

obtained model is evaluated through model validation process. 

Generally system identification is an iterative process and if 

the quality of the obtained model is not satisfactory, some or 

all of the listed phases can be repeated in order to obtain one 

satisfied model. 

In this note we first study the tailor made parameterization 

method in a linear framework, where the plant model and 

controller are all parameterized as polynomials. In order to 

identify the closed loop parameter vector, a recursive least 

squares method with forgetting schemes is proposed. This 

recursive least squares method with forgetting schemes 

achieves the reformulation of the classical recursive least 

squares with forgetting schemes as a regularized least squares 

problem. Secondly we also extend the tailor made 

parameterization method to nonlinear system and nonlinear 

controller. During the process of identifying the parameter 

optimization problem in one nonstandard identification 

criterion, we use the iterative least squares identification 

algorithm to generate the iterative sequence. 

2. Problem Descriptions 

Consider the following closed loop system configuration 

in Fig. 1. 

 

Figure 1. Closed loop system configuration. 
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In Fig. 1 ( )0G q is a true plant model, ( )0H q  is a noise 

filter, they are all linear time invariant transfer functions. 

( )C q  is a stable linear time invariant feedback controller, 

here we assume this controller is priori known. The excited 

signal ( )r t  and external disturbance ( )e t are uncorrelated. 

( )e t  is a white noise with zero mean value and variance 

2σ . ( )v t  is a colored noise which can be obtained by 

passing white noise ( )e t through that noise filter ( )0H q . 

( )u t  and ( )y t are the input-output signals with respect to 

plant model ( )0G q . q is the time delay operator, it means 

that ( ) ( )1qu t u t= + . 

Observing the closed loop system configuration, we obtain 

the following transfer function form. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0y t G q r t G q C q y t H q e t= − +   (1) 

Continuing to do some simple computations, we get. 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

0

0 0

1 1

1

1 1

G q H q
y t r t e t

G q C q G q C q

C q H q
u t r t e t

G q C q G q C q


= + + +


 = − + +

  (2) 

To simplify the analysis process, define one sensitivity 

function as. 

( ) ( ) ( )0

0

1

1
S q

G q C q
=

+  

Applying the defined sensitivity function, the output of 

closed loop system can be rewritten as. 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
y t G q S q r t H q S q e t= +  

Introduce one unknown parameter vector θ  into the 

closed loop system, the parameterized form corresponding to 

equation (2) is given as. 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ), ,

1 , 1 ,

G q H q
y t r t e t

G q C q G q C q

θ θ
θ θ

= +
+ +

 (3) 

Where θ  denotes the unknown parameter vector, it exists 

in the parameterized plant model ( ),G q θ and noise filter 

( ),H q θ  respectively. The goal of closed loop identification 

is to identify the unknown parameter vector from one given 

data set ( ) ( ){ }
1

,
NN

t
Z r t y t

=
=  and priori known controller

( )C q , where N  denotes the total number of observed data 

[6]. 

According to equation (3), the prediction of output ( ),y t θ  

can be calculated as the one step ahead prediction. 

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 , ,
ˆ ,

, 1 ,

1 ,
1

,

, , 1 ,

, ,

G q C q G q
y t r t

H q G q C q

G q C q
y t

H q

G q H q G q C q
r t y t

H q H q

θ θ
θ

θ θ

θ
θ

θ θ θ
θ θ

+
= ×

+

 +
+ − 
  

− −
= +

 (4) 

We construct one step ahead prediction error or residual as. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )1 , ,
ˆ, ,

, 1 ,

G q C q G q
t y t y t y t r t

H q G q C q

θ θ
ε θ θ

θ θ
 +

= − = − +  

 (5) 

In the standard prediction error algorithm [7], using 

input-output data set ( ) ( ){ }
1

,
NN

t
Z r t y t

=
=  with the number

N , the unknown parameter vector is identified by solving one 

optimization problem. 

( ) ( )2

1

1ˆ arg min , arg min ,
N

N

N N

t

V Z t
Nθ θ

θ θ ε θ
=

= = ∑   (6) 

The above equation (6) is similar to the classical prediction 

error algorithm and direct approach [8]. In next section it will 

be made clear that a tailor made parameterization is used. The 

parameterized plant model ( ),G q θ  and feedback controller 

( )C q  are all assumed to be polynomials. Then we propose a 

recursive least squares method with forgetting schemes to 

identify the unknown parameter vectorθ . 

3. Tailor Made Parameterization as 

Polynimial Forms 

Let the plant model ( ),G q θ  be parameterized as one 

polynomial. 

( ) ( )
( )

1

1

1

1

,
,

, 1

b

b

a

a

n

n

n

n

b q b qB q
G q

A q a q a q

θ
θ

θ

−−

−−

+
= =

+ +
⋯

⋯
         (7) 

Where 
1 1a b

T

n na a b bθ  =  ⋯ ⋯ . Similarly the 

feedback controller is parameterized as. 

( ) ( )
( )

1

0 1

1

11

N

N

D

D

n

nc

n

c n

n n q n qN q
C q

D q d q d q

−−

−−

+ +
= =

+ +
⋯

⋯
      (8) 

Where ( )cN q and ( )cD q are coprime polynomials [9]. 

Based on these two polynomial forms (7), (8), the 

parameterization of the output predictor is given by. 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ),

ˆ / 1,
, ,

c

c c

D q B q
y t t r t

D q A q N q B q

θ
θ

θ θ
− =

+
  (9) 



22 Wang Jian-hong:  Recursive Algorithms of Closed Loop Identification with a Tailor Made Parameterization  

 

The denominator of the closed loop transfer function can be 

written as a function of the open loop unknown parameter 

vectorθ . 

( ) ( ) ( ) ( ) 1 2, , 1 n

c c cl
D q A q N q B q q q qθ θ θ− − − + = +  ⋯  (10) 

The order of the closed loop polynomial is given by. 

( )max ,a D b Nn n n n n= + +  

The closed loop parameter vector 
cl

θ is given as. 

cl
Sθ θ ρ= +                (11) 

Matrix S and vector ρ are parameterized as. 

1

0

1

1 0

2 1

2 1

0

1

1

2

0 0 ,
0 0

1 0 0
0 0

1

1
,

0

0
0 0

D

D

N

N

D

T
D Nn

n

D N
n

n

n

n

P P
d d R S

n
d

n n
d d

n n

nP P
d d

n n
d

n
d

ρ  
 = ∈ =   

 

 
  
  
  
  
  = =   
  
  
  
  
   

 

⋯ ⋯

⋯
⋯

⋯ ⋮
⋯ ⋮

⋱ ⋮
⋯ ⋮

⋮
⋮ ⋮ ⋯

⋱
⋯

⋱
⋮ ⋯ ⋮

⋮ ⋮
⋯

⋯

 (12) 

The derivation of equation (12) can be seen [10]. When the 

feedback controller ( )C q is priori known, then matrix S and 

vector ρ  can be constructed by using parameters in coprime 

polynomials. 

Rearranging equation (9), we obtain. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,c c cD q A q N q B q y t D q B q r tθ θ θ+ =                        (13) 

Substituting (10), (11) and (12) into (13), it yields. 

( )( ) ( ) [ ] ( )1 2 1 2
1 0

n n

D N Dq q q P P y t q q q P r tθ ρ θ− − − − − −   + + =     ⋯ ⋯          (14) 

Expanding above equation, we see that. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]1 2 1 2 0D N Dy t y t y t y t n P P r t r t r t n Pθ ρ θ+ − − − + = − − −          ⋯ ⋯  It means that. 

( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )( )1 2 0 1 2D D Ny t r t r t r t n P y t y t y t n P P θ= − − − − − − −      ⋯ ⋯  

Defining one vector ( )tϕ  as. 

( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )( )1 2 0 1 2
T

D D Nt r t r t r t n P y t y t y t n P Pϕ = − − − − − − −      ⋯ ⋯  

Then output of the closed loop system can be written as. 

( ) ( )Ty t tϕ θ=                                        (15) 

Vector ( )tϕ is similar to the classical regression vector. A common way to identify the unknown parameter vector θ  in (15) 

relies on the recursive least squares with forgetting schemes, where parameter vector estimation ˆ
t

θ  is given as. 

( )1
ˆ arg mint V

θ
θ θ=                                       (16) 

Where the loss function is defined as. 

( ) ( ) ( )( )1

1

t
t s T

s

V y s sθ λ ϕ θ−

=

= −∑                                 (17) 

The forgetting factor [ ]0,1λ ∈  operates as an exponential weight which decreases with the more remote data. 

Optimization problem (16) admits the recursive solution. 

( ) ( )
( ) ( ) ( )( )

1

1

1 1
ˆ ˆ ˆ

T

t t

T

t t t t

R R t t

R t y t t

λ ϕ ϕ

θ θ ϕ ϕ θ
−

−
− −

 = +


= + −

                            (18) 
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Define 1

t tP R−= , then one equivalent recursion is obtained. 

( ) ( )( )
( )

( ) ( )

( )( )

1 1

1

1

1

ˆ ˆ ˆ

1

T

t t t t

t

t T

t

T

t t t

K y t t

P t
K

t P t

P I K t P

θ θ ϕ θ

ϕ
λ ϕ ϕ

ϕ
λ

− −

−

−

−

= + −

=
+

= −

                               (19) 

Observing optimization problem (16) again, let ( )11 t

tQ diag λ −= ⋯
 

and consider 

( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( ) ( )

2

1

1
2 2

1

1

1 22
1

1 1 1

1

ˆ arg min

arg min

ˆ ˆ ˆarg min 2

t
T t i

t

i

t
T T t i

i

t
T T T T t i

t t t

i

y i i

y t t y i i

y t t i y i i t

θ

θ

θ

θ ϕ θ λ

ϕ θ λ ϕ θ λ

ϕ θ λ ϕ θ θ ϕ θ ϕ θ θ λ

−

=

−
− −

=

−
− −

− − −
=

= −

= − + −

 = − + − − − −  

∑

∑

∑

   (20) 

Where we use the following relation. 

( ) ( )( )
1

2
1

1

1

ˆ arg min
t

T t i

t

i

y i i
θ

θ ϕ θ λ
−

− −
−

=

= −∑  

By optimality condition, it holds that. 

( ) ( )( ) ( ) ( )2

1 1 1
ˆ ˆ ˆarg min

T
T

t t t ty t t R
θ

θ ϕ θ λ θ θ θ θ− − −= − + − −  (21) 

Where the updating law can be seen equation (19). Equation 

(21) shows that the recursive least squares with forgetting 

scheme can be regarded as regularization least squares 

problem. 

4. Tailor Made Parameterization as 

Nonlinear Systems 

In this section we consider the parameterized form (3) again, 

but we assume the plant model ( ),G q θ and feedback 

controller ( )C q  are all nonlinear time invariant systems [11], 

not the polynomials. 

Applying the one step ahead prediction error ( ),tε θ , we 

make use of the identification criterion. 

( ) ( ) ( ) 2

2

1

1
,

2

N

t

V y t y tθ θ
=

= −  ∑         (22) 

Where ( ),y t θ is given as 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

,
1 1

G
y t r t v t

G C q G C q

θ
θ

θ θ
= +

+ +
 (23) 

As to solve the identification criterion ( )2V θ  with 

nonlinear plant model ( )G θ
 

and nonlinear feedback 

controller ( )C q , we propose one iterative least squares 

identification algorithm to generate one iterative sequence. To 

simplify the latter computation, we define one vector as. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, 2 2, ,TY y y y y y N y Nθ θ θ θ= − − −  ⋯  

Then identification criterion ( )2V θ can be rewritten as. 

( ) ( ) ( )2

1

2

T
V Y Yθ θ θ=  

The gradient of ( ),y t θ with respect to unknown parameter 

vector θ  is that. 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

( )
( ) ( )

( ) ( )
( ) ( )

( )

2 2

2 2

1,

1 1

1 1

G G C q G CGy t CG
r t v t

G C q G C q

G CG
r t v t

G C q G C q

θ θ θ θθ θ
θ θ θ

θ θ

θ θ

′ ′+ − ′∂
= −

∂ + +      

′ ′
= −

+ +      

               (24) 

Also the gradient of ( ),u t θ with respect to unknown parameter vector θ  is that. 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
2

2 2

,

1 1

u t CG C G
r t v t

G C q G C q

θ θ θ
θ θ θ

′ ′∂
= − −

∂ + +      

                  (25) 

Where we use the following notation. 

( ) ( ),G t
G

θ
θ

θ
∂

′ =
∂

 

Assume ( )M θ is a Jacobian matrix with respect to vector ( )Y θ , then ( )M θ can be computed as that. 

( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1, 1, 1,

, , ,

n

n

y y y

M

y N y N y N

θ θ θ
θ θ θ

θ
θ θ θ

θ θ θ

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 =
 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

⋯

⋮ ⋮ ⋮ ⋮

⋯

                       (26) 

Where the elements of matrix ( )M θ
 

can be seen equation (24) and n  is the number of unknown parameters. Then the 

gradient of identification criterion ( )2V θ
 

is that. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( ) ( )

1

1
, ,

2

1,

2,
1 1, 2 2, ,

,

N

t

T

g y t y t y t

y

y
y y y y y N y N

y N

Y M

θ θ θ

θ
θ

θ θ θ

θ

θ θ

=

′= −  

′ 
 ′ = − − −    
 ′  

=

∑

⋯
⋮

             (27) 

We continue to compute the Hessian matrix of identification criterion ( )2V θ . 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1

1
, , , ,

2

1
, ,

2

N
T

t

N

t

N y t y t y t y t y t M M S

S y t y t y t

θ θ θ θ θ θ θ θ

θ θ θ

=

=

′ ′ ′′= + − = +  

′′= −  

∑

∑
           (28) 

So the quadratic model of identification criterion is that. 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

2

1

2

1 1

2 2

TT

k k k k k k k

T TT T

k k k k k k k k k k

m V g N

Y Y M Y M M S

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ

= + − + − −

= + − + − + −

    (29) 

The iterative expression is computed as. 

( ) ( ) ( )( ) ( ) ( )1

1

T

k k k k k k kM M S M Yθ θ θ θ θ θ θ
−

+ = − +                              (30) 

Where 
k

θ denotes the iterative value at time instant k . 

But in iterative expression (28), that quadratic information term ( )kS θ can not be computed easily. So we neglect this 

quadratic information term ( )kS θ , and equation (29) is that. 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )1 1

2 2

T TT T

k k k k k k k k k km Y Y M Y M Mθ θ θ θ θ θ θ θ θ θ θ θ θ= + − + − −       (31) 
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Then equation (30) is simplified as. 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

1

1

T

k k k k k k k k

T

k k k k k

M M M Y s

s M M M Y

θ θ θ θ θ θ θ

θ θ θ θ

−

+

−

 = − = +

 = −

 (32) 

Generally we summarize the following iterative steps 

corresponding to the identification criterion at time instant k . 

(1) solve ( ) ( )( ) ( ) ( )T

k k k k kM M s M Yθ θ θ θ= −  

(2) set 
1k k k

sθ θ+ = +  

From the iterative expression (32), we see that this iterative 

least squares identification algorithm needs only the first 

derivation information of residual function and matrix 

( ) ( )( )T

k kM Mθ θ  is positive semi-definite. 

5. Conclusion 

In this paper we present two kinds of identification 

algorithms for a closed loop identification scheme with tailor 

made parameterization. Our main contributions are these: (1) 

a recursive least squares methods with forgetting schemes is 

proposed when the plant model and feedback controller are all 

polynomials. (2) an iterative least squares algorithm is applied 

to solve one nonlinear optimization problem. Further in future 

the next subject is about how to extend the tailor made 

parameterization to dynamic networks with error-in-variables 

structure. 
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