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Abstract: Advection-diffusion equations are frequently encountered in many fields and have become a very active research
area. However, in most cases, these equations concern different time and space scales, which make it impossible to derive
explicit solutions to these equations. To overcome this difficulty, the theory of homogenization aims to approximate the original
differential equation with rapidly oscillating coefficients by an effective homogenized equation with constant or slowly varying
coefficients. The homogenized equation is often quite suitable for theoretical analysis or numerical methods. This paper
investigates the homogenization principle of an advection-diffusion partial differential equation. The novelty of the parabolic
partial differential equation we consider is that the advection term in the equation is two-scaled, which is rarely considered by
others for the homogenization of advection-diffusion equation. Under certain proper assumptions on the coefficient functions of
the original advection-diffusion partial differential equation, which ensure the variable elimination, we derive the homogenized

equation, which is also an advection-diffusion equation, by the technique of multi-scale expansion.

It is shown that the

coefficient functions of the original two-scaled equation have different influence on the coefficient functions of the homogenized

equation.
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1. Introduction

The homogenization theory investigates the -effective
dynamical property of composite materials in engineering
mechanics. The huge number of heterogeneity of the
composite materials makes it impossible to give a rigorous
theoretical analysis of the problem.  Moreover, direct
numerical simulation is extremely difficult in consideration of
the tremendous load of computation. Substantial phenomenon
in physics and engineering concerning different time and
space scales, such as composite materials, flow in porous
media, atmospheric turbulence, should be treated within this
framework.

From the viewpoint of mathematics, the purpose of theory of
homogenization is to replace the original differential equation
with rapidly oscillating coefficients by an effective differential
equation with constant or slowly varying coefficients which
is called homogenized equation. The advantage of the
homogenized equation lies in the fact that, even when the

explicit form of the solution to the homogenized equation
is hard to obtain, it is often quite suitable for theoretical
analysis or numerical methods. Therefore a crucial part of
the homogenization theory is to prove the convergence of the
solution of the original equation converges to the solution of
the homogenized equation as the scale ratio tends zero [25].
Many researchers discussed periodic homogenization for
gradient flows [14, 23, 25, 27]. Homogenization for
incompressible, periodic flows was considered in the theory
of turbulent diffusion [11, 12, 13, 18, 18, 19]. In the
research of atmospheric transport phenomena, McLaughlin
and Forest studied homogenization for compressible flows
[20]. Researchers interested in the applications to materials
sciences and elasticity could refer to monographs [1, 6, 10, 22].
For detailed introduction on homogenization, see standard
books [6, 9, 15, 26] and the references therein. Beside
the important work we mentioned above, advection-diffusion
problems are frequently encountered in many fields and has
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become a very active research area.
However, as far as we know, rare result has been obtained for

advection-diffusion equation with two-scaled advection. To
fill the gap in this field of research, we consider the following
parabolic equation with two-scaled advection term:

85? = (bi(z) + ébz(fn VU + A, for (z,t) € R x RY, ¢5)
u®(z,0) = g(z), for (z,t) € R* x {0} )

where € > 0 is a small parameter.

Many researchers made significant contributions in the
process of developing the method of multiple scales. See
[2,3,4,5,7, 16, 17] and the references therein. The method
of multiple scales can also be used to study the problem
of homogenization for parabolic PDEs with time dependent
coefficients which are periodic in both x and t [8, 14, 21, 24,
27].

The paper is organized as follows. Section 2 contains
some notations, hypothesis and useful results we need in later
sections. We present the main result of this in Section 3.
Section 4 is devoted to proving our main result.

2. Preliminaries

For the convenience of later expression, we introduce some
notations here. Denote the d-dimensional unit torus by T¢,
which is found by identifying the opposite faces of a unit cube
in RY. For two matrices A = (a;;), B = (b;;), denote the
inner product by A : B = tr(ATB) = 3" a;;b;;. Note that

i,

S:T=8T:T=2%(S+S7):T,if matrix T is symmetric.
For vectors a, b, c € R?, define the outer product, which is a
matrix, of a and b by (a ® b)c = (b - ¢)a.

Define the operator

Lo=0b(y)-Vy+ A4, (D

on [0, 1]¢ and its L2—adjoint £, both with periodic boundary
conditions.
We impose the following assumptions:

A1 (Periodicity Condition): The coefficient functions
b1 (z),ba(x) are smooth and periodic in all directions with
period 1.

A2 (Centering Condition):

/ ba(y)p(y)dy = 0. @)
Yy

Note that the operator £, should be viewed as a differential
operator in y, with x be a parameter. For variable elimination
in the later derivation, we impose the natural ergodicity
assumption that

Lol(y) = 0, 3)
Loply) = 0. “)

Here /(y) stands for constants in y and p(y) is the density
function of an ergodic measure p(dy) = p(y)dy. By the
assumption (A1), this ergodicity assumption is validated by
the following result (Theorem 6.16 in [25]):

Lemma 2.1. Equip Lo, £ on T¢ with periodic boundary
conditions. Then

1. N(Ly) = span{l};
2. N(L5) = span{p},inf.crap(z) > 0.

3. Main Result

Note that the vector field by(y) satisfies the centering
condition (A2). Define the solution function x(y) of the cell
problem , which will be crucial to the later derivation, as
follows:

—Lox(y) = ba2(y), /T  X(W)p(y)dy = 0,x(y) is 1-periodic. 5)
Define
b=tla) + [ (1) @ V)l ©
Define the effective diffusivity as
=1+ [ () ® x+ 29,0 oty a)

where I denotes the identity matrix.

Now we state our main result of this paper, the derivation of which is in the next section.
Theorem 3.1. Assume that the centering condition(A2) holds. For 0 < ¢ < 1 and times t up to O(1), the solution u¢ of (1) is
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approximated by the solution of the homogenized equation

du
ot

u =

Remark 3.1. Note that the homogenized equation is also
an advection-diffusion equation. And the definitions of b, K
indicate that the coefficient functions of the original two-scaled
equation have different influence on the coefficient functions
of the homogenized equation.

4. Derivation

The aim of this section is to derive the equation satisfied
by the limit of u®(z,t), the solution of (1), as ¢ — 0, by the
method of multiple scales. Let ¢ = ¢(z, £) be a scalar-valued
function and introduce the auxiliary variable y = £. By the
chain rule, we obtain

Vo= V.64 V0, (10)

and

(1)

Thus the operator of the right-hand side of Equation (1)
becomes

2 1

1 1
L=—=Lov+ —Liv+ Lo, (12)

€ €

where
EO = bg(y) Vy"‘Ay, (13)
Ly = bg(y) Vm+b1(l’) Vy+2Vm Vy, (14)
In terms of = and y, Equation (1) becomes
ouf 1 1 R

ot = (gﬁo’l) + g/llv + £2)u . (16)

By multiple-scales expansion of the solution, we have

uf (x,t) = ui (2, y, t)+eui(z,y, t) +e2us(z,y, t)+... (17)

where u;(z,y,t),7 = 1,2,... are all periodic functions with
period 1 in y. Substituting (17) into Equation (1) and equating
terms of equal powers in € leads to the following sequence of
equations:

= b-Vyu+K:V,V,u, for(x,t) € R? x RT, 8)
g, for(z,t) € R? x {0}. 9)

1
O(?) —EOUO = 07 (18)
1
O(g) : —ﬁoul = Eluo, (19)
0
0(1) : —Lous —% + Liug + Loug.  (20)

Note that the differential operator £ acts in y only.

By the fact that the null space of L is one-dimensional,
Equation (18) indicates that the first term uf(x,y,t) in the
expansion is actually independent of y, so that ug = u(x,t)
only. We proceed now with Equation (19).

Notice that

Liug = ba(y) - Vau(z,t). (21)

The centering condition assumption (A2) ensures that
Equation (19) has a solution, by the Fredholm alternative. By
separation of variables, it is natural to write the solution of
Equation (19) as follows:
with x(y) solving the cell problem (5). The assumptions (A2)
ensures that there is a solution to the cell problem and the
uniqueness is guaranteed by the normalization condition, i.e.,
the second equation in (5).

Turning now to Equation (20). The solvability condition
reads

8’[1,0
ra OF
Again, due to that ug = u(z,t) is independent of y, we can
transform the preceding equation into

— Loug — Lyug)p(y)dy = 0. (23)

Liuy =ba(y) - Val(x - Vau) + bi(z) - Vy(x - Vau) + 2V, - Vi (x - Vau)

= (b1(2) @ VyX) - Vau + (ba(y) @ x + 2V, x") : Vi Vau.

In view of the preceding calculation, Equation (24) becomes

ou

— =b-Vyu+K:V,V,u

ot

0
ai; = Lou Jr/ (L1ur)p(y)dy (24)
']l‘d
with
Lou=0bi(x)  Vyu+ Azu, (25)
(26)
27
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with
b=bi(e)+ [ (0i(0)® T00l0)dy e8)
T
=1+ [ (balo) © x+ 29,0 Dolw)iy 29
T
where I denotes the identity matrix. [4] 1. Babuska, Solution of interface problems by

This completes the derivation.

5. Conclusion

This paper investigates the homogenization principle of an
advection-diffusion equation. The novelty of the parabolic
partial differential equation is the two-scaled advection term.
By the technique of multi-scale expansion, the homogenized
equation under certain proper conditions is derived, which
is also an advection-diffusion equation. The homogenized
equation is suitable for theoretical analysis or numerical
methods, compared with the original equation. And the
coefficient functions of the original two-scaled equation
have different influence on the coefficient functions of the
homogenized equation.
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