
 

Mathematics Letters 
2022; 8(2): 22-31 

http://www.sciencepublishinggroup.com/j/ml 

doi: 10.11648/j.ml.20220802.11 

ISSN: 2575-503X (Print); ISSN: 2575-5056 (Online)  

 

Common Fixed Point Theorems for Generalized  
R′-contraction in b-metric Spaces 

Soressa Wakesa Bekana 

Department of Mathematics, Wollega University, Nekemte, Ethiopia 

Email address: 

 

To cite this article: 
Soressa Wakesa Bekana. Common Fixed Point Theorems for Generalized R′-contraction in b-metric Spaces. Mathematics Letters.  

Vol. 8, No. 2, 2022, pp. 22-31. doi: 10.11648/j.ml.20220802.11 

Received: February 26, 2022; Accepted: April 8, 2022; Published: April 22, 2022 

 

Abstract: In this paper, the researcher presents some common fixed point theorems for self-mappings satisfying generalized 

R′-contraction in b-metric spaces and obtained a unique common fixed point of a self-mapping satisfying certain contraction in 

the framework of b- metric spaces. The results presented over her generalize and extend some existing results in the literature. 

Finally, he illustrate example to support the results. 
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1. Introduction 

Fixed point theory is a branch of nonlinear analysis that can 

be applied successfully to a wide range of contexts in social 

and natural Sciences. Although some results had seen 

introduced, it is usually considered that this field of study was 

born in 1922, when Banach presented a celebrated theorem in 

order to guarantee that a nonlinear operator had generalization, 

in many different frame works, have been done. 

The concept of � �������  space was introduced by 

Czerwik [4] and formally defined a � ������� space with a 

view of generalizing the Banach contraction mapping theorem. 

The well-known Banach contraction principle assures the 

existence and uniqueness of fixed points of certain self-maps in 

metric spaces. It is well known that fixed point theory has wide 

application in applied Science. Banach contraction principle 

which states that if 	
, �
  is complete metric space and 

�:	
 → 
	is a contraction map then f has a unique fixed point, it 

is a fundamental result in this theory. Due to its importance and 

simplicity several authors have obtained many interesting 

extensions and generalization of Banach contraction principle, 

some generalizations of contraction condition was conducted. 

This principle can be applied in various fields such us 

engineering, economics, computer science. Because of its wide 

applications, several researchers have extended, improved and 

generalized the result in many directions. 

On the other hand side, Bakhtin [3] and Czerwik [4] 

develop the notion of � �������  space and established 

some fixed point theorems in � � ������  spaces. 

Subsequently, several results appeared in this direction [5-8, 

10]. Recently, Mongkolkeha et al. [9] introduced the notion 

of a simulation function in the setting of � � ������ spaces. 

In 2002, Aamari and Moutawakil [18] introduced the 

notation of property 	�. �
 to prove the existence of common 

fixed point in metric spaces. 

Very recently, Khojasteh et al [1] introduced the notion of 

simulation function, which was later modified by Roldan 

Lopez de Hierro et al. in a subtle way [2]. The concept of 

� � ������space was introduced by Bakhtain [3] in 1989, 

which used it to prove a generalization of the Banach 

contraction principle in space endowed with such kind of 

metrics. Since then, this notion has been used by many 

authors to obtain various fixed point theorems. This direction 

was the source of several (common) fixed point and 

coincidence point theorems in various ambient spaces. The 

concept of compatibility was used by many authors to prove 

existence theorems in common fixed point theory. The study 

of common fixed points of weakly compatible mappings in 

also important. In this work, we define a generalization of 

�′ �  contraction in � � ������  spaces, called 

�� �contraction, via �� �function and prove the existence 

and uniqueness of common fixed point result for two 

mapping satisfying weakly compatible condition in the frame 

work of complete	� � ������ spaces. 
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2. Preliminaries 

In this section, we recollect some basic definitions, 

examples and results which are needed in continuance. 

Definition 2.1. [4] A � � ������ on a set X is a mapping 

�:	
	 × 	
	 → [0, +∞)  satisfying the following conditions: 

for any	�, �, � ∈ 
, 

	b1)	d	x, y) = 0	if	and	only	if	x = y; 
	b2)	d	x, y) = d	y, x); 

	b3)	there	exists	K ≥ 1	such	that	d	x, z) ≤ K[d	x, y) + d	y, z);.  
A pair 	X, d) is called a b − metric space with parameter 

K. 

It should be noted that the class of � − ������  space is 

effectively larger than that of metric spaces. Indeed, a b − metric is metric if and only if K = 1. 
Example 2.3 

1. Let 
 = ℝ. Define a mappings �: 
 × 
 → [0,∞) by 

�	�, �) = 	� − �)?	�@�	ABB	�, � ∈ 
. 
Then 	
, �)	�C	A	� − ������	space with coefficient	D = 2. 

2. Let 
 = E1,2,3F. G���H�	A	�AII�HJ	�: 
 × 
 →[0,∞)	��	�	1,1) = �	2,2) = �	3,3) = 0, �	1,2) =�	2,1) = 2, �	2,3) = �	3,2) = 1	AH�	�	1,3) =�	3,1) = 6.  Then 	
, �)	�C	A	� − ������  space with 

coefficient D = 2. 
In 2015, Khojasteh et al. [1] introduced a simulation 

function shown below: 

Definition 2.4. [1] A simulation function is a mapping Ϛ: [0,∞) × [0,∞) → ℝ satisfy the following conditions: 

	ϚM)	Ϛ	0,0) = 0; 
	Ϛ?)	Ϛ	�, C) < C − �, �@�	ABB	�, C	 > 0; 

	ϚP)	��	E�QF, ECQF	A��	C�RS�H��	�H	[0,∞)	CS�ℎ	�ℎA�	 limQ→U �Q = limQ→U CQ > 0, �ℎ�H  

	limQ→U Ϛ	�Q, CQ) < 0.  
The class of all simulation functions Ϛ: [0,∞) × [0,∞) →ℝ is denoted by Ƶ. 

The following are examples of simulation functions given 

by Khojasteh [1]. 

Example 2.5. 

1. Let W ∈ ℝ  such that W < 1  and define a mapping Ϛ: [0,∞) × [0,∞) → ℝ  by Ϛ	�, C) = WC − �	�@�	ABB	C, �	 ∈ [0,∞). 
2. Define a mapping Ϛ: [0,∞) × [0,∞) → ℝ by Ϛ	�, C) =X	C) − Y	�) for all C, �	 ∈ [0,∞), where X,Y: [0,∞) →[0,∞)  are two continuous fuctions such that X	�) =Y	�) = 0	��	AH�	@HB�	��	� = 0	AH�	X	�) < � ≤ Y	�)  

for all � < 0, then, Ϛ ∈ Ƶ. 

In 2015, Roldan Lopez de Hierro and shahzad [2] 

introduced � -function and � -contraction in metric spaces 

shown below: 

Definition 2.6. [2] Let � ⊆ ℝ  be a nonempty subset. A 

function [: � × � → ℝ is called �-function if it satisfies the 

following two conditions: 	[M)	\�	EAQF ⊂ 	0,∞) ∩ �	 is a sequence such that [	AQ_M, AQ) > 0 for all H ∈ ℕ, 
�ℎ�H	EAQF → 0. 

	[?)	\�	EAQF, E�QF ⊂ 	0,∞) ∩ �	 are two sequences 

converging to the same limit. a ≥ 0	 and verifying a < AQ	AH�	[	AQ , �Q) >0	�@�	ABB	H ∈ ℕ, �ℎ�H	a = 0. 
The class of all � -functions [: � × � → ℝ  is denoted 

by	�b. They also consider the following property. 	[P)	\�	EAQF, E�QF ⊂ 	0,∞) ∩ �	 are two sequence such 

that E�QF → 0 and 

[	AQ , �Q) > 0	�@�	ABB	H ∈ ℕ, �ℎ�H	EAQF = 0.  In [2], the 

authors showed that every simulation function is �-function 

that satisfies 	[P) but the converse is not true. 

In 2018, A. Wiriyapongsanon and N. Phudolsittihiphat [15] 

introduced �′ − contraction and �� −  function and prove 

theorem 2.8 in the frame-work of � − ������ spaces shown 

below: 

Definition 2.7. [15] Let 	
, �) be a	� − ������ space with 

coefficient D ≥ 1 and let c: 
 → 
	is called �′ −contraction if 

there exists an	�′ −function [: [0,∞) × [0,∞) → ℝ such that: 

[dD�	c�, c�), �	�, �)e > 0	�@�	ABB	�, � ∈ 
	CS�ℎ	�ℎA�	� ≠ �.  
Theorem 2.8. Let 	
, �)  be a 	� − ������  space with 

coefficient D ≥ 1 and let c: 
 → 
 is called	�′ −contraction 

with respect [ ∈ ℝ∗. \�	[	D�, C) ≤ C − D�, �@�	ABB	�, C ∈[0,∞), then c	has a unique fixed point. 

In 2017, Mongkolkeha et al. [9] introduced a simulation 

function in the frame-work of � −������ spaces shown below: 

Definition 2.9. [9] Let K be a given real number such that D ≥ 1.	A 	D −simulation function is a mapping Ϛ: [0,∞) ×[0,∞) → ℝ satisfying the following conditions: 

	Ϛ′M)	Ϛ	0,0) = 0; 
	Ϛ′?)	Ϛ	D�, C) < C − D�, �@�	ABB	�, C	 > 0; 

		Ϛ�P)	��	E�QF, ECQF	are sequence in [0,∞) such that 	limQ→UCSI D�Q = 	limQ→UCSI CQ	an 	�Q < CQ	�@�	ABB	H ∈ℕ, then 

limQ→UCSI Ϛ	D�Q, CQ) < 0. 



 Mathematics Letters 2022; 8(2): 22-31 24 

 

The class of all D � simulation function Ϛ: [0,∞) ×[0,∞) → ℝ is denoted by Ƶ∗. 
Definition 2.10. [16] Two self-mappings �  and J  of a 

metric space 	
, �)  are said to be weakly compatible if �S = JS, �@�	S ∈ 
	��IB��C	�JS = J�S. 
Definition 2.11. [16] Let 	�	AH�	J  be selfmaps on a � − ������  space 	
, �). \�	�� = J� = h	 for some � ∈ 
, 

then � is called a coincidence point of �	AH�	J	and the set of 

all coincidence point of �	AH�	J is denoted by i	�, J),	and h is called point of coincidence of �	AH�	J. 
Definition 2.12. [17] A pair 	�, J)	 of self-maps on a � − ������  space 	
, �)  is said to be compatible if limQ→U �	�J�Q , J��Q) = 0 whenever E�QF is a sequence in 
  such that, limQ→U ��Q = limQ→U J�Q =�, �@�	C@��	�	�H	
. 

Definition 2.13. [17] A pair 	�, J)	of self-maps on a � −������  space 	
, �)  is said to be compatible if limQ→U �	�J�Q , J��Q) = 0 whenever E�QF is a sequence in 
 

such that, limQ→U ��Q = limQ→U J�Q =�, �@�	C@��	�	�H	
. 

In 2002, Aamari and Moutawakil [18] introduced the 

notation of property 	�. �) to prove the existence of common 

fixed point in metric spaces. 

Definition 2.13.[18] A pair 	�, J)	 of self- maps on a � − ������  space 	
, �)  is said to be satisfy property 	�. �)	 if there exists a sequence E�QF	 in 
  such that, 	limQ→U ��Q = limQ→U J�Q =�, �@�	C@��	�	�H	
. 

Definition 2.14. [15] Let D be a given real number such 

that D ≥ 1. �	�SH���@H [: [0,∞) × [0,∞) → ℝ	�C	�ABB��	�� − �SH���@H	 if it 

satisfies the following two conditions: d[�Me	\�	EAQF ⊂ 	0,∞)	 is a sequence such that [	DAQ_M, AQ) > 0 for al H ∈ j, 
�ℎ�H	EAQF → 0. 

	[′?)	\�	EAQF, E�QF ⊂ 	0,∞)	are two sequence such that 	limQ→UCSI DAQ = limQ→UCSI �Q = a ≥ 0	 and 

verifying	a < DAQ	AH� 

[	DAQ , �Q) > 0	�@�	ABB	H ∈ ℕ, �ℎ�H	a = 0. 
The class of all �′ − functions [: [0,∞) × [0,∞) → ℝ	 is 

denoted by	�∗. They also consider the following property. 	[′P)	\�	EAQF, E�QF ⊂ 	0,∞)	 are two sequence such that E�QF → 0 and [	DAQ , �Q) > 0	�@�	ABB	H ∈ ℕ,	then EAQF → 0. 
Lemma 2.15 . �k���	D − C��SBA��@H	�SH���@H	�C	A	�� −�SH���@H	�ℎA�	k������C	d[�Pe. l�@@�:  Let D  be a given real number such that D ≥1	AH�	[: [0,∞) × [0,∞) → ℝ	be a D − C��SBA��@H. 	[′M)  Let EAQF ⊂ 	0,∞)  is a sequence such that [	DAQ_M, AQ) > 0 for all H ∈ ℕ. 
By condition 	Ϛ′?) , [	DAQ_M, AQ) ≤ AQ − DAQ_M ≤ AQ −AQ_M. 

for all H ∈ j.  So 	EAQF  is strictly decreasing sequence of 

positive real numbers. 

Then 	EAQF is convergent, given a ≥ 0	such that	EAQF → a. 

We will show that a = 0. By contradiction, assume	a > 0. Let �Q = mnopq  and CQ = AQ for all H ∈ ℕ. 
By condition 		Ϛ′P),0 ≤ limQ→UCSI [	AQ_M, AQ) =limQ→UCSI [	DAQ_M, AQ) < 0, 

which is a contradiction. Therefore, 	EAQF → 0 d[�?e  Let EAQF, E�QF ⊂ 	0,∞)  be sequence such 

that		limQ→UCSI DAQ = 	limQ→UCSI�Q = a ≥ 0,	 and satisfying that a <DAQ	AH�	[	DAQ , �Q) > 0 

for all H ∈ ℕ . We will show that 	a = 0.  By contradiction, 

assume a > 0. 
By condition 	Ϛ′?), 0 < 	[	DAQ , �Q) ≤ �Q − DAQ.  Then, AQ ≤ DAQ < �Q  for 

all H ∈ ℕ. 
By condition 	Ϛ′P) , 0 ≤ limQ→UCSI [	DAQ , �Q) < 0,  this 

is a contradiction. 

Therefore, a = 0. d[�Pe  Let EAQF, E�QF ⊂ 	0,∞)  be sequence such that 	E�QF → 0 and [	DAQ, �Q) > 0 

for all H ∈ ℕ.  Since [	�C	A	r − C��SBA��@H  function, 0 < 	[	DAQ , �Q) ≤ �Q − DAQ 

for all H ∈ ℕ . Hence 0 < DAQ	 < �Q  for all H ∈ ℕ , this 

implies that, 	EDAQF → 0. 

Since, D ≥ 1, 	EAQF → 0. 

Lemma 2.16. If [	D�, C) ≤ C − r�	�@�	ABB	�, C ∈	0.∞), �ℎ�H		[′P) holds. l�@@�: Assume that 	EAQF, E�QF ⊂ 	0,∞) are two sequence 

such that 	E�QF → 0  and 	[	DAQ , �Q) > 0	�@�	ABB	H ∈ ℕ. 
Since AQ , �Q ∈ 	0,∞), then 0 < [	DAQ , �Q) ≤ �Q − 	DAQ	for 

all H ∈ ℕ.  As a consequence, 0 < DAQ < �Q  for all H ∈ ℕ, 
which means that 	EAQF → 0. 

Definition 2.17. [19] Let 		
, �)  be a � − ������  space. 

Then a subset s ⊂ 
  is called closed if and only if each 

sequence E�QF  in Y which converges to an element 	� , we 

have	� ∈ s		�, �		st = s). 

Remark 2.18. [19]. 

1. The � − ������  space 	
, �)  is complete if every 

Cauchy sequence in 
 is converges. 

2. In the � − ������ space 	
, �), the sequence E�QF in 
 

is called convergent if and only if there exists � ∈
	such that �	�Q , �) → 0	as H → ∞. in this case, write limQ→U �Q = �. 
3. The sequence E�QF	 is called Cauchy sequence if and 

only if �	�Q , �u) → 0, AC	H,� → ∞.  

3. Main Result 

Definition 3.1. Let 	
, �)	��	A	� − ������	 space with 

coefficient, D ≥ 1 and let �, J: 
 → 
	are mappings. We will 

say that �	AH�	J	A��	�� − �@H��A���@HC	 if there exists a �� − �SH���@H	[: [0,∞) × [0,∞) → ℝ	such that 

[dD�	��, ��),v	�, �)e > 0, �@�	ABB	�, � ∈ 
	CS�ℎ	�ℎA�	� ≠ � 

Where, 
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v	�, �) = max w�	J�, J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q }  
Proposition 3.2. Let 	
, �)  be a � −������	 space with 

coefficient D ≥ 1 and �, J: 
 → 	
	be two self-maps. Assume 

that �, J is a generalized �’	– contraction pair maps. Then S 

is a fixed point �  if and only if S  is a fixed point of 	J . 

Moreover, in that case S is a unique. 

Proof: let S  be a fixed point of � . i.e 	�S = S . 

Suppose	JS ≠ S. 

We consider, 

[dD�	�S, JS),v	S, S)e > 0,                 (1) 

Where  

v	S, S) = max w�	S, S), �	S, �S), �	S, JS), x	�,y�)_x	�,{�)?q },  
= max w0,0, �	S, JS), x	�,y�)?q },  

= �	S, JS) 
Now using the value of v	S, S) in (1), we get 

0 ≤ [dD�	�S, JS),v	S, S)e = [dD�	S, JS), �	S, JS)e	< �	S, JS) − D�	S, JS) ≤ 0  

a contradiction. Hence JS = S, so that S is a common fixed 

point of � and	J. Similarly, it is easy to see that if S is a fixed 

point of J then	S is fixed point of � also. 

Then,  

dD�	�S, ��),v	S, �)e = [dD�	�S, ��), �	�, k)e > 0. 

Suppose S and k	are common fixed points of	� and J with S ≠ k	
By �′ − �@H��A���@H, 

[dD�	S, k),v	S, k)e > 0 

Where, 

v	S, k) = max w�	S, k), �	S, �S), �	k, Jk), x	�,y�)_x	�,y�)?q },  
= max w�	S, k), 0,0, x	�,�)_x	�,�)q },  

= max w�	�, k), 0,0, x	�,�)q },  
= �	S, k) 

Now using the value of v	S, S) in (1), we get 

0 ≤ [dD�	�S, Jk),v	S, k)e = [	D�	S, k), �	S, k)	< �	S, k) − D�	S, k) ≤ 0  

a contradiction. Hence 	S = k . Therefore the proposition 

follows. 

Theorem 3.3. Let 	
, �)	��	A	�@�IB���	� − ������	space 

with coefficient D ≥ 1  and �, J: 
 → 
	be self-maps of 	
 , 

with �
 ⊂ J
.  Let �	AH�	J	��	�� − �@H��A���@H  with 

respect to [ ∈ �∗. If [	D�, C) ≤ C − r�	�@�	ABB	�, C ∈ 
, then 

for any �� ∈ 
, the Picard iterates E�QF defined by �Q = ��Q = J�Q_M	�@�	ABB	H = 0,1,2, … is a Cauchy 

sequence in X. l�@@�:  Let 	�� ∈ 
 . Since �
 ⊂ J
  there exists �M ∈ 
 

such that 	�� = ��� = J�M.	 Further corresponding to �M , 

there exists �? ∈ 
 such that	�M = ��M = J�?. On continuing 

process, inductively we obtain a sequence E�QF	in 
 such that 

�Q = ��Q = J�Q_M, �@�	ABB	H = 0,1,2,3,          (2) 

Now, we consider the following cases. iAC�		�): Suppose �Q = �Q_M for some H ∈ ℕ. 
By �′ − �@H��A���@H, we have 

[	D�	��Q_M, ��Q_?),v	�Q_M, �Q_?)) > 0  

Where, 

v	�Q_M, �Q_?) = max	E�	J�Q_M, J�Q_?), �	J�Q_M, ��Q_M), �	J�Q_?, ��Q_?), x	yznop,{zno�)_x	yzno�,{znop)?q F  
= max w�	�Q , �Q_M), �	�Q, �Q_M), �	�Q_M, �Q_?), x	|n,|no�)_x	|nop,|nop)?q }  

≤ max w�	�Q, �Q_M), �	�Q , �Q_M), �	�Q_M, �Q_?), qdx	|n,|nop)_x	|nop,|no�)e_�?q }  
= max	E�	�Q , �Q_M), �	�Q_M, �Q_?)F v	�Q_M, �Q_?) = max	E�	�Q , �Q_M), �	�Q_M, �Q_?)F 

Suppose	�	�Q, �Q_M) ≤ �	�Q_M, �Q_?), then 

v	�Q_M, �Q_?) = maxE�	�Q, �Q_M), �	�Q_M, �Q_?)F = �	�Q_M, �Q_?) 
Hence,	[dD�	��Q_M, ��Q_?),v	�Q_M, �Q_?)e = [	D�	�Q_M, �Q_?), �	�Q_M, �Q_?)) > @ 

= �	�Q_M, �Q_?) − D�	�Q_M, �Q_?) ≤ 0 

a contradiction. 
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Therefore, �	�Q , �Q_M) ≥ �	�Q_M, �Q_?), 
Now, [dD�	�Q_M, �Q_?), �	�Q, �Q_M)e > @, 

from condition 	[M� ), �	�Q, �Q_M) = 0 and let AQ = 	�	�Q_M, �Q_?) and �Q = �	�Q , �Q_M) are the two sequence and E�QF → 0, 

then by condition 	[P� ), we have EAQF → 0, that is �	�Q_M, �Q_?) = 0. 

Therefore, 	�Q_? = �Q_M = �Q. 

Similarly, we can show that �Q_P =	�Q_? = �Q_M = �Q. 

This implies that �u = �Q	�@�	ABB	� > H, C@	�ℎA�	E�uFu�Q	is constant sequence. 

Hence E�uF is a Cauchy sequence. iAC�		��):	�Q ≠ �Q_M, for all H ∈ ℕ. 

By �� − �@H��A���@H 

[dD�	��Q_M, ��Q_?),v	�Q_M, �Q_?)e > 0, 
Where, 

v	�Q_M, �Q_?) = max	E�	J�Q_M, J�Q_?), �	J�Q_M, ��Q_M), �	J�Q_?, ��Q_?), x	yznop,{zno�)_x	yzno�,{znop)?q F  
= max w�	�Q , �Q_M), �	�Q, �Q_M), �	�Q_M, �Q_?), x	|n,|no�)_x	|nop,|nop)?q }  

= max w�	�Q , �Q_M), �	�Q, �Q_M), �	�Q_M, �Q_?), x	|n,|no�)?q }  
≤ max w�	�Q, �Q_M), �	�Q , �Q_M), �	�Q_M, �Q_?), x	|n,|nop)_x	|nop,|no�)? }  

= maxE�	�Q , �Q_M), �	�Q , �Q_M), �	�Q_M, �Q_?)F = max	E�	�Q , �Q_M), �	�Q_M, �Q_?)F 
Hence, v	�Q_M, �Q_?) = 	max	E�	�Q , �Q_M), �	�Q_M, �Q_?)F. 
Suppose that �	�Q , �Q_M) ≤ �	�Q_M, �Q_?), for some H ∈ ℕ. 

Then we have, 

v	�Q_M, �Q_?) = maxE�	�Q, �Q_M), �	�Q_M, �Q_?)F = �	�Q_M, �Q_?) 
Hence,  0 < [dD�	��Q_M, ��Q_?),v	�Q_M, �Q_?)e = 	[dD�	��Q_M, ��Q_?), �	�Q_M, �Q_?)e 

= 	[ �D�d	�Q_M, �Q_?)e, �	�Q_M, �Q_?)� < �	�Q_M, �Q_?) − D�	�Q_M, �Q_?) ≤ 0 

a contradiction. 

Hence, �	�Q_M, �Q_?) ≤ �	�Q , �Q_M), for all H ∈ ℕ. 

Therefore, E�	�Q , �Q_M)F is decreasing and bounded below. Thus there exist � ≥ 0	such that 	limQ→U �	�Q , �Q_M) = �. 
Suppose that	� > 0. Now, using condition of dϚ�Pe, with AQ = �	�Q_M, �Q_?) and �Q = �	�Q , �Q_M), we have 

0 ≤ limQ→U CSI [dD�	�Q_M, �Q_?), �	�Q_M, �Q_?)e < 0, 
a contradiction. Therefore, � = 0. That is 

	limQ→U�	�Q, �Q_M) = 0. 
Now, we show that E�QF is a Cauchy sequence. 

Suppose that E�QF	is not a Cauchy sequence. Then there exist � > 0, such that 

�	�Q� , �u�) > �	AH�	�	�Q� , �u��M) ≤ �	�@�	ABB	�� > H� ≥ r                                            (3) 

where E��	F	AH�	EH�F are sequence of positive integer. 

Consider, 

� < �	�Q� , �u�) ≤ D	�d�Q� , �u��M) + �	�u��M, �u�)e, for all r ∈ ℕ. 

Taking limit superior k to infinity 
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� ≤ limQ→U CSI�	�Q� , �u�) ≤ D�                                                                    (4) 

Since �	�Q��M, �u��M) ≤ D	�	�Q��M, �Q�) + �	�Q� , �u��M)), for all r ∈ ℕ. 

Taking limit superior k to infinity 

limQ→U CSI�	�Q��M, �u��M) ≤ D�                                                                    (5) 

If �d�Q���M, �u���Me = 0, for some	r� ∈ ℕ, �ℎ�H, �Q�� = �u�� , which contradict to 	4). Therefore, �Q��M ≠ �u��M for all r ∈ ℕ. 

By �� − �@H��A���@H	we have, 

[	D�	��Q�, J�u�),v	�Q� , �u�)) > 0, 
Where, 

v	�Q�, �u�) = max	E�	J�Q� , J�u�), �	J�Q� , ��Q�), �	J�u� , ��u�), x	yzn�,{z��)_x	yz�� ,{zn�)?q 	F  
= max	E�	�Q��M, �u��M), �	�Q� , �Q�), �	�u��M, �u�), x	|n��p,|��)_x	|���p,|n�)?q F,  

= maxE�	�Q��M, �u��M), �	�Q� , �Q�), �	�u��M, �u�)F = max	E�	�Q��M, �u��M), �	�u��M, �u�)F	v	�Q� , �u�) = max	E�	�Q��M, �u��M), �	�u��M, �u�)F, 
Suppose that �	�Q��M, �u��M) ≤ �	�u��M, �u�), then 

v	�Q� , �u�) = maxE�	�Q��M, �u��M), �	�u��M, �u�)F = �	�u��M, �u�). 
Hence,  

0 < [	D�	��Q�, J�u�),v	�Q� , �u�)) = [dD�	�Q� , �u�), �	�u��M, �u�)e ≤ �	�u��M, �u�) − D�	�Q� , �u�) ≤ 0, 

a contradiction. 

Therefore, 	�Q��M, �u��M) ≥ �	�u��M, �u�). 
Then,  

0 < [	D�	�Q� , �u�),v	�Q� , �u�) = [	D�	�Q� , �u�), �	�Q��M, �u��M) = [	D�	�Q� , �u�), �	�Q��M, �u��M) ≤ �	�Q��M, �u��M) − D�	�Q� , �u�) 
This implies that 

D�	�Q� , �u�) < �	�Q��M, �u��M), for all r ∈ ℕ.                                                    (6) 

Now, by 	3), 	4)	AH�		5) 
D� ≤ limQ→U sup r�	�Q� , �u�) ≤ limQ→U CSI�	�Q��M, �u��M) ≤ D� 

That is 	limQ→U sup r�	�Q� , �u�) = limQ→U CSI�	�Q��M, �u��M) = D� 

Since,	D� < 	D�	�Q� , �u�), for all r ∈ ℕ and by condition 	[′?), D� = 0, 
That is a contradiction. Thus E�QF is a Cauchy sequence. 

Theorem 3.4. In addition to the hypothesis of theorem 2.3 on � and J, if either J
	@�	�
 is complete, then for any �� ∈ 
, 
the Picard iterates E�QF defined by 	2) converges to � in 
 and � is a unique point of coincidence of	� and J. l�@@� : By theorem 3.3 the sequence E�QF  is Cauchy in 
.  Since J
  is closed, there exists a point � ∈ J
  such that limQ→U �Q = �. Hence there exists S ∈ 
 such that JS = �. 

Now, we show that JS = �S. 

Suppose, JS ≠ �S. By	�′ − �@H��A���@H	we have, 

[dD�	J�Q_M, �S),v	�Q_M, S)e > 0 

Where, 

�	JS, �S) ≤ v	�Q_M, S) = 	max	E�	J�Q_M, JS), �	J�Q_M, ��Q_M), �	JS, �S), x	yznop,{�)_x	y�,{znop)?q F  
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≤ max	{�	J�Q_M, JS), �	J�Q_M, ��Q_M), �	JS, �S), q	x	yznop,y�)_qx	y�,{�)_x	y�,{znop))?q F  
On taking limit as H → ∞ in the above in equality, we have 

�	JS, �S) ≤ limQ→Uv	�Q_M, S) = max	E0,0, �	JS, �S), x	y�,{�)? F 	= �	JS, �S)  
Therefore, limQ→Uv	�Q_M, S) = �	JS, �S) 
Hence, 0 < [dD�	J�Q_M, �S),v	�Q_M, S)e ≤ v	�Q_M, S) − D�	J�Q_M, �S) 
This implies that 

D�	J�Q_M, �S) < 	v	�Q_M, S)                                                                             (7) 

From triangular inequality we have 

�	JS, �S) ≤ D�	JS, J�Q_M) + D�	J�Q_M, �S) ≤ D�	JS, J�Q_M) + v	�Q_M, S) 
On taking limit as H → ∞, we have 

�	JS, �S) ≤ D limQ→U �	J�Q_M, �S) ≤ 	�	JS, �S) 
Therefore, D limQ→U �	J�Q_M, �S) = 	�	JS, �S) 
From (7), triangular inequality above and by condition 	[?� ) �	JS, �S) = 0, that is 

Contradiction. Therefore, JS = �S = �, S is a coincidence point of � and J and � is a point of coincidence of � and J. 

Now, we show that a point of coincidence of �	AH�	J is unique. Suppose for some � ∈ 
, �	�) = J	�) = k,h��ℎ	k ≠ �. 
By �′ − �@H��A���@H, 

[dD�	�S, ��),v	S, �)e > 0 

Where, 

v	S, �) = max w�	JS, J�), �	JS, �S), �	J�, ��), x	y�,{�)_x	y�,{�)?q },  
= max w�	�, k), �	�, �), �	k, k), x	�,�)_x	�,�)?q },  

= max w�	�, k), 0,0, x	�,�)q },  
= �	�, k) 

Then, [dD�	�S, ��),v	S, �)e = [dD�	�S, ��), �	�, k)e > 0 

Again by condition d[�Me, �	�, k) = 0, this implies that � = k. 
Therefore, �	AH�	J	have a unique point of coincidence in 
. 

Theorem 3.5. Under the assumption of theorem 3.4, if the pair		�, J) is weakly compatible self –maps then �	AH�	J have a 

unique common fixed point. l�@@�: By theorem 3.4, � is a point of coincidence of �	AH�	J. Since � ∈ J
 there exists S ∈ 
 such that �S = JS = �. 
And also since the pair 	�, J) is weakly compatible �JS = J�S	implies that, �� = J�. 

Now, we claim that � is a common fixed point of	�	AH�	J. 
Suppose that	�� ≠ �. Then by �′ − �@H��A���@H, 

[	D�	��, �S),v	�, S)) > 0 

Where, 

v	�, S) = max w�	J�, JS), �	J�, ��), �	JS, �S), x	y�,{�)_x	y�,{�)?q }  
= max w�	��, JS), �	��, J�), �	JS, �S), x	{�,{�)_x	y�,{�)?q }  

= max w�	��, �), �	��, ��), �	�, �), x	{�,�)_x	�,{�)?q }  
= maxE�	��, �), 0,0F 

= �	��, �) 
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Then, 

[	D�	��, �S),v	�, S)) 	= [	D�	��, �S), �	��, �)) > 0 

From condition 	[′M) , then �	��, �) = 0,  which implies 

that �� = �, which is a contradiction. Therefore, J� = �� =�, �	is a common fixed point of �	AH�	J. 

Now, show that the common fixed point of �	AH�	J  is 

unique. To show this, let �	AH�	h  be two common fixed 

points of �	AH�	J, with � ≠ h. Then, we have 

By �′-contraction 

[	D�	��, �h),v	�, h)) > 0 

Where, 

v	�, h) = max w�	J�, Jh), �	J�, ��), �	Jh, �h), x	y�,{�)_x	y�,{�)?q }  
= max w�	�, h), �	�, �), �	h,h), x	�,�)_x	�,�)?q }  

= max w�	�, h), 0,0, x	�,�)q }  
= �	�, h) 

Then, [	D�	��, �h),v	�, h)) = [	D�	��, �h), �	�, h)) > 0 

From 	[′M), �	�, h) = 0, which implies that, � = h. 
Therefore, �	�C	A	SH�RS�	�@��@H	�����	I@�H�	@�	�	AH�	J. 
Corollary 3.6. Let 	
, �) be a complete � − ������ space with a coefficient D ≥ 1, and �, J: 
 → 
 are weakly compatible 

self maps satisfying �
 ⊂ J
. We will say that �	AH�	J are �� −contraction with respect [ ∈ ℝ∗. If [	D�, C) ≤ C − D� for all �, C ∈ 	0,∞) and if 

[dD�	��, ��),v	�, �)e > 0 

Where, v	�, �) = max	E�	J�, J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q F 
Then �	and J have a unique fixed point. l�@@�: Follows from theorem 3.3 and 3.4 by taking J = \, \	is identity map of 
.	
Corollary 3.7. Let 	
, �) be a complete � − ������ space with coefficient D ≥ 1	and let �, J: 
 → 
 are weakly compatible 

self maps satisfying �
 ⊂ J
 and either J
	@�	�
 is complete. Suppose that there exists alower-semi continuous function �:	[0,∞) → [0,∞) with ��M	0) = 0 such that 

�	��, J�) ≤ v	�, �) − �	v	�, �)), for all �, � ∈ 
 

Where, 

v	�, �) = max w�	J�, J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q }  
then �	AH�	J	have a unique common fixed point. l�@@�: The result follows from the theorem 3.3-3.5 by taking as simulation function. 

�	�, C) = C − �	C) − �	�@�	ABB	�, C ≥ 0 

Example 3.8. Let 
 = [0,1;	AH�	�	�, �) = 	� − �)?	�@�	ABB	�, � ∈ 
, �ℎ�H		
, �)  is a complete � − ������  space with 

coefficient	D = 2, and we define �, J:	
 → 
 by 

�� = � M? , � ∈ 	0, ?�)M	? − z� , � ∈ [?� , 1;  

J� = � 1, � ∈ 	0, ?�)P�− z? , � ∈ [?� , 1;  
Clearly, �
 ⊂ J
	AH�	J
 is complete. Since � = ?� is the only coincidence point of �and J. We have also �J �?�� = J� �?�� 

whenever, � �?�� = J	?�). Hence � and J	are weakly compatible. Since there is a sequence �Q = ?�+ MQ , H ≥ 1	with 
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limQ→U ��Q = limQ→U J�Q = ?� .  Now we define 	[:	[0,∞) × [0,∞) → ℝ	��	[	D�, C) ≤ C − D�, �@�	ABB	�, C ∈ 
, �ℎ�H	[	 ∈�∗. 
Now we verify the �′-contraction, let us consider the following cases: 

iAC�		�), : � ∈ �0, ?�� 	AH�	� ∈ [?� , 1;  
In this case �� = M? , �� = M? − |� , J� = 1	AH�	J� = P�− |? 

0 < [ �D�	��, ��),max w�	J�. J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q }�,  
= [	2 �M? − M? + |��? , max �	1 − P� + |?)?, 	1 − M?)?, 	P�+ |�)?, 	M�p�_��)�_	������p�)�� �)  

= [	2  ¡�)?, max ��?P + |?�? , �M?�? , � MM�− |��? , �p�_���
�_� pp������� �¢  

= [	2	|�)?, 	M?)?), 
[	2	|�)?, 	M?)?) ≤ �M?�? − 2	|�)? > 0, for all �, � ∈ [0,1; 

iAC�		��), : � ∈ £?� , 1¤ 	AH�	� ∈ 	0, ?�)  
In this case,	�� = M?− z� , �� = M? , J� = P�− z? 	AH�	J� = 1 

0 < [ �D�	��, ��),max w�	J�, J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q }�  

= [  2 �M?− z� − M?�? , max ��P�− z? − 1�? , �P�− z? − M?+ z��? , �1 − M?�? , ����¥��p��
�_�M�p�_¥���� �¢  

= [  2 ��z� �? , max ���?� − z?�? , � MM�− z��? , �M?�? , � pp��¥��
�_�p�_¥���� �¢  

= [ �2 �z�M¦� , M��,  
[	2 �z�M¦� , M�) ≤ M�− 2�z�M¦� > 0, �@�	ABB	�, � ∈ [0,1;  

iAC�		���), : �, � ∈ 	0, ?�). In this case, �� = M? , �� = M? , J� = 1	AH�	J� = 1 

0 < [ �D�	��, ��),max w�	J�, J�), �	J�, ��), �	J�, ��), x	yz,{|)_x	y|,{z)?q }�  

= [  2 �M?− M?�? , max �	1 − 1)?, �1 − M?�? , �1 − M?�? , �M�p��
�_�M�p���� �¢  

= [ §2	0), 12¨, 
[ �2	0), M?� ≤ M?− 0 > 0,  

It also holds true for �, � ∈ £?� , 1¤. 
Hence from all the above cases �  and J  satisfy the �′ − contraction. Therefore, �	AH�	J  satisfy all the 

hypothesis of theorem 3.3, 3.4 and 3.5 and they have a 

unique common fixed point � = ?�. 
4. Conclusion 

In this paper, we introduced generalized �′-contraction via �′-function and obtain common fixed point theorems in the 

framework of � − ������  spaces. Further we provided 

example that elaborated the use ability of the results. The 
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result on this thesis generalized and extended several 

common fixed point results in the literature. 
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