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Abstract: The article aims to attract the attention of researchers, experts and those interested in nonlinear dynamics and chaos 
theory to the not well known field of continuous-time difference equations, in the hopes of opening new doors into the study of 
chaotic system. Deterministic chaos and related notions are used in an increasing number of scientific works. There are a lot of 
problems associated with the mathematical aspects of the fine structure of chaos. Just as discrete-time difference equations have 
proven to be excellent models of temporal (discrete) chaos, so continuous-time difference equations provide new elegant 
mechanisms for onset and inside reconstructions of spatio-temporal (distributed) chaos. Distributed chaos is usually described by 
boundary value problems for partial differential equations. A number of these boundary value problems can be reduced to 
continuous-time difference equations, which enable one to build new chaos scenarios arising from the properties of the equations. 
Whereas the emergence of deterministic chaos is usually attributed to the complex structure of attractors, these new scenarios are 
based on a highly complex structure of spatially extended “points” of the attractor. Examples of reducible boundary value 
problems are set forth in the article, but the main focus is on a very elementary overview of the principal features of solutions of 
the simplest nonlinear continuous-time difference equations: loss of continuity, asymptotic periodicity, gradient catastrophe, 
fractal geometry, space-filling property, going beyond the horizon of predictability, self-stochasticity (deterministic solutions are 
asymptotically described by random processes), formation of hierarchical structures (down to arbitrarily small scales). Here we 
have a wonderful example of how very complex phenomena can be described with very simple equations. The use of continuous-
time difference equations in the study of reducible and close-to-reducible boundary value problems migh help to advance in 
understanding possible mathematical mechanisms for distributed chaos. 
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1. Introduction 

When using the term “difference equation”, it is usually 
thought of as a discrete-time equation. But this article is 
about continuous-time difference equations. In many cases, 
such equations appear as models for systems where the future 
is determined not only by their current state but by a part of 
their history. Over the past decades, the asymptotic dynamics 
of continuous-time difference equations was being the focus 
of Sharkovsky’s scientific team (Institute of Mathematics, 
National Academy of Sciences of Ukraine). Although the 
main ideas of their research were published about 30 years 
ago [1-3], certain fundamental steps were made relatively 
recently [4-6], in particular it was clearly shown that such 

equations are very suitable for numerical and substantive 
analytical discussion of chaotic dynamics. Now it can already 
be stated that the primary theory of continuous-time 
difference equations is completed [7]. This theory is 
paradigmatic for the modeling of complexity and chaos; in 
this line, the theory has given rise to the concept of ideal 
turbulence — a whole new kind of distributed chaos [8-10]. 

The motivation for this article came from the fact that the 
above-mentioned research on continuous-time difference 
equations and recent results on their application in nonlinear 
dynamics are not very known among scientists active in 
fields where chaotic phenomena are of importance (the more 
so since two of the above books are for now avairlable only 
in Russian). This article is not an overview of all continuous-
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time difference equations studies, but rather a call (along 
with its rationale) for academic and applied researchers to 
pay special close attention to these equations in the context of 
modeling and simulation of distributed chaos. When writing, 
little use was made of mathematical formalisms; instead the 
emphasis was placed on an informal qualitative aspects. 

Research over the resent decades have discovered that 
complexity is inherent to low-dimensional dynamical 
systems. Now it is well known that the trajectories of the 
one-dimensional dynamical system w → f (w), w ∈ℝ, and 
hence the solutions of the discrete-time difference equation 
w(n + 1) = f (w(n)), n ∈ ℤ+, can behave very irregular 
producing deterministic chaos. For example, it may occur 
that their large-time behavior is practically indistinguishable 
from that of random variables. However, in this case, we can 
only speak about the temporal chaos. 

And what can we expect from “almost the same” 
continuous-time difference equation 

w(t + 1) = f (w(t)), t ∈ ℝ+,                   (1) 

does it have some radically new properties? Every solution of 
this equation is determined by its values on the interval 0 ≤ t 
< 1 (and not only its value at t = 0, as in the case of discrete 
time). Hence, the equation generates the infinite-dimensional 
dynamical system φ ↦ f (φ) on the space of functions φ: [0,1) 
→ ℝ. And now that the points of the phase space are 
functions, we can and must think about the spatio-temporal 
behavior of trajectories, i.e., about the evolution of functions 
φ with time (when they are “moving along their own 
trajectories”). In this case, all complexities in the behavior of 
trajectories of the one-dimensional dynamical system w ↦ f 

(w), are transformed into a very intricate evolution of the 
functions φ. Indeed, the trajectory of the “point” φ(t) consists 
of the functions φ(t), f(φ(t)), f

 2(φ(t)), f
 3(φ(t)), … 

Consequently, for any non-constant function φ(t) the 
dynamics of its trajectory can be regarded as the dynamics of 
a continuum of uncoupled identical oscillators, namely: at 
each point t∗ ∈ [0,1), there is suspended a “pendulum” that 
oscillates with the law. 

wn ↦ wn+1 = f (wn), where w0 = φ(t∗).               (2) 

The oscillations of every individual “pendulum” do not 
depend on the “pendulums” at other points. Therefore, with 
increasing time, pendulum states that were close to each 
other at the initial moment can by turns be far apart and get 
closer. Systematic “divergences” and “convergences” of 
pendulum states erase the initial information and lead to an 
increase in uncertainty in the collective dynamics of the 
“pendulums”, which results in the highly irregular character 
of the functions f

 n(φ(t)) when n is large enough. The 
solutions w(t) can be written as follows. 

w(t) = f 
n(φ(t − n)) for t ∈ [n,n + 1), n = 0,1,...,        (3) 

w(t) = φ(t) for t ∈ [0,1),                         (4) 

hence their large-time behavior also becomes highly irregular 
as t → ∞. Typical solutions of (1) are depicted in Figure 1 
(such is the case for solutions of any smoothness class). 

Both computer visualization and theoretical studies have 
shown that even the simplest continuous-time difference 
equation (1) readily leads to chaotic dynamics, its solutions 
are very well suited to a mathematical simulation of 
nonlinear phenomena such as large-to-small cascades of 
structures, intermixing, formation of fractals, intermittency.1 

 
Figure 1. Typical solutions of the equation x(t + 1) = (x(t))2 + λ for λ = −1, λ 

= −1.755 and λ = −2. 

This fact assumes a particular importance considering 
that many of boundary value problems for partial 
differential equations are reduced to continuous-time 
difference or similar equations. For example, the boundary 
value problem. 

uτ − ux = 0, x ∈ [0,1], τ ∈ ℝ+,                       (5) 

u|x = 1 = f(u)|x = 0                                  (6) 

reduces exactly to the difference equation (1). Indeed, the 
general solution of the partial differential equation has the 
form u(x,τ) = w(τ + x) with w being an arbitrary function; the 

                                                             

1 The entire cascade process of structures emergence can be described using just 
one difference equation (1), whereas the use of systems of ordinary differential 
equations requires an increase in their dimension to take into account structures of 
each subsequent scale and one has to consider ultra-high dimensional systems 
(“curse of dimensionality”). The explanation is that the state space of continuous-
time difference equations is infinite-dimensional. 
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substitution of this formula into the boundary condition gives 
the difference equation w(t + 1) = f (w(t)), t ∈ ℝ+. Therefore, 
an individual solution u(x,τ) can be written as 

u(x,τ) = w(τ + x)                                (7) 

with w being such that w(x) = u(x,0), x ∈ [0,1). 
What does the relationship (7) mean for the boundary 

value problem? Figure 2 illustrates how the chaotic solutions 
of the difference equation turn into the chaotic solutions of 
the boundary value problem. 

 

Figure 2. Typical solution of the boundary value problem uτ − ux = 0, u(x,1) = (u(x,0))2 − 1.755. 

The reduction of boundary value problems to continuous-
time difference equations made possible new spatio-temporal 
chaos scenarios (different from scenarios based on the 
strange attractors concept and from scenarios for discrete 
ensembles of coupled maps) covering the issues: 

a) What causes cascades of structures that come on at 
ever-decreasing scales and what are the principles of the 
hierarchy of structures that emerge? 

b) Why a system “moves” to the chaotic mixing? 
c) How the self-stochastization (or self-randomization) of 

a deterministic system can happen with time? 
Here we have an excellent example of how very complex 

phenomena can be described with the help of very simple 
models. In particular, not only does the reduction to (1) 
provide scenarios for the onset of spatio-temporal chaos, that 
are roughly comprehensible even to senior schoolchildren, 
but it also describes the self-stochasticity phenomenon in 
favor of the hypothesis (growing ever more convincing) that 
chaos is not completely disordered and obeys certain 
regularities. 

2. Boundary Value Problems Reducible 

to Continuous-Time Difference 

Equations 

Problems that can be reduced to continuous-time 
difference equations occupy a special place among boundary 
value problems for partial differential equations. Examples of 
this sort problems, which are called reducible, have been 
known long ago [11–14], but at that time the reduction 
method did not attract the attention of specialists because the 
resulting equations seemed no less difficult than the original 
boundary value problems. A real chance of progress on this 
issue appeared relatively recently thanks to the development 
of the qualitative theory of nonlinear continuous-time 

difference equations [1, 7]. 
The mathematical concept of chaos in reducible boundary 

value problems was developed as a result of investigating a 
number of nonlinear boundary value problems, which are 
very simple and highly idealized models describing systems 
without internal resistance but nevertheless exhibiting the 
essential part of dynamics in more complicated and general 
models in electrodynamics, radiophysics and other 
disciplines related to the study of electromagnetic and 
acoustic vibrations. These are mainly the linear hyperbolic 
equations. 

���
�� 	 ∑ ��
�
�� ���

��� � 0, k = 0, 1, …, m,          (8) 

where (x1, …, xn) ∈ G ⊂ ℝn, τ ∈ ℝ+, akj ∈ ℝ, with the 
nonlinear boundary condition. 

H(u1, …, um) = 0 for (x1, …, xn) ∈ ∂G,        (9) 

and also the wave equation and others that somehow lead to 
equations of the form (8). The linearity of (8) makes it 
possible to write out the general formula for solutions. The 
substitution this formula into the boundary condition gives a 
nonlinear continuous-time difference equation or differential-
difference equation. 

The transition to a continuous-time difference equation in 
many cases enables not only to find analytical formulas for 
solutions of reducible boundary value problems but also to 
“convert” them into rigorous qualitative-analytical results. In 
addition, formulas for solutions are usually well adapted to 
computer calculations and make it easy to visualize the 
dynamics of reducible problems. For example, the solutions 
of problems reducible to (1) are determined via the iterations 
of the map f. In particular, when solving the problem (5),(6) 
with the initial condition u(x,0) = φ(x), we arrive at the 
representation. 
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u(x,τ) = f n (φ(τ + x − n)), τ + x ∈ [n, n + 1), n = 0,1,..., (10) 

where f 0(z) = z, f n (z) = f (f
 n−1(z)), which follows from (7) 

and shows that computer calculations are quite simple to 
perform. Along with the problem (5),(6), there are still many 
examples of reducible problems. Such examples are 
discussed in many works ([15-17] and references therein), 
and just a few of them will be shared here. 

Consider the equation (5) combined with another boundary 
condition containing derivatives, say 

uτ |x=1 = h(u) uτ |x=0.                          (11) 

This problem is reducesed to a family of difference 
equations. Indeed, the integration of (11) brings the boundary 
condition to the form. 

w|x=1 = f (w)|x=0 + λ,                           (12) 

where f is a primitive of h and λ is an arbitrary constant. 
Substituting the general solution u(x,τ) = w(τ + x) with w 
being an arbitrary C 0-function into (12), we obtain for w the 
one-parameter family of difference equations. 

w(t + 1) = f (w(t)) + λ, t ∈ ℝ+.                  (13) 

Since the solutions of the original boundary value problem 
are continuous, every individual solution u(x,τ) can be 
represented in the form. 

u(x,τ) = w(τ + x),                              (14) 

where w(t) is the solution to the only one of the difference 
equations (13). Indeed, let u(x,0) = φ(x), then w(t) is found 
from the equation. 

w(t + 1) = f (w(t)) + φ(1) − f (φ(0)), t ∈ ℝ+,    (15) 

with the initial condition w(t)|t=[0,1) = φ(t). 
And some words about the wave equation. Even the one-

dimensional wave equation uττ − c2
uxx = 0 in combination 

with various nonlinear boundary conditions provides a wide 
range of reducible boundary value problems. One of the 
simplest is the problem. 

uττ − uxx = 0, x ∈ [0,1], τ ∈ ℝ+,               (16) 

u|x=0 = 0, ux |x=1 = f(uτ) |x=1.                     (17) 

The substitution of the general solution formula. 

u(x,τ) = w(τ + x) + ŵ(τ − x),                    (18) 

where w, ŵ are arbitrary C 2-functions, in (17) yields. 

ŵ(t) = −w(t), 

w'(t + 1) − ŵ'(t − 1) = f (w'(t + 1) + ŵ'(t − 1)), t ∈ ∗+. 

It follows that the function v(t) given by 

v(t) = − ŵ'(t − 1) for 0 ≤ t < 1, 

v(t) = w'(t − 1) for t ≥ 1, 

must satisfy the difference equation. 

v(t + 2) + v(t) = f (v(t + 2) − v(t)),               (19) 

where the dependence of v(t + 2) on v(t) is defined implicitly 
and is for the most part multivalued. Thus, every individual 
solution u(x,τ) can be represented in the form. 

���, �� = � ������� ��� �!�"!,                       (20) 

where v(t) is the solution (if exists) of (19) with the initial 
condition. 

v(t) |[0,1) = ½ (−φ'(1 − t) + ψ(1 − t)), 

v(t) |[1,2) = ½ (φ'(t − 1) + ψ(t − 1)), 

φ(x) = u(x,0), ψ(x) = uτ (x,0). 

If the boundary conditions (17) are replaced as follows: 

ux |x=0 = a uτ |x=0, ux |x=1 = f (u)|x=0, a > 1,           (21) 

then the problem reduces not to one but to several difference 
equations. Combining (18) and (17) after certain 
manipulations gives. 

w(t) = ½ (1 + a) z(t + 1) − A, ŵ(t) = ½ (1 − a) z(t + 1) + A, 

where A is an arbitrary constant, and z(t) is a solution of the 
second-order difference equation. 

(a + 1) z(t + 2) = 2 f (z(t + 1)) + (a − 1) z(t). 

Setting 

y(τ) = z(t + 1)/b. h(y) = 2 f(by)/(a − 1), b = (a − 1)/(a + 1), 

we obtain the system of first-order difference equations. 

y(t + 1) = h(y(t)) + z(t),                           (22) 

z(t + 1) = by(t). 

To (22) there corresponds the two-dimensional map. 

y ↦ h(y) + z, 

z ↦ by, 

which is the Henon map for h(y) = 1 − My
2, and the Lozi map 

for h(y) = 1 − M|y|. 
The above reduction method has a clear physical meaning. 

Hyperbolic equations are marked by the existence of real and 
distinct characteristics — curves, along which the partial 
differential equation becomes an ordinary differential 
equation. From a physical point of view, the characteristics 
are space-time curves along which signals propagate in the 
medium described by the boundary value problem. If the 
medium is linear (as in the case of problems like (8),(9)), 
then the signal u(x,τ) moves along the characteristics without 
changing its waveform. This is exactly what the formal 
procedure of “substitution into boundary conditions” is. In 
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particular, it is possible that the signal, after reflection and 
distortion at the boundary, returns to its original position 
(again, without changing its new waveform when moving 
along the characteristics). Then, to find the signal value at a 
point x0, we compose the difference equation u(x0, τ + θ) = f 
(u(x0, τ)), τ ∈ℝ+, where f is the function describing the 
effect of the boundary on the signal waveform, and θ is the 
signal return time. For example, such is observed in the 
problem (5),(6), where the straight lines τ + x = const are 
characteristics, and the signal return time equals 1. 

Thus, for a successful study of reducible and related 
boundary value problems, a good understanding of the 
specifics of continuous-time difference equations is necessary. 

3. A Little About Continuous-Time 

Difference Equations 

Now that we are aware of the potential benefits of using 
continuous-time difference equations when modeling 
complex dynamics, we give a very brief and simplified 
description of the principal features of the equation. 

w(t + 1) = f (w(t)), t ∈ ℝ+,                     (23) 

where f is a nonlinear continuous map of a closed interval I 
into itself (precise formulations of all notions, arguments, and 
conclusions are represented in the completed form in the 
author's book [7]).  

Solutions of (23) are generated by functions φ: [0,1) → I. 
Every initial condition w(t) = φ(t), t ∈ [0,1) defines a unique 
solution, which we denote by wφ(t). This solution takes 
values in the interval I and, as mentioned above, can be 
written in the form. 

wφ(t) = f n(φ(t − n)), t ∈ [n, n + 1), n = 1, 2,... 

Continuous-time difference equation by themselves do not 
impose any regularity conditions on their solutions. We are 
primarily be interested in continuous and smooth solutions. 
As it follows from the above formula for wφ(t), continuous 
solutions are generated by just those φ that satisfy the 
consistency conditions: 

φ ∈ C([0, 1), I), φ(1−0) = f (φ(0)). 

If f is C k-smooth, k ≥ 1, then a good many solutions are 
also smooth. More precisely, for any integer 1 ≤ i ≤ k, the 
solution wφ(t) is C i-smooth if and only if. 

φ ∈ C i([0, 1), I), d s
φ(1−0)/dt 

s = d s
f (φ(0))/dt 

s, s = 0, 1,..., i. 

From now on, the solutions are understood as continuous 
(including smooth) solutions of (23) and, in order to avoid 
degenerate situations, the initial functions are assumed to 
take values in the interior of I. 

Let us first turn to the representative example shown in 
Figure 1, which we will constantly refer to and which is 
related to the quadratic equation. 

w(t + 1) = (w(t))2 + λ, t ∈ ℝ+.                   (24) 

In all three cases in Figure 1, there exist points t∗ ∈ [0,1) 
such that the solution derivative at t = t

∗ + n increases ad 
infinitum as n → ∞, and hence the solution is asymptotically 
discontinuous. In the case (a), there is just one such point, but 
in the cases (b) and (c), there are infinitely many such points; 
moreover, these are all points from [0,1) in the case (c). On 
closer inspection of the drawing, the solutions in the cases (a), 
(b) and (c) look asymptotically periodic with period 2, 3 and 
1, respectively. This example illustrates the general research 
finding that solutions (even C

 ∞-smooth) tend to periodic 
discontinuous functions (interval-valued at discontinuity 
points). These limit functions often have an infinite number 
of discontinuities on any unit-length interval. If so, the 
solutions behave chaotically over time but with the 
peculiarity of nearly perfect periodicity: the pattern of 
irregular behavior persists on larger scales and becomes more 
complicated on smaller scales (just as in Figures 1(b), (c)). 
Therefore, it is meaningful to speak of the dual tendency for 
solutions to exhibit both deterministic periodicity and 
unpredictability. 

Without going into much mathematics, we can explain 
why this is so in terms of the above interpretation of the 
solution wφ(t) as the continuums of oscillators (2), which do 
not interact, differ from each other only in the initial state and 
follow the same law wn ↦ wn+1 = f(wn), w0 = φ(t∗). Namely: 

a) The discontinuity of the limit functions arises from the 
imbalance of some or all of the individual oscillators, 
which is usually caused by the lack of coupling of the 
oscillators. 

b) The periodicity of the limit functions is the result of the 
increasing similarity (up to nearly perfect periodicity) in 
the collective behavior of all the oscillators considered 
as a whole. 

Whereas the former statement is intuitive, the latter 
requires some kind of comment on how the individual 
oscillators oscillate independently and yet “work” together to 
produce a periodic pattern. So, taken together, the oscillators 
(2) constitute a holistic system represented by the continual 
family of trajectories wn‹t› = f n(φ(t)), t ∈ [0,1). In order to 
investigate the system dynamics (especially where the 
divergence of trajectories occurs), it is necessary to analyze 
not every individual trajectory wn‹t∗› = f n(φ(t∗)), t∗ ∈ [0, 1), 
but its associated beam of nearby trajectories wn‹t› = f n(φ(t)), 
t ∈ (t∗ − ε, t∗ + ε); and what matters is that each such a beam 
must be analyzed first when n → ∞, and then when ε → 0 
(and not vice versa).2  Thus, the factor responsible for the 
asymptotic behavior of the uncoupled-oscillators system (2) 
is precisely the dynamics of neighborhoods of points, and not 
the dynamics of individual points (whereas the latter is true 

                                                             

2 This approach is in tune with the concept of holism, which studies an object as a 
whole (focusing on the relationships between the object parts) and stands in 
contrast to the reductionism, which believes that a whole is simply the sum of its 
parts (see, e.g., Ostreng, W. Reductionism versus Holism – Contrasting 
Approaches. In. Consilience. Interdisciplinary Communications 2005/2006, 
Centre for Advanced Study, Oslo, 2007, p. 11–14). 
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for the discrete-time equation w(n + 1) = f (w(n)), n ∈ ℤ+). 
The trajectories of neighborhoods are typically 
asymptotically periodic [18], and therefore the holistic 
system (2) also behaves asymptotically periodically. 

While the theory of linear continuous-time difference 
equations appeared in the early 1900s (mostly due to the 
direct analogy with linear differential equations), things are 
different with the nonlinear continuous-time difference 
equations. Until recently there was not even a systematic 
theory of the simplest nonlinear equation (24). This is 
because the crucial differences between continuous-time 
difference equations and ordinary differential equations are 
fully manifested in the case of these being nonlinear. Visual 
evidence is provided in Figure 1; naturally, these kinds of 
solutions are fundamentally infeasible for ordinary 

differential equations. 
Below we list and briefly discuss the main specific 

properties of (23), which, we emphasize once again, are 
mathematically formalized and fully justified. 

3.1. Loss of Continuity: Asymptotically Discontinuous 

Solutions 

In all the cases of Figure 1, there are regions where the 
solution changes very fast; its rate of change tends to infinity 
and the transition interval tends to zero as t → ∞. This suggest 
an idea of the asymptotic loss of continuity. Under the 
assumptions made, all solutions of (23) are continuous (with 
some being smooth) and bounded, but would they be 
uniformly continuous? The answer depends heavily on the set 

D(f) = { z ∈ I: the trajectory f n(z), n = 0, 1,..., is Liapunov unstable }, 

which is referred to as separator.3 In the vicinity of D(f), 
there is the divergence of initially nearby trajectories, i.e., for 
every point z ∈ D(f) there exists d(z) > 0 such that whatever 
ε > 0, one can find m > 0 and ẑ ∈ (z − ε, z + ε) with the 
property: |f m(z) − f m(ẑ)|> d(z). 

If D(f) contains a positive Lebesgue-measure subset D0(f) 
such that inf d(z) > 0 for z ∈ D0(f), then f is said to be  

sensitively dependent on initial data (the butterfly effect). 
The set D(f) has the following implication for the solution 

wφ(t) of (23). Let z0 ∈ D(f) and let for simplicity z0 be a fixed 
(unstable) point. If there exists t0 ∈ [0,1) such that φ(t0) = z0, 
φ'(t0) ≠ 0, then whatever be a neighborhood Vn of the point tn 
= t0 + n, the inequality diam wφ(Vn) > d(z0) holds true from a 
certain n onwards. This implies that near the points t = tn the 
graph of wφ(t) will look more and more like a vertical 
segment of length > d(z0) as n increases. Hence, the solution 
wφ(t) is not uniformly continuous on the whole semiaxis ℝ+ 
and is asymptotically discontinuous. All the solutions shown 
in Figure 1 have this property. But if φ(t) takes no values 
from D(f), then the solution wφ(t) is uniformly continuous. 
Thus, all the solutions are uniformly continuous on ℝ+ only if 
D(f) = ø. Of course, (23) can have uniformly continuous 
solutions when D(f) ≠ ø. The simplest example is afforded by 
considering the constant solutions, which have the form w(t) 
≡ c with c being a fixed point of f. Every constant solution is 
uniformly continuous on ℝ+ regardless of whether or not its 
associated fixed point is stable. For example, (24) has exactly 
two constant solutions w(t) ≡ α and w(t) ≡ α0, where α = ½ (1 
− √b) and α0 = ½ (1 + √b), b = 1−4λ. If 1/4 < λ < 3/4, then the 
fixed point α is attracting (hence α ∈ I \ D(f)) and the fixed 
point α0 is repelling (hence α0 ∈ D(f)). In general, typical 
uniformly continuous solutions are those tending to constant 
ones. 

The intuition tells us that the condition D(f) = ø. holds true 
in exceptional cases, and the existence of asymptotically 
discontinuous solutions is therefore distinctive of (23). In the 
broadest strokes, for almost all equations of the form (23), all 

                                                             

3 The notion of separator is directly related to the Julia set J(f). Namely, cl(D(f)) = 
J(f) and D(f) is typically closed (here cl() is for the closure of a set). 

solutions other than asymptotically constant ones are 

asymptotically discontinuous. 

3.2. Periodicity in the Asymptotic Dynamics of Solutions 

The limit behavior of an asymptotically discontinuous 
solution cannot be described in terms of continuous functions. 
In order to handle this situation, we need the space of upper 
semicontinuous functions from ℝ+ to 2I, that is endowed with 
metric ∆: ℝ+ × I → ℝ given by the Hausdorff distance 
between the graphs of functions. A solution tending to a 
periodic upper semicontinuous function in the metric ∆ will 
be called ∆-asymptotically periodic. Very simplified, for 

almost all equations of the form (23), almost all solutions are 

∆-asymptotically periodic. Their limit functions can be 
described by a single formula using the set 

Qf (z) = ∩δ > 0 ∩j > 0 cl (∪i > j f 
i(Vδ (z))), Vδ (z) = (z − δ, z + δ), 

which is referred to as domain of influence of a point under 
the map f and shows how far from the trajectory of the point 
z the trajectories of its nearby points go. There exists an 

integer p = p(f) > 0 such that almost every solution wφ(t) 
tends to the upper semicontinuous p-periodic function. ℋφ (t) =%� &'()*+�! − -�./ for t ∈ [n, n + 1),         (25) 

n = 0, 1,..., p − 1. 

Let << >> be for the integer part of a number. The value of ℋφ (t) is a closed interval if φ(<<t>>)∈ D(f) and a one-
point set (singleton) otherwise.4 

As an illustration we take the solutions of (24), which are 
plotted in Figure 1. Denote these by w(a), w(b), w(c) and their 
initial functions by φ(a), φ(b), φ(c) for the cases (a), (b) and (c), 
respectively. The solutions behavior is determined by the 
dynamics of the map g: z → z2 + λ. For the above values of λ, 
the map g has the fixed points z = α and z = α0, each repelling, 
                                                             

4  Formula (25) strongly indicates that the asymptotic behavior of wφ(t) is 
determined by the collective dynamics of the neighborhoods of points z ∈ φ([0,1]) 
under the map f. 
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and the invariant interval I = [−α0, α0]. The initial functions 
φ(a), φ(b), and φ(c) take values from I (as seen from the 
drawing), hence so do the solutions w(a), w(b) and w(c). We will 
therefor consider the map g only on I (see Figure 3). 

As unexpected as it may be, the simplest to describe is the 
most chaotic solution w(c)(t), that occurs at λ = −2. In this 
case, I = [−2, 2], all the trajectories of the map g are unstable 
and any neighborhood of every point covers I in a finite 
number of iterations. Hence, D(g) = [−2, 2] and Qg(z) = [−2, 
2], z ∈ I. To us this means that the limit function of w(c)(t) 
has the form. ℋφ(c) (t) = [−2, 2], t ∈ [0,1], 

it is discontinuous at every point and is periodic with period 1. 

 

Figure 3. Three types of dynamical behavior of quadratic maps. 

The most “well behaving” solution w(a)(t) occurs at λ = −1. 
In this case, the map g has an attracting period-2 cycle, 
namely, the cycle {β1, β2} with β1 = −1, β2 = 0. This cycle 
attracts all the points of I except for the set D(g) consisting of 
the (repelling) fixed points α, α0, and their preimages 
(condensed towards the ends of I). Therefore, Qg(z) = 
{β1}∪{β2} for z ∈ I \ D(g). As for the rest of the points, 
whatever be the neighborhood of a point z ∈ D(g), z ≠ − α0, 
α0, it expands in the limit to the interval [β1, β2]; hence, Qg(z) 
= [β1, β2]. From this we draw the following conclusions 
about the solution w(a)(t). As Figure 1(a) suggests, there is 
only one point t∗ ∈ [0,1) such that φ(a)(t∗) ∈ D(g), namely, 
φ(a)(t∗) = α. If t ∈ [0, t∗), then g2k(φ(a)(t)) → β2 as k → ∞, and 
if t ∈ (t∗,1), then g2k(φ(a)(t)) → β1 as k → ∞. Consequently, 
w(a)(t) tends to the upper semicontinuous function. 

 ℋφ(a) (t) =0 β2, ≪ ! ≫∈ �0, !∗�,≪ ! ≫∈ �!∗ 	 1,2�,8β�, β29, ≪ ! ≫� !∗,≪ ! ≫� !∗ 	 1,β�, ≪ ! ≫∈ �!∗, !∗ 	 1�,
 

which is periodic with period 2 and has one discontinuity in 
each unit-length interval (in general, the initial function of 
every non-constant solution of (24) with λ = −1 has exactly 
finitely many discontinuities in an unit-length interval). 

Now, let us look at the case of λ = −1.755, which is 
represented by the solution w(b)(t). With this value of λ, the 
map g is very nearly the same as in the case of λ = −1, but 
with the following differences. The map g again has an 
attracting cycle, but of period 3; let it be denoted by {γ1, γ2, 
γ3}.5 The basin of this cycle is formally written in the same 

                                                             

5 The numerical values of β1, β2 and γ1, γ2, γ3 can be found as being the zeros of 

form as previously: I \ D(g), but now the separator has a 
much more complicated structure: D(g) is a Cantor-like set. 
For every point z ∈ D(g), z ≠ − α0, α0, its neighborhood 
expands in the limit to the interval [λ, λ+λ2]. Therefore, Qg(z) 
= {γ1}∪{γ2}∪{γ3} for z ∈ I \ D(g) and Qg(z) = [λ, λ+λ2] for 
z ∈ D(g), z ≠ − α0, α0. The limit function of w(b)(t) can be 
written out in the same way as it does in the case of λ = −1, 
but now in general form. Indeed, let Bk(g) be for the basin of 
the point z = γk, k = 1, 2, 3, under the map g3. The wanted 
function is given by 

ℋφ(b)(t) =: γ�, φ�=��≪ ! ≫� ∈ >��?�,8λ, λ 	 λ29, φ�=��≪ ! ≫� ∈ A�?�.  
Hence, ℋφ(b)(t) is periodic with period 3 and has an 

uncountable number of discontinuities in each unit-length 
interval (such are the limit functions corresponding to all but 
the constant solutions of (24) with λ = −1.755). Figure 4 
shows how complicated the geometry of ℋφ(b)(t) is. 

 

Figure 4. Typical limit function for λ = −1.755. 

The graph is locally self-similar at discontinuity points, its 
fractal dimension is greater than 1 and less than 2 (φ(b)(t) = λ t, 
t∗ = 0.52192605461574, ε = 0.00000003, κ = 1.83) 

The graph of ℋφ(a)(t) consists of horizontal and vertical 
segments; horizontal segments “multiply” in the vicinity of 
each vertical segment (and thus, between any two horizontal 
segments, there is always a third one), moreover, the graph is 
locally self-similar at each discontinuity point (with its own 
coefficient of similarity). 

3.3. Non-standard Properties of Solutions 

As was noted above, solutions tending to discontinuous 
periodic functions are typical of (23). On the one hand, this 
fact points to the simple dynamics of typical solutions (they 
are asymptotically periodic), but on the other hand, it shows 
that typical solutions behave in complex and intricate ways 
on large time scales (because of the very complicated 
geometrical structure of their limit functions). Equation (24) 
has demonstrated that a step-by-step increasing in complexity 
of the solution wφ(t) depends crucially on the topological 

                                                                                                        

the polynomial (g2(x) − x) / (g(x) − x) and (g3(x) − x) / (g(x) − x), respectively. 
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structure of the discontinuity set of its limit function ℋφ(t). 
It is the set 

D(f, φ) = {t = t∗ + n: t∗ ∈ φ−1(D(f)), n = 0, 1,..., p} 

with p being the period of ℋφ(t). Thus, the structure of D(f, 
φ) is completely dominated by the set φ−1(D(f)), that “takes 
by inheritance” the structure of the separator D(f) and is the 
root cause of unusual-looking solutions. The main properties 
of these solutions are listed below; all but the first property 
occur only when the map f has a cycle of period different 
from 2k, k = 0, 1, 2,... 

3.3.1. Gradient Catastrophe 

The asymptotic discontinuity of solutions causes the 
gradient catastrophe: the derivative of a bounded solution 
increases indefinitely. 

Think, for example, of the solutions in Figure 1. As for the 
solution w(a)(t), no matter how large L > 0 and small δ > 0, 
one will find a number T∗ > 0 such that if T > T∗ there exists a 
point t∗ ∈ [T, T +1] for which |w'(a)(t∗)| > L and the 
oscillation ω∗ of w(a)(t) in the vicinity of t = t∗ is δ-nearly 
equal to 1, i.e., 1 − δ < ω∗ ≤ 1. Besides, for the solutions 
w(b)(t) and w(c)(t) (with the sets D(f, φ(b)) and D(f, φ(c)) 
containing infinitely many poins from any unit-length 
interval), the number of “gradient catastrophe” points and 
hence the number of undamped oscillations on [T, T + 1] 
increases ad infinitum as T → ∞. This property is inherent in 
every non-asymptotically-, constant solution of (23). The 
oscillation build-up adds considerable complexity and leads 
to chaotization of the solutions behaviors. 

3.3.2. Fractal Geometry of Solutions 

In the above line of thought, it is natural to evaluate the 
degree of chaos in the solution wφ(t) based on its limit 
function ℋφ(t) and the topological structure of the set 
φ−1(D(f)) 

If φ−1(D(f)) is of positive fractal dimension, we should 
expect very high chaos. Indeed, as a set on the plane, the 
graph of ℋφ(t) is locally self-similar and, furthermore, 
fractal, i.e., its fractal dimension is greater than unity (see 
Figure 4 for illustration). This fact can be briefly described as 
follows. Let dimbox denote the box-counting dimension (a 
version of fractal dimension) and gr denote the graph of a 
function. If look at the limit functions ℋφ(a), ℋφ(b), ℋφ(c) 
constructed above, it becomes seemingly obvious that 

dimbox gr ℋφ|[0,1] = dimbox φ
−1(D(f)) + 1. 

Hence, if dimbox φ
−1(D(f)) > 0, then the fractal dimension 

of gr ℋφ|[0,1] — and hence of gr ℋφ|[T,T+1] with any T > 0 
— is greater than 1 and can even be equal to 2. In particular, 

1 < dimbox gr ℋφ(b)|[T,T+1] < 2, dimbox gr ℋφ(c)|[T,T+1] = 2, 

whereas dimbox gr ℋφ(a)|[T,T+1] = 1. 
These facts speak of the asymptotically fractal geometry of 

solutions. Figure 5 shows just how it runs. The solution w(b)(t) 

is again used as an example. The graph fragment (a) “under a 
magnifying glass” — at horizontal magnification — prove to 
be almost a copy of the graph on the interval [6, 7]. The 
fragment (b) “under a magnifying glass”, in turn, looks like 
almost a copy of the graph on the interval [9, 10]. This same 
situation continues to repeat with step 3 along the t-axis (the 
step size is equal to the period of the limit function of w(b)(t), 
and the number of oscillations grows exponentially6). 

 

Figure 5. Asymptotically fractal geometry of solutions for λ = −1.755. 

3.3.3. Space-Filling Property 

If φ−1(D(f)) is an interval, then the graph of the solution 
wφ(t) has dimension 1, but the graph of its limit function ℋφ(t) has dimension 2 and, moreover, 

dimbox gr ℋφ|[T, T + δ] = 2 for any T ≥ 0, δ > 0. 

Therefore, when t is sufficiently large, the curve s = wφ(t) 
behaves like a planar space-filling curve (i.e., a continuous 
curve that passes through each point of some square): for any 
ε > 0 there is Tε > 0 such that the graph gr wφ passes at a 
distance less than ε > 0 from each point of the region Πφ,T = 
{(t,s) ∈ gr ℋφ|[T, ∞] } when t > Tε. Simply put, the graph of 
wφ(t) “tries” to completely fill the region Πφ,T as T → ∞. The 
perfect example of this is afforded by the solution w(c)(t) of 
Figure 1(c); the greater T is, the denser gr w(c) fills up the 
region Πφ,T = [T,∞) × [−2,2]. More generally, similar 
behavior is possessed by every solution wφ(t) for which 
φ−1(D(f)) contains at least one interval. We refer to such 
solutions as strongly chaotic. 

3.3.4. Going Beyond the Horizon of Predictability 

For a strongly chaotic solution, there is no way to reliably 
calculate its values on large time scales. In this case, the 

solution is said to be beyond the horizon of predictability 
(where chaos asserts itself). We illustrate this again with the 
example of the solution w(c)(t) of Figure 1(c). Its limit 
function has the form ℋφ(c) = [−2,2]. Consequently, 
whatever t, t' ∈ ℝ+, the values w(c)(t + n) and w(c)(t' + n) 

                                                             

6  The number of oscillations grows at a rate proportional to the rate of 
multiplication of the inverse images of points z ∈ D(g) and, hence, proportional 
to e ent

 
g with ent g being the topological entropy of g, and ent g > 0 for λ = −1.755. 
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“diverge” at a certain n = n' by the amount nearly equal to the 
diameter of the interval [−2, 2]. This reasoning is formalized 
as follows: given t ∈ ℝ+, for arbitrarily small ε > 0 and δ > 0 
there exists K > 0 such that 

sup |w(c)(t + n) − w(c)(t' + n)| ≥ 4 − δ, for n > K. t': |t − t'| < ε 

Thus, the calculation of the numerical values of a 
strongly chaotic solution becomes meaningless sooner or 
later and, as a rule, one has to resort to probability and 
statistics. The property of solutions “to go beyond the 
predictability horizon” captures the fact that many real-
world systems will always behave in unexpected way — no 
matter how deep a study of them we have made. 

3.3.5. Self-stochasticity Property 

In its general sense, the self-stochasticity concept means 
that the asymptotic dynamics of a deterministic chaotic 
system can be described in probability terms [2, 5]. As 
regards (23), self-stochasticity consists in the existence of 
solutions that “go” beyond the predictability horizon but 
whose behavior is asymptotically accurately described by 
some random processes. A probabilistic description of 
unpredictable solutions is possible where the map f possesses 
a smooth (i.e., absolutely continuous with respect to 
Lebesgue measure) invariant measure. Self-stochasticity is 
physically realizable by (23) in the sense that there are 
natural one-parameter families of chaotic maps having a 
smooth invariant measure on a positive Lebesgue measure set 
of parameters. 

To be specific, let us take (24) with λ = −2. Its associated 
map g: z ↦ z2 − 2 has the smooth invariant measure µ(dz) = − 

dz/π(4 − z2)½ concentrated on [−2, 2]. The statistical behavior 
of almost all trajectories of g is known to be described by the 
same random variable with the distribution F(A) = µ(A), A ⊂ I. 
This random variable gives an asymptotically accurate 
estimate for the probability of a trajectory falling into a 
particular subset of [−2, 2]. This temporal stochasticity of the 
trajectories of g transforms into the spatio-temporal 
stochasticity of the solutions of (24). 

Precisely speaking, every non-constant solution wφ(t) can be 
thought of as the continual beam of the trajectories g

n(z) 
emanating from the points z = φ(t), t ∈ [0, 1]. If φ(t) is non-
singular 7 , then the ensemble of random variables 
corresponding to this beam is a random process8, say ℛφ(t), 
which can be expected to describe the statistical behavior of 
wφ(t). It has been found that wφ(t) tends (in a specially 
constructed metric) to ℛφ(t) as n → ∞; in particular, the 
probability of its value at some distant moment belonging to 
the interval [a, b] ⊂ [−2, 2] is nearly equal to F(t,b) − F(t,a), 
F(t,s) being the one-dimensional distribution of ℛφ(t). The 

finite-dimensional distributions of ℛφ(t) are expressed in 
terms of the measure µ. The one-dimensional distribution has 

                                                             

7 We call a function φ(t) non-singular if mes φ−1(A) = 0 for mes A = 0 (mes is for 
the Lebesgue measure). 
8  The fulfillment of Kolmogorov consistency conditions is ensured by the 
invariance of the measure µ under the map g and the nonsingularity of the initial 
functions φ(t). 

the form. 

D�!, E� � , �
F� GH

IJ HK
L
 2 � , 2

F arcsin �2√2 , E,    (26) 

and is hence independent of φ. The higher-order distributions 
are normally φ-dependent. Thus, different solutions generally 
(but not always) have different limit random processes.  
Neglecting of autocorrelations (which are often not needed in 
applications), the asymptotic dynamics of almost all solutions 
(including w(c)(t) of Figure 1(c)) is described by one and the 
same simplified random process — the stationary random 
process with independent values, that specifies by the one-
dimensional distribution (26). Here we observe forgetting 
initial data in its purest form. 

3.3.6. Structure Formation 

The non-asymptotically constant solutions of (23) have 
one more (extremely important) property — cascades from 
large to small structures (down to arbitrarily small scales) in 
their graphs. This property is clearly demonstrated with the 
help of (24). Figure 6 reveals how the solution w(b)(t) of 
Figure 1(b) changes in going from one plot section to another. 
The drawings show the successive stages of the cascading 
emergence of coherent (i.e., persisting in their form for 
relatively long periods) spatial structures. As smaller-scale 
structures arise, the larger-scale structures continue to exist. 
This leads to a cascading spatio-temporal hierarchy of 
coherent structures. 

In each hierarchical chain, there are geometric similarities 
between the structures, which leads to the formation of a 
complicated fractal-like structure that is locally self-similar at 
different scale levels (scaling). The major factor responsible 
for this type of structuring processes is the highly complex 
topological-dynamical organization of the basin of the 
attracting cycle {γ1, γ2, γ3} of the map g. 

 

Figure 6. Cascade of structures in solutions for λ = −1.755. 

The solution w(c)(t) of Figure 1(c) exemplifies another type 
of self-organization, where the emergence of smaller-scale 
structures is accompanied by the destruction of larger-scale 
structures (generation of smaller-scale structures from larger-



20 Olena Romanenko:  Continuous-Time Difference Equations and Distributed Chaos Modelling  
 

scale ones). As a consequence, from a certain moment the 
structures become so small that they cease to be coherent and 
their collective dynamics can be regarded as chaotic mixing. 
Structuring processes of this type arise because the unstable 
points of the map g are dense in the invariant interval I. 

In case f is more complex than a unimodal map (say, 
bimodal), (23) usually has solutions with both types of self-
structuring and, in addition, there are solutions with self-
structuring of the former type on some intervals and of the 
latter type on others. 

4. One Visual Example of Distributed 

Chaos in Boundary Value Problems 

Let us replace (5) with one of its two-dimensional 
analogue and consider the problem. 

uτ = ux + uy,                                   (27) 

vτ = − vx − vy, x ∈ [0,1], y ∈ ℝ, τ ∈ ℝ+. 

u|x = 0 = v|x = 0, u|x = 1 = f(v)|x = 1.                   (28) 

This problem can be considered as a model of a planar 
flow of a non-viscous medium in a channel of infinite length 
with a nonlinear interaction at the boundary. Figure 7, which 
presents the instantaneous streamlines of this flow, shows 
how the corresponding vector field (u(x,y,τ), v(x,y,τ)) 
changes with time in the case where f(z) = z2 − 2. Here we 
see a cascade leading to the emergence of smaller and 
smaller structures, which is accompanied by the destruction 
of larger structures. It seems like the flow in any spatial 
region is absolutely chaotic in the limit (as τ → ∞) and 
apparently, chaotic mixing occurs within the flow. All this is 
well described mathematically by reducing the boundary 
value problem to a difference equation. The general solution 
of (27) is given by 

u(x,y,τ) = w(x + τ, y + τ), v(x,y,τ) = ŵ(x − τ, y − τ), (29) 

where w, ŵ are arbitrary C 2-functions. The substitution of (29) 
in the boundary conditions shows that w(t,σ) is a solution to 
the partial difference equation. 

w(t + 2, σ + 2) = f (w(t, σ)), t ∈ [−1,0) ∪ ℝ +, σ ∈ ℝ. (30) 

Hence, every individual solution u(x,y,τ), v(x,y,τ) can be 
written as follows 

u(x,y,τ) = w(x + τ, y + τ),                      (31) 

v(x,y,τ) = w(−x + τ, y − 2x + τ), 

where w(t,σ) is the solution of (30) with the initial condition. 

w(t,σ) |[−1,0) = ½ φ2(−t, σ − 2t),  w(t,σ) |[0,1) = ½ φ1(t, σ), 

φ1(x) = u(x,y,0), φ2 = v(x,y,0). 

Where f (z) = z2 − 2, a typical solutions of (30) is strongly 
chaotic (it behaves as in Figure 1(c)). Its asymptotic 

dynamics is described with a random process (self-
stochasticity property), and so is the dynamics of components 
u and v of each typical solution of (27),(28). The mentioned 
random process is defined by the smooth invariant measure 

µ(dz) = − dz/π(4 − z
2)½ of the map z ↦ z

2 − 2. If 
autocorrelations are neglected, then the statistical properties 
of the vector field (u(x,y,τ), v(x,y,τ)) are asymptotically the 
same as of the random vector field (U (x,y), V (x,y)), both its 

components having the density η(z) = − 1/π(4 − z
2)½

 
(independent of x and y). The stream lines of the 
corresponding random flow satisfy the stochastic differential 
equations x' = U (x,y), y' = V (x,y). 

 

Figure 7. One of the scenarios for the transition to distributed chaos. 

The application of continuous-time difference equations 
theory in the study of reducible and close-to-reducible 
boundary value problems will make it relatively easy to 
describe very complex space-time dynamics and understand 
what mathematical mechanisms can give rise to distributed 
chaos. 
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