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Abstract: The main idea of this work is based on the question: how can we control the electric circuits between a number of 

electric bulbs and a number of electric sources. This generates the correspondences between two discrete sets. The 

correspondence is based on the notion of discrete function and repetitive arrangements. The normal construction and notions of 

the work are introduced gradually and are detailed at every stage. Our constant endevour has been to ensure that every sentence 

in the work has a logical position. Here appears many questions: how to construct all discrete fuctions, which is the total 

number of these funtions, which is the relation between the number of bulbs and the number of sources, can we constract and 

control only a partial number of electric circuits (by direct access method) etc. The work answers all these questions by 

specialised algorithms: the construction algorithm and the decomposition algorithm. The algorithms use the rule from left to 

right to construct all possille discrete functions and, hence, all electric circuits. The decomposition algorithm supplies an access 

direct method. So we can control any part of the whole set of circuits. A lot of notions and specific notations are used to 

develop and illustrate the work. For combinations we have to show the constructon elements. A lot of examples explain this 

important notion. The work contains a lot of numerical examples and applications. The last section of the work deals with the 

bijective (and invertible) functions. Specialized notions and notations are used. Numerical examples and geometric designs 

illustrate the theory. 
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1. Introduction 

How to control k  electric light bulbs { }1 2, , , ka a a⋯  

alimented (supplied) by n { }1 2, , , nb b b⋯  sources of 

electricity. To control it means to know the form of electric 

circuit, namely the correspondence between these two sets. 

In order to solve the above problem we use the discrtete 

functions [1, 3, 8] and we use some specific notations and 

remarks. 

We denote :f A B→ , A -domain, B -codomain; with the 

discrete sets 

{ }1 2, , , kA a a a= ⋯ , { }1 2, , , nB b b b= ⋯  

for any natural non-null numbers k  and n ; card A = A = 

k , card B = B = n , i ja a≠  for any i  and j . The set B is a 

multiple set [10]. 

The set of all functions :f A B→  has the cardinal 

{ }
card A

card f card B= = k
n              (1) 

In applications we use { }1, 2, , , ,A i k= ⋯ ⋯ , 

{ }1, 2, , , ,B j n= ⋯ ⋯ . 

There are three cases: k n< , k n= , k n> [10, 13]. 

The injective functions f  could be obtained for k n≤ . 

The surjective functions f  could be obtained for k n≥ . 

The bijective functions f  could be obtained for k n= . 
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Our aim is to construct all 
k

n  functios :f A B→ . Then 

we will analise the bijectice functions [5]. 

Remark 1. Permutations and arrangements are ordinate 

sets, while combinations are subsets of a set. 

We present a short comparison between the usual 

arrangements of n  objects taken k  at a time and the 

repetitive arrangements (arrangements with repetition) of n  

objects taken k  at a time [6, 7]. 

Usual arrangements. Example 1. { }1, 2,3B = ; 3n = , 

2k = ; n k≥  (always). 

Permutations 3n = ; 123; 132; 213; 231; 312; 321; 

! 3! 6n = = . 

Arrangements of 3n =  taken 2k = ; 12; 21; 13; 31; 23; 32; 
2
3 6k

nA A= = . 

Combinations 3n =  taken 2k = ; 12; 13; 23; 2
3 3k

nC C= = . 

Repetitive arrangements [2, 11, 12]. Example 2. 

{ }1, 2,3B = ; 3n = , 2k =  (any value ,n k ) 

11; 12; 13; 21 22; 23;; 31; 32; 33; 23 9kn = = . Denote 

k
n N= . 

Example 3. { }1, 2B = ; 2n = , 3k = ; n k≤ . 

111; 112; 121; 211; 122; 221; 212; 222; 32 8kn = = . 

Another notation for the total number of all repetitive 

arrangements is 
k k
nA n= k

na= = N . 

2. Problem Formulation 

Related with this work we have two aims. 

1) Aim 1. We have to construct the set of all discrete 

functions :f A B→ , 

:f { }1 2, , , ka a a⋯ → { }1 2, , , nb b b⋯  for any non-zero 

natural numbers ,n k . 

The total number of these functions is denoted 
k k
nA n= =

N . 

There are several methods to constract all discrete 

functions f . 

We propose a method based on direction left to right in the 

set B , and elaborate the algorithm left – right (algorithm 1). 

It is a sequential method. 

2) Aim 2. We make a decomposition of 
k k
nA n=  based on 

the decomposition algorithm (algorithm 2). It is a direct 

acces method, i.e. we can construct any subset of the 

hole set with 
k k
nA n=  functions. 

Examples. Some particular cases and the total number of 

functions. 

 

Remark 2. Tthe total number of functions increases very 

quicly with k and n. 

3. The Algorithm Left - Right to 

Construct All Discrete Functions 

The functions are :f A B→ , { }1 2, , , kA a a a= ⋯ , 

{ }1 2, , , nB b b b= ⋯ , where 1k ≥  and 1n ≥  are given natural 

numbers. 

The total numner of functions f  is the total number of 

repetitive arrangements. 

The rule from left to right [7] means: if the fix value is j  

or jb , then, for combinations one uses only the values S

={ 1jb + , 2jb + , , nb⋯  } from the right part of jb . 

Remark 3. The algorithm is based on combibations and the 

moving rule down-up. 

Example. 

1) 1, 2, 3 → 1, 2, 3; 
1
3C

=3;  

2) 1, 2, 3 → a, b, c, d; 
1
3C
=3;  
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3.1. Exemples of All Discrete Functions for Small Numbers 

k and n 

Application 3.1. We use the algorithm 1. It is a sequential 

method. (Version 1). 

1) :f  1, 2 → 1, 2, N =
22 =4 

 

2) :f  1, 2, 3 → 1, 2, N =
32 =8 

 

On the line Nr we count the current number of function f  

or its address. 

3) :f  1, 2, 3, 4 → 1, 2, N =
42 =16 functions (small 

number). 

 

4) :f  1, 2 → 1, 2, 3, 4, N =
24 =16 functions (small 

number). 

 

5) :f  1, 2, 3, 4, 5 → 1, 2, N =
52 =32 functions (smal 

number). 

 

6) :f  1, 2, 3 → 1, 2, 3, N =
3

3 =27 functions (small 

number). 

 

Remark 4. For 3k =  and 3n =  a short summary of the 

basic ideea of computations has the following form 

 

3
3 (1; )C θ ; 2

3 (1; )C x ; 1
3 (1; , )C x y ; 3

3 (2; )C θ ; 2
3 (2; )C x ; 

1
3 (2; , )C x y ; 3

3 (3; )C θ  

The symbol θ  is empty set and , ,x y S∈⋯ . 

3.2. Exemples of All Discrete Functions for Great Numbers 

k and n 

We use a modified sequential method. (Version 2) [4, 5]. 

Use successively the rules a), b), c), d), e). 

Use the subset S B⊂  with all elements from the right part 

of j . 

Denote by L  the completion length, 0 1L k≤ ≤ − . 

Construct all repetitive arrangements of S  having the 

length L , 0,1, 2L = ⋯ etc. 

Compute the total number of arrangements ( )Ln j− . 

Denote ( )Ln j− = R . 

Increase the last address with the value k L
kR x C −  

Construct all bijective functions corresponding to the 

number ( )Ln j− . 

Application 3.2.1. :f  1, 2, 3 → 1, 2, 3, 4, 5, 3; 5k n= = ; 

N =
3

5 =125 functions (great number). 

Step j =1, 0L = ; k L
kC −  = 3

3
LC −  = 1. 

Nr 1 (first address) 

(1) 1f =  

(2) 1f =  

(3) 1f =  

j =1, 1L = , S ={2, 3, 4, 5}, ( )Ln j− = 1(5 1) 4− = = R ; 

use 2 3 4 5 

and the arrangements 2, 3, 4, 5; k L
kC −  = 3

3
LC −  = 3. 

Increase the last address 1 with the value R x3=12; 

1+12=13; true. 

 

Increase the last address 13 with the value R x3=48; 

13+48=61; true. 
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Step j =2, 0L = . k L
kC −  = 3

3
LC −  = 1. 

Nr 62 (new address) 

(1) 2f =  

(2) 2f =  

(3) 2f =  

j =2, 1L = , S ={3, 4, 5}, ( )Ln j− = 1(5 2) 3− = = R ; use 

3, 4, 5 

and the arrangements 3, 4, 5; k L
kC −  = 3

3
LC −  = 3. 

Increase the last address 62 with the value R x3=9; 

62+9=71; true. 

 

Increase the last address 71 with the value R x3=9; 

71+27=98; true. 

 

Increase the last address 99 with the value R x3=6; 

99+6=105; true. 

 

Increase the last address 105 with the value R x3=12; 

105+12=117; true. 

 

Step j =4, 0L = ; k L
kC −  = 3

3
LC −  = 1. 

 

Increase the last address 118 with the value R x3=3; 

118+3=121; true. 

 

Increase the last address 121 with the value R x3=3; 

121+3=124; true. 

 

Step j =, 0L = ; k L
kC −  = 3

3
LC −  = 1. 

Nr 125 (last address). End of computing. Stop. N =125. 

(1) 5f =  

(2) 5f =  

(3) 5f =  

Application 3.2.2. :f  1, 2, 3, 4, 5 → 1, 2, N =32 

 

N = 5
5(1; )C θ + 4

5(1; 2)C + 3
5(1;2, 2)C + 2

5(1;2, 2, 2)C + 1
5(1;2, 2, 2, 2)C + 5

5(2; )C θ  

N =1+5+10+10+5+1=32 positions=32 functions. 
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Application 3.2.3. :f  1, 2, 3 → 1, 2, 3, N =27 

 

N = 3
3(1; )C θ +( 2

3(1; 2)C + 2
3(1;3)C )+( 1

3(1;2, 2)C + 1
3(1;2,3)C + 1

3(1;3, 2)C + 1
3(1;3,3)C )+ 

+ 3
3(2; )C θ + 2

3(2;3)C + 1
3(2;3,3)C + 3

3(3; )C θ  

N =1+(3+3)+(3+3+3+3)+1+3+3+1=27 positions=27 functions. 

Application 3.2.4. :f  1, 2, 3 → 1, 2, 3, 4, N =64 

 

 

N = 3
3(1; )C θ +[ 2

3(1; 2)C + 2
3(1;3)C + 2

3(1; 4)C ]+[ 1
3(1;2, 2)C + 1

3(1;2,3)C + 1
3(1;2, 4)C + 

+ 1
3(1;3, 2)C + 1

3(1;3,3)C + 1
3(1;3, 4)C + 1

3(1;4, 2)C + 1
3(1;4,3)C + 1

3(1;4, 4)C ]+ 

+ 3
3(2; )C θ +[ 2

3(2;3)C + 2
3(2;4)C ]+[ 1

3(2;3,3)C + 1
3(2;3, 4)C + 1

3(2;4,3)C + 

+ 1
3(2; 4, 4)C ]+ 3

3(3; )C θ + 2
3(3; 4)C + 1

3(3; 4, 4)C + 3
3(4; )C θ  

There are a number of 10 groups of combinations. 

N =1+[3+3+3]+[3+3+3+3+3+3+3+3+3]+1+[3+3]+[3+3+3+3]+1+3+3+1==64 positions=64 functions. True. 

Application 3.2.5. :f  1, 2, 3, 4 → 1, 2, 3, N =81 

 

Now, for this case, we describe the decomposition of repetitive arrangements. 

N = 4
4(1; )C θ +[ 3

4(1; 2)C + 3
4(1;3)C ]+[ 2

4(1; 2, 2)C + 2
4(1; 2,3)C + 2

4(1;3, 2)C + 2
4(1;3,3)C ]+ 

+[ 1
4(1;2, 2, 2)C + 1

4(1; 2, 2,3)C + 1
4(1; 2,3, 2)C + 1

4(1; 2,3,3)C + 1
4(1;3, 2, 2)C + 

+ 1
4(1;3, 2,3)C + 1

4(1;3,3, 2)C + 1
4(1;3,3,3)C ]+ 4

4(2; )C θ + 3
4(2;3)C + 2

4(1;3,3)C + 

+ 1
4(1;3,3,3)C + 4

4(3; )C θ . 

There are a number of 9 groups of combinations. 

N =1+[4+4]+[6+6+6+6+6]+[4+4+4+4+4+4+4+4]+1+4+6+4+1 

N =1+[8]+[24]+[32]+1+4+6+4+1 = 81 positions=81 functions. True 
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4. General Case for Left – Right 

Algorithm and Decomposition 

Algorithm 

The bijective functions are :f A B→ , 

{ }1 2, , , kA a a a= ⋯ , { }1 2, , , nB b b b= ⋯ . 

All combinations have the form i
kC , 1,i k= ; k

kC , 1k
kC − , 

2k
kC − ,⋯ , 1

kC =k; 1
kC =0. 

and the function f  is defined for 1( )f a , 2( )f a , …, ( )kf a . 

Remark 5. [7, 9] 

1( ; )k
kC b θ , { }k card kθ+ = ; 

1
1( ; )k

kC b x− , for :x  2b , 3b , …, nb ; 1 { }k card x k− + = ; 

2
1( ; , )k

kC b x y− ; for , :x y  2 2 2 3, ; , ; .b b b b etc ; 

2 { , }k card x y k− + = ; 

3
1( ; , , )k

kC b x y z− , 3 { , , }k card x y z k− + =  etc. 

We intruduce some adequate notations and we analyze the 

algorithm for 4k =  and 4n = , 256N = . (Version 3). 

Number m  is used for combinations m
kC , 

, 1, ,3,2,1m k k= − ⋯ . 

j  or jb  is the current number from ( ; )m
k jC b ⋯ , where 

m k≤ . 

q  indicates the number of completion elements taken from 

the set B  in arragements, with m q k+ = . 

p  indicates the total elements from set 

{ }1 2 1, , , , , ,j j nB b b b b b+= ⋯ ⋯  having the position in the 

right of jb .; p n j= − . We include the parameters p  and q  

in the above notation and obtain 

( ; ; )m
k jC b p q .                             (2) 

Verification: 

p n j= − , m q k+ =                         (3) 

qp  is the partial number of repetitive arrangaments for 

, , ,jm b p q                                   (4) 

( ; ; )jT b p q  (natural number) is the last partial address 

genarated by combinations 

( ; ; )m
k jC b p q . 

( ; ; )jT b p q = m q
kC p                            (5) 

The sum of all ( ; ; )jT b p q  is N . [13, 14] 

Application 4.1. Input data: 4k =  and 4n = , 256N = ; 

:f  1, 2, 3, 4 → 1, 2, 3, 4. 

For verification we use the formulas (1), (2), (3), (4). 

4
4(1; ) 1C θ = , (1; ) 1T θ = . 

3
4(1; 3; 1) 4C p q= = = , 3qp = , 3

4(1; 3; 1) qT p q C p= = = =4 x 3=12 (product). 

3, 1p q= = ⇒ completion values are 2, 3, 4. 

2
4(1; 3; 2) 6C p q= = = , 9qp = , 2

4(1; 3; 2) qT p q C p= = = =6 x 9=54. 

3, 2p q= = ⇒ completion values are 22, 23, 24; 32, 33, 34; 42, 43, 44. 

1
4(1; 3; 3) 4C p q= = = , 27qp = , 1

4(1;3; 3) qT q C p= = =4 x 27=108. 

3, 3p q= = ⇒ completion values are 222, 223, 224; 232, 233, 234; 242, 243, 244 etc. 

4
4(2; ) 1C θ = , (2; ) 1T θ = . 

3
4(2; 2; 1) 4C p q= = = , 2qp = , 3

4(2; 2; 1) qT p q C p= = = =4 x 2=8. 

2, 1p q= = ⇒ completion values are 3, 4. 

2
4(2; 2; 2) 6C p q= = = , 4qp = , 2

4(2; 2; 2) qT p q C p= = = =6 x 4=24. 

2, 2p q= = ⇒ completion values are, 33, 34; 43, 44. 

1
4(2; 2; 3) 4C p q= = = , 8qp = , 1

4(2; 2; 3) qT p q C p= = = =4 x 8=32. 

2, 3p q= = ⇒ completion values are 333, 334; 343, 344; 433, 434; 443, 444. 
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4
4(3; ) 1C θ = , (3; ) 1T θ = . 

3
4(3; 1; 1) 4C p q= = = , 1qp = , 3

4(3; 1; 1) qT p q C p= = = =4 x 1=4. 

1, 1p q= = ⇒ completion values are 4. 

2
4(3; 1; 2) 6C p q= = = , 1qp = , 2

4(3; 1; 2) qT p q C p= = = =6 x 1=6. 

1
4(3; 1; 3) 4C p q= = = , 1qp = , 1

4(3; 1; 3) qT p q C p= = = =4 x 1=4. 

1, 3p q= = ⇒ completion values are 444. 

4
4(4; ) 1C θ = , (4; ) 1T θ = . 

Verification. 

(1; )T θ + (1; 3; 1)T p q= = + (1; 3; 2)T p q= = + (1; 3; 3)T p q= = ++ (2; )T θ + (2; 2; 1)T p q= =  

+ (2; 2; 2)T p q= = + (2; 2; 3)T p q= = ++ (3; )T θ + (3; 1; 1)T p q= = + (3; 1; 2)T p q= = + (3; 1; 3)T p q= = + (4; )T θ = N . 

+ (3; 1; 2)T p q= = + (3; 1; 3)T p q= = + (4; )T θ = N  

1+12+54+108+1+8+24+32+1+4+6+4+1=256; N =256. True. 

Application 4.2. :f  1, 2, 3, 4 → 1, 2, 3, 4, N =256 

We describe only the decomposition of repetitive arrangements. 

There are a number of 60 groups of combinations. 

N = 4
4(1; )C θ +[ 3

4(1; 2)C + 3
4(1;3)C + 3

4(1; 4)C ] + [ 2
4(1;2, 2)C + 2

4(1;2,3)C + 2
4(1;2, 4)C + 

+ 2
4(1;3, 2)C + 2

4(1;3,3)C + 2
4(1;3, 4)C + 2

4(1;4, 2)C + 2
4(1;4,3)C + 2

4(1;4, 4)C ]+ 

+[ 1
4(1;2, 2, 2)C + 1

4(1; 2, 2,3)C + 1
4(1;2, 2, 4)C + 1

4(1; 2,3, 2)C + 1
4(1; 2,3,3)C + 

+ 1
4(1; 2,3, 4)C + 1

4(1;2, 4, 2)C + 1
4(1; 2, 4,3)C + 1

4(1;2, 4, 4)C + 1
4(1;3, 2, 2)C + 

+ 1
4(1;3, 2,3)C + 1

4(1;3, 2, 4)C + 1
4(1;3,3, 2)C + 1

4(1;3,3,3)C + 1
4(1;3,3, 4)C + 

+ 1
4(1;3, 4, 2)C ++ 1

4(1;3, 4,3)C + 1
4(1;3, 4, 4)C + 1

4(1;4, 2, 2)C + 1
4(1; 4, 2,3)C + 

+ 1
4(1;4, 2, 4)C ++ 1

4(1; 4,3, 2)C + 1
4(1; 4,3,3)C + 1

4(1; 4,3, 4)C + 1
4(1;4, 4, 2)C + 

+ 1
4(1; 4, 4,3)C + 1

4(1;4, 4, 4)C ]+ 4
4(2; )C θ + [ 3

4(2;3)C + 3
4(2;4)C ]+ 

+[ 2
4(2;3,3)C + 2

4(2;3, 4)C + 2
4(2; 4,3)C + 2

4(2; 4, 4)C ]+ 

+[ 1
4(2;3,3,3)C + 1

4(2;3,3, 4)C + 1
4(2;3, 4,3)C + 1

4(2;3,3, 4)C + 1
4(2; 4,3,3)C + 

+ 1
4(2; 4,3, 4)C + 1

4(2; 4, 4,3)C + 1
4(2; 4, 4, 4)C ]+ 4

4(3; )C θ + 3
4(3; 4)C + 

+ 2
4(3; 4, 4)C + 1

4(3; 4, 4, 4)C + 4
4(4; )C θ . 

N =1+(4x3)+(6x9)+(4x27)+1+(4x2)+(6x4)+(4x8)+1+4+6+4+1=256 positions, 256 fuinctions. 

5. The Discrete Functions Applied to the 

Practical Problem 

Application 5.1 Construct all electric circuits for 3 electric 

bulbs and 2 sources. The model is :f { }1 2 3, ,a a a →

{ }1 2,b b  or :f { }1, 2,3 → { }1,2 ; N = 8. 
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The figure 1 shows all the circuits. 

 
Figure 1. Electric circuits from application 5.1. 

Application 5.2 Construct all electric circuits for 2 electric 

bulbs and 3 sources. The model is :f { }1 2,a a →

{ }1 2 3, ,b b b  or :f { }1,2 → { }1, 2,3 ; N = 9. 

 

The figure 2 shows all the circuits from application 5.2, by 

using the orthogonal axix O a b. 

All other cases generates electical circuits like the above 

circuits. 

 
Figure 2. Electric circuits from application 5.2. 

6. Bijective Functions 

We use k n= ; :f { }1 2, , , na a a⋯ → { }1 2, , , nb b b⋯  

1n ≥ . 

The total number of all bijective functions is 1N  = !n . 

Application 6.1. :f 1, 2, 3 → 1, 2, 3; 1N  = 3! =6; 

1
3 (1, 2,3)C  + 1

3 (1,3, 2)C =3+3=6. 

 

Application 6.2. :f 1, 2, 3, 4 → 1, 2, 3, 4; 1N  = 4! =24 

(bijective functions). 

1
4 (1, 2,3, 4)C  + 1

4 (1, 2, 4,3)C + 1
4 (1,3, 2, 4)C + 1

4 (1,3, 4, 2)C +

1
4 (1, 4, 2,3)C + 1

4 (1, 4,3, 2)C = 

+ 4+4+4+4+4+4=24; 1
4C =4. 

 

Application 6.3. :f 1, 2, 3, 4, 5 → 1, 2, 3, 4, 5; 1N  = 5!=120 (bijective functions); 1
5C =5. 

( 1
5 (1, 2,3, 4,5)C + 1

5 (1, 2,3,5, 4)C + 1
5 (1, 2, 4,3,5)C + 1

5 (1, 2, 4,5,3)C + 1
5 (1, 2,5,3, 4)C + 

+ 1
5 (1, 2,5, 4,3)C ) + ( 1

5 (1,3, 2, 4,5)C + 1
5 (1,3, 2,5, 4)C + 1

5 (1,3, 4, 2,5)C + 

+ 1
5 (1,3, 4,5, 2)C + 1

5 (1,3,5, 2, 4)C + 1
5 (1,3,5, 4, 2)C ) + ( 1

5 (1, 4, 2,3,5)C + 1
5 (1, 4, 2,5,3)C + 
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+ 1
5 (1, 4,3, 2,5)C + 1

5 (1, 4,3,5, 2)C + 1
5 (1, 4,5, 2,3)C + 1

5 (1, 4,5,3, 2)C ) + ( 1
5 (1,5, 2,3, 4)C + 

+ 1
5 (1,5, 2, 4,3)C + 1

5 (1,5,3, 2, 4)C + 1
5 (1,5,3, 4, 2)C + 1

5 (1,5, 4, 2,3)C + 1
5 (1,5, 4,3, 2)C )=120. 

Because the construction algorithm has direct access 

facility, we count all bijective functions, but we illustrate 

only some of them, related with 

1
5 (1, 2,3, 4,5)C  and 1

5 (1,5, 4,3, 2)C . 

 

7. Conclusions 

The work is presented at a level suitable for computer 

programming. 

There are two methods to write a mathematical work. We 

begin by formulating a practical problem and to seek for the 

mathematical solution (direct problem). Or, we imagine a 

mathematucal theory and look for a practical interpretation 

(inverse problem). Both methods are good. Our work is 

bassed on direct problem. But, now we can mention several 

new interpretations of discrete functions. For example, if we 

associate to each digit one color, we can apply the discrete 

functions in textile industry. Let us say :f 1, 2, 3 → 1 (red), 

2 (green), 3 (yellow). 
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