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Abstract: In this paper, the objective was to find out the influence of introducing treatment at the latent period of disease 

(infectious) transmission as a result the global dynamics of the SEIR epidemic model with the introduction of treatment at the 

latent period is explored. The basic reproduction number is estimated. Whenever the basic reproduction number is not larger than 

unity (R0≤1) then the disease – free equilibrium is globally stable and the disease dies out. But when the basic reproduction 

number is larger than unity (R0>1), then there exist the endemic equilibrium point which is stable and hence the disease will 

persist. This was demonstrated with a tuberculosis data obtained from Amansie west district health directorate in the Ashanti 

region of Ghana.In this instance the endemic equilibrium point was found to be stable. The sensitivity analysis also revealed that 

increasing the treatment rate introduced at the latent period will reduce the value of the basic reproduction number. 
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1. Introduction 

The history of mathematical models in epidemiology has 

been in existence since the eighteen century [1]. There has 

been tremendous improvement in the development of the 

models since then. Below are some of the studies that made 

use of mathematical models in epidemiology: [2-5]. Several 

mathematical models have been developed, analysed and 

applied to many infectious diseases (tuberculosis, HIV, 

influenza malaria etc). Mathematical models have become 

significant tools in studying the transmission and control 

dynamics of infectious diseases. 

Currently it has been observed that mathematical models 

play a major role in policy making. The most important 

results associated with mathematical epidemiological model 

is the behavior of the threshold called the basic reproduction 

number. This threshold represents the average number of 

secondary infections produced by one infectious individual 

[7]. If this threshold is less than one then the disease will die 

out but if greater than one then there will be an endemic that 

is the disease will persist[8,10]. The largely formulated 

mathematical epidemiology models are the compartment 

(deterministic) models where the population is divided into 

compartment with assumptions about the nature and time rate 

of transfer from one compartment to another compartment. 

SEIR model is presented in this paper. Some related studies 

were done on SEIR model [11-16]. Since treatment plays a 

major role in transmission dynamics of infectious disease [17-

20]. There is the need to investigate into which period of the 

disease (infectious) transmission is appropriate to introduce 

treatment. This paper has explored the stability of the equilibria 

(disease – free and endemic) in the presence of treatment at the 

latent stage. That is investigating the steady state stability of the 

equilibria when treatment is introduced at the latent stage. 

This study is organised as follows: in section 2, 

mathematical model is formulated and the corresponding 

basic reproduction number is estimated. In section 3, 

Equilibria points are studied. The stability of the Equilibria 

points are investigated in section 4, the model analysis and 

result is presented in section 5 and the final section which is 

the section 5 present the conclusion.  

2. The Mathematical Model and the 

Basic Reproduction Number 

The SEIR model is developed by dividing the host 

population into four classes that is: susceptible (S), exposed 
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(E), infectious (I) and recovery (R) (total population N= 

S+E+I+R). 

 

Figure 1. The flow chart of the SEIR deterministic model in the presence of 

treatment at the latent class. 

2.1. Model Equations 

Assuming that the epidemic is transmitted in a close 

system then the assumption of constant population size holds 

(birth rate equal to death rate that is � � � ) see [6]. The 

above stated assumptions lead to the following ordinary 

differential equations to indicate the rate of change from one 

class to the other class. Below are the systems of the 

differential equations: 

dEdt � λN 	 μS 	 κSIN � ωE 

dEdt � κSIN � �ω � μ � v�E 

���� � vE 	 �μ � δ�I	(1) 

dRdt � δI 	 μR 

Rescaling the equation (1) by representing � � �� , � ��� , � �  � !"#$ � %� where “s” is the proportion of susceptible 

population, “e” is exposed proportion of the population; “i” 

also the proportion of the infectious population and “r” the 

proportion of the recovery population gives the equation 

below: 

dsdt � λ 	 μs 	 κsi � ωe 

dedt � κsi 	 �ω � μ � ν�e 

�*�� � νe 	 �μ � δ�i									(2) 

drdt � δi 	 μr 

Where � � � � � � $ � 1 

But since $ � 1 	 � 	 � 	 � , it is enough to study the 

system below as in Tom et al. 2017. [9] 

dsdt � λ 	 μs 	 κsi � ωe 

dedt � κsi 	 �ω � μ � ν�e 

�*�� � νe 	 �μ � δ�i			                                (3) 

2.2. Computation of the Basic Reproduction Number (-.) 

Using the Next Generation Matrix 

Basic reproduction number is the average number of 

secondary infections produced by one infectious individual in 

a completely susceptible population at disease – free 

equilibrium [2-4]. 

Basic Reproduction number�/0� � �/!1�23��42"#!$5�"3�41�2"�Χ	�Duration	of	infection� 
It is assumed that “S” is near disease – free equilibrium 

hence linearlizing the equation (3) for the exposed and 

infectious results in the next generation matrix as used in [8]. 

A 	 F � @0 κ0 0B 	 C�ω � μ � ν� 0	ν �μ � δ�D 

A � matrixofinfetion and F� matrixoftransitionrate 

A= @0 κ0 0B and F = C�ω � μ � ν� 0	ν �μ � δ�D 

But since |F| � �ω � μ � ν��μ � δ� then  

FHI � 1�ω � μ � ν��μ � δ� C�μ � δ� 0ν �ω � μ � ν�D
�

J
KL

1�ω � μ � ν� 0
ν�ω � μ � ν��μ � δ� 1�μ � δ�M

NO 

AFHI � @0 κ0 0B
J
KL

1�ω � μ � ν� 0
ν�ω � μ � ν��μ � δ� 1�μ � δ�M

NO

� P κν�ω � μ � ν��μ � δ� κ
0 0Q 

Basic reproduction number is the spectral radius of RSHI [8]. 

HenceR0 � TU�VWXWU��XWY� 

3. The Equilibrium Point 

Two equilibrium points are considered in this study: 

disease-free and endemic equilibrium points. To obtain these 

points the equation (3) are set to zero and the values of the 

proportions (s,e, and i ) are solve for. 
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dsdt = 0 ⇒ λ − μs − κsi + ωe = 0 

�[�� = 0	 ⇒ κsi − �ω + μ + ν�e = 0		             (4) 

didt = 0	 ⇒ νe − �μ + δ�i = 0 

3.1. Disease-free Equilibrium Point 

At this point it is assumed that there is no disease or 

infection in the system hence � = 0, � = 0 . Putting � =0	!"#� = 0 into equation (4) results in: 

λ − μs − κs�0� + ω�0� = 0 

κs�0� − �ω + μ + ν��0� = 0 

ν�0� − �μ + δ��0� = 0 

This simplifies to:  

λ − μs = 0 

λ = μs ⇒ s = λμ 

Therefore at the DFE �s, e, i� = \]X , 0,0^ = _1,0,0`  since 

the host population is constant (λ = μ�. 
3.2. The Endemic Equilibrium Point 

This point indicates that the disease or the infection will 

persist in the system. The system of ordinary differential 

equations in (4) are solved for the values of �, �!"#�. But for 

easy identification let s = s∗, e = e∗andi = i∗. This modifies 

the equation (4) to: 

νe − �μ + 	δ�i = 0	 ⇒ i = νeu + δ 

Also κsi − �ω + μ + ν�e = 0 ⇒ s = �VWXWU�T* , substituting i into s give 

s = �ω + μ + ν�eκ @ U[cWYB = 	 �u + ν��μ + δ	�eκνe ⇒ s∗
= �ω + μ + ν��μ + δ	�κν  

From κsi − �ω + μ + ν�e = 0	 ⇒ κsi = �ω + μ + ν�e 

putting this into λ − μs − κsi + ωe = 0  gives λ − μs −�ω + μ + ν�e = 0 

λ − μs + ωe − �ω + μ + ν�e = 0 

λ − μs + �−μ − ν�e = 0 

�−μ − ν�e = −λ + μs 
But since s = �VWXWU��XWY	�TU  then 

−�μ + ν�e = −�λ − μs� ⇒ −�μ + ν�e = −dλ − μ �ω + μ + ν��μ + δ	�κν e 

Dividing both sides by −�μ + ν� gives e∗ = ]TUHX�VWXWU��XWY	�TU�XWU�  

Fromi = U[XWY and e∗ above then i = U�XWY	� @]TUHX�VWXWU��XWY	�TU�XWU� B ν ⇒ i∗ = ]TUHX�VWXWU�T�XWU�  hence at the endemic equilibrium point 

we have: 

�s∗, e∗, i∗� = d�ω + μ + ν��μ + δ	�κν , λκν − μ�ω + μ + ν��μ + δ	�κν�μ + ν� , λκν − μ�ω + μ + ν�κ�μ + ν� e 

4. Stability of the Equilibrium Point 

To study the stability of the equilibrium points obtained 

above consider the linearization of the system of equation (4) 

about the disease-free equilibrium point by taking the 

Jacobian of them as in [6]. 

J�s, e, i� = P−μ − κi ω −κsκi −�ω + μ + ν� κs0 ν −�μ + δ	�Q 

4.1. Stability of the Disease – Free Equilibrium Point 

Theorem 3.1: The disease – free equilibrium point of the 

system (4) is asymptotically stable if and only if R0 ≤ 1	and 

unstable if	R0 > 1. 

Proof: 

At the DFE (disease – free equilibrium)the Jacobian matrix 

about the point was obtained (s,e,i) = (1,0,0). This yields the 

matrix:J�s, e, i� = P−μ ω −κ0 −�ω + μ + ν� κ0 ν −�μ + δ	�Q 

Let J�s, e, i�ijk = J�s, e, i�  the Jacobian matrix at the 

disease – free equilibrium and solve the characteristics 

equation ofJ�s, e, i�ijk. This can be achieved by solving the 

relation: J�s, e, i�ijk − Iλ where “I” is a unit matrix and it has 

order 3 by 3 since J�s, e, i�ijk also has same order. 
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Iλ = λP1 0 00 1 00 0 1Q = Pλ 0 00 λ 00 0 λQ 

J�s, e, i�ijk	– Iλ = P−μ ω −κ0 −�ω + μ + ν� κ0 ν −�μ + δ�Q − P
λ 0 00 λ 00 0 λQ 

J�s, e, i�ijk– Iλ =m−�μ + λ� ω −κ0 −_�ω + μ + ν� + λ` κ0 ν −_�μ + δ� + λ`n 

The characteristics equation is obtain by finding the determinant of the above matrix and equate it to zero. 

|J�s, e, i�ijk– Iλ| = o−�μ + λ� ω −κ0 −_�ω + μ + ν� + λ` κ0 ν −_�μ + δ� + λ`o 
= −�μ + λ� p−�ω + μ + ν + λ� κν −�μ + δ + λ�p − 0 p0 κ0 −�μ + δ + λ�p − κ q0 −�ω + μ + ν + λ0 ν q 

= −�μ + λ�r�ω + μ + ν + λ��μ + δ + λ� − κνs 
But since tJ�s, e, i�ijk– Iλt = 0 then  −�μ + λ�r�ω + μ + ν + λ��μ + δ + λ� − κνs = 0 Expanding the relation above results in: 

−�μ + λ�rωμ + ωδ + ωλ + μu + μδ + μλ + μν + νδ + νλ + λμ + λδ + λu − κνs = 0 

Expanding the above equation again and grouping like terms gives: 

λv + �ω + 3μ + ν + δ�λu + �2μω + ωδ + 3μu + 2μδ + 2νμ + νδ − κν�λ + �μuω + μωδ + μu + μuδ + μuν + μνδ − μκν�= 0 

Letting Y, Z be the coefficients ofλu, λ and Abe the constant term then  

Y = ω + 3μ + ν + δ 

Z=	2μω + ωδ + 3μu + 2μδ + 2νμ + νδ − κν 

A= μuω + μωδ + μu + μuδ + μuν + μνδ − μκν 

And the characteristic equation becomes: λv + Yλu + Zλ +A 

From Routh-Hurwitz Stability criterion analysis if Y > 0, A > 0	and YZ − A > 0 holds then all the roots of the 

characteristic equation has negative real part and hence the 

equilibrium point (DFE) point is stable. 

4.2. Stability of the Endemic Equilibrium Point 

Theorem 3.2: The endemic equilibrium of system (4) is 

also asymptotically stable when R0 > 1 and unstable when R0 ≤ 1. 
Proof: 

At the endemic equilibrium it has been showed that: s∗ = �XWU��XWY�TU  , e∗ = ]TUHX�XWU��XWY�TU�XWU�  and i∗ = ]TUHX�XWU�T�XWU�  

hence the Jacobian matrix at the endemic equilibrium point is 

J�s∗, e∗,i∗� = m−μ − κi∗ ω −κs∗κi∗ −�ω + μ + ν� κs∗0 ν −�μ + δ	�n 

Let J�s∗, e∗ , i∗�EE  be the Jacobian matrix at the endemic 

equilibrium and then solved the characteristic equation of J�s∗, e∗,i∗�EE by finding the determinant of J�s∗, e∗ ,i∗�EE −λI and setting the results to zero. I is a three by three unit 

matrix hence I = P1 0 00 1 00 0 1Q and  

Iλ = λ P1 0 00 1 00 0 1Q = Pλ 0 00 λ 00 0 λQ 

J�s∗, e∗,i∗�EE − λI = 	m−μ − κi∗ ω −κs∗κi∗ −�ω + μ + ν� κs∗0 ν −�μ + δ	�n − P
λ 0 00 λ 00 0 λQ 
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J�s∗, e∗,i∗�EE − λI = 	m−�μ + κi∗ + λ� ω −κs∗κi∗ −�ω + μ + ν + λ� κs∗0 ν −�μ + δ + λ�n 

|J�s∗, e∗, i∗�EE − λI| = o−�μ + κi∗ + λ� ω −κs∗κi∗ −�ω + μ + ν + λ� κs∗0 ν −�μ + δ + λ�o 
= −�μ + κi∗ + λ� p−�ω + μ + ν + λ� κs∗ν −�μ + δ + λ�p − ω pκi∗ κs∗0 −�μ + δ + λ�p − κs∗ qκi∗ −�ω + μ + ν + λ�0 ν q 

= −�μ + κi∗ + λ�r�ω + μ + ν + λ��μ + δ + λ� − νκs∗s + ωrκi∗�μ + δ + λ�s − κs∗νκi∗ 
Expanding the equation above and setting it to zero gives: 

λv + �3μ + κi∗ +ω + ν + δ�λu + �2μu + 2μν + μδ + 2κi∗μ + κi∗ν + κi∗δ + ωμ + ωδ + νδ − νκs∗�λ + ωμu + μωδ + μu+ νμu + μνδ − μνκs∗ + κi∗μu + κi∗νμ + κi∗νδ = 0 

Let Y, Z represents the coefficient of λuandλ respectively and A is the constant term in the polynomial above.  

Then Y = 3μ + κi∗ +ω + ν + δ 

Z = 2μu + 2μν + μδ + 2κi∗μ + κi∗ν + κi∗δ + ωμ + ωδ + νδ − νκs∗ 
A = ωμu + μωδ + μu + νμu + μνδ − μνκs∗ + κi∗μu + κi∗νμ + κi∗νδ 

The polynomial (characteristics equation) above then 

becomes λv + Yλu + Zλ + A = 0 

Using the Routh-Hurwitz stability analysis if the 

conditions Y > 0, A > 0	andYZ − A > 0  holds then all the 

zeros of the characteristics equation have negative real part 

and hence the equilibrium (endemic) point is stable. 

5. Model Analysis and Results 

This section analysed the model and present the results. To 

analysed the model a tuberculosis data was obtained from 

Amansie west district health directorate in the Ashanti region 

of Ghana. 

Table 1.Model parameter value. 

Parameter Description  Symbol Value Source 

Natural birth rate  λ 0.00875 [21] 

Natural death rate μ 0.00875 [21] 

Infection rate κ 0.9853 [22] 

Transmission rate from the exposed period to infectious period  ν 0.1666 [23] 

Treatment rate introduced at the latent period ω 0.035 [24] 

Recovery rate δ 0.5 [23] 

 

5.1. Estimation of the Basic Reproduction Number 

R0 = kν�ω + μ + ν��μ + δ�= �0.9853��0.1666��0.035 + 0.0085 + 0.1666��0.0085 + 0.5� = 1.6415 

Since /0 > 1 ⇒ 1.64 > 1then the prevalence of TB will 

result in an epidemic this was due to the fact that the 

infection rate was more than the treatment rate introduced at 

the latent period and the recovery rate. 

 

 

5.2. Estimation of the Equilibrium Point 

At the disease-free equilibrium pointthe proportions 

‘s,e,i’=[1,0,0] since(λ = μ�.  
But at the endemic equilibrium point taking the parameter 

estimate above into consideration and using  �s∗, e∗, i∗� =\�VWXWU��XWY	�TU , ]TUHX�VWXWU��XWY	�TU�XWU� , ]TUHX�VWXWU�T�XWU� ^ the 

following proportions of the susceptible, exposed and 

infectious population are obtain  

�s∗, e∗, i∗� =
���
�
���

�0.035 + 0.00853 + 0.1666��0.00853 + 0.5	��0.9853��0.1666� ,�0.00853 × 0.9853 × 0.1666� − 0.00853�0.035 + 0.00853 + 0.166��0.00853 + 0.5	��0.9853 × 0.1666��0.00853 + 0.1666� ,�0.00853 × 0.9853 × 0.1666� − 0.00853�0.035 + 0.00853 + 0.1666�0.9853�0.00853 + 0.1666� ���
�
���
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�s∗, e∗, i∗� = �0.6092,0.01699,0.0028� 
5.3.Stability of the Equilibrium Point 

At the disease – free equilibrium point the characteristics equation has been derived above asλv + Yλu + Zλ + A 

Where  

Y = 0.035 + 3�0.00853� + 0.1666 + 0.5 = 0.72719 

Z=	2�O. OO853 × 0.035� + �0.035 × 0.5� + 3�0.00853�u + 2�0.00853 × 0.5� + 2�0.1666 × 0.00853� + �0.1666 × 0.5 

−�0.9853 × 0.1666� = −0.051462 

A= �0.00853�u0.035 + �0.00853 × 0.035 × 0.5� + �0.00853�u + �0.00853�u0.5 + �0.00853�u0.1666 

+�0.00853 × 0.1666 × 0.5� − �0.00853 × 0.9853 × 0.1666� = - 0.0004164 

Hence the characteristics equation becomes λv +0.72719λu − 0.051462λ − 0.0004164 = 0 . From Routh-

Hurwitz Stability criterion analysis since � < 0	!"#	�� −R < 0	then the condition does not hold for the stability for 

the disease - free equilibrium point and hence the disease – 

free equlibrim is unstable leaving the endemic equilibrium 

point stable. 

6. Sensitivity Analysis and Conclusion 

6.1. Sensitivity Analysis 

This type of analysis deals with how the uncertainty in the 

output of a mathematical model (numerical or otherwise) can 

be apportioned to different sources of uncertainty in its input 

[25]. The analysis is also useful in understanding the 

relationship between the input and output variables. For the 

purpose of this paper analysis on how changes in the 

treatment rate introduce at latent period influence the 

endemicity (that is the threshold parameter /0�.  since /0 = 1.64 it implies on average each infectious individual 

transmit bacteria to 2 people. Hence in this study much 

concern will be on the changes that will make /0 ≤ 1. 
R0 = kν�ω + μ + ν��μ + δ� 

Ifω (the treatment rate introduced at the latent period) is 

double then: 

R0I = kν�2ω + μ + ν��μ + δ� 
This will increase the denominator of the relation above 

and hence reduce the value of	R0 (that is /0I < /0�. Hence 

increasing the rate of treatment introduced at the latent period 

will help reduce the basic reproduction number	R0. 

6.2. Conclusion 

An SEIR epidemic model which incorporates treatment 

in the latent period has been formulated and analysed 

quantitatively. The model was developed based on the 

assumption of constant population size and infection rate. 

The model exhibit two equilibria: the disease-free 

equilibrium and the endemic equilibrium. Disease – free 

equilibrium is globally stable when the basic reproduction 

number (/0� is not bigger than one (/0 ≤ 1) that is the 

disease will die out but on the other hand disease – free 

equilibrium becomes unstable and the endemic 

equilibrium set in (/0 > 1�  and hence the disease will 

persist.This was demonstrated with a tuberculosis data 

obtained from Amansie west district health directorate in 

the Ashanti region of Ghana. The sensitivity analysis also 

indicated that increasing the rate of treatment at the latent 

period will help reduce the basic reproduction number 

which will help the disease-free equilibrium point to be 

stable instead of the endemic equilibrium point like in the 

case of Amansie west district in the Ashanti region of 

Ghana. 

Description of Parameters for the SEIR 

Model 

�:  Natural birth rate, �:  Natural death rate, �:  Infection 

rate, �:	 Transmission rate from the exposed period to 

infectious period, �:The treatment rate introduce at the latent 

(exposed) period, �:Recovery rate 
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