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Abstract: The integrity of the cardiac cells and muscles is essential for quality of life. The sinoatrial node cells are the 

definitive cells of cardiac electrophysiology. They are the primary source of action potentials. Lamentably, the question of ion 

currents that generate the much needed cardiac action potentials is yet to be resolved. The nagging issue of the presence or 

otherwise of the sodium ion (Na
+
) in the sino-atrial node cells may cast doubts at the propriety of clinical measures that target 

some cardiac events. Some literatures suggest the presence of the said ion at the periphery of the sino-atrial node while 

contending that it is totally absent in the node centre. Other literatures hold that it is present the entire sino-atrial node. In the 

light of these, this paper proposed a refined model equation of the cardiac sino-atrial node membrane current. The node centre, 

known to be the origin of cardiac action potential, was given a bit closer look. Physiological delay arising from the flow of a 

class of calcium ion current (L-Type calcium current), the bastion of the sino-atrial node centre action potential, was also 

considered. Ostensibly, the timing of specific ion currents during action potentials may furnish some clues on cardiac 

conditions. 
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1. Introduction 

One of the beautiful endowments to animated life is the 

heart. It has the cardinal task of circulating blood around the 

body. It follows therefore that the integrity of the heart is 

required for the organs of the body to function. The heart 

contains numerous cells, each of which is detailed for 

specific function. Cardiac electrophysiology deals on the 

forces that drive ions across cell membranes. Maex [1] 

supposed that ions rather than electrons are responsible for 

electrical currents that pervade excitable tissue of the cardiac 

cells and muscles. The notable ions that suffuse the cardiac 

cells, and other body cells, are sodium (Na
+
), potassium (K

+
), 

calcium (Ca
2+

) and chlorine (Cl
-
). In the seminal works of 

Hodgkin and Huxley [2] and Hodgkin et al [3] on nerve 

impulses there was the hypothesis that the transport of 

potassium and sodium ions in excitable biological 

membranes occurs in selective ionic paths. Those paths, 

according to them, differ for different ions. Mathematical 

physiologists (see Keener and Sneyd [4] acclaim the yet to be 

controverted veracity of those works is. The work by 

Hodgkin and Huxley [2] is the basis of the present-day ion 

channels nomenclature. Ionic currents flow through the 

channels of the cell membranes due to potential difference 

across the cell membranes. Membrane potential is used by 

neurons, cardiac cells, muscle cells and a number of other 

cells in propagating electrical signals. Nonetheless, ion 

channels mediate passive transport rather than active 

transport since, as indicated by Liberman and Adams [5]; 

they cannot be coupled to an energy source. Channel gating 

enhances brief openness and closeness of the channels as the 

need arises. Here, voltage-gated channel was specifically 

discussed. 

The membrane potential of cardiac cells are among the 

excitable cells known for induced action potential (AP). 

Electric excitability occurs when cells are activated to change 

their transmembrane potential so as to relate to other cells or 

to propagate signals to their neighbourhoods. Cardiac AP is 

known to differ from those of other body cells in a number of 

ways (see Keener and Sneyd [4], Pinnel et al. [6]) while a 

typical neural AP has about 1ms duration, and while the APs 

of skeletal muscles last for 2-5ms, the cardiac APs have a 
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duration of 200-400ms. The cardiac AP duration gives the 

cardiac muscles AP the unique characteristic of the plateau 

phase – the maintenance of the AP at a positive level. The 

cardiac cells consists of variety of cell types and different 

types of ionic channels. On this note Keener and Sneyd [7] 

was uncertain about the level of successes Hodgkin et al [3] 

would have recorded if their de novo investigation had 

applied to the cardiac cells.  

This work dwells on a particular part of the cardiac cells- 

the sinoatrial node (SAN) cells. The SAN, located at the right 

atrium of the heart, is the normal natural pacemaker of the 

heart. Tatiana et al. [8], among other physiology literatures, 

hold that the SAN ionic current induces overall cardiac 

membrane AP. It is responsible for the initiation of the 

cardiac cycle (heartbeat). Hearts beats result from a sequence 

of electrochemical excitation waves that are initiated from 

the sinoatrial node. The generating and conduction of 

spontaneous electrical impulse by the SAN- a process, 

known as excitation-contraction coupling (ECC) causes the 

heart muscle to contract. Although the SAN fibres have some 

contractile filaments, they do not contract appreciably. 

Nervous and hormonal influences affect the heart rate. 

Without such influences, a heart rate (HR) of more than 100 

beats per minute (bpm) will be generated by cells in the SA 

node. The parasympathetic nervous system is such that slows 

down HR to about 70 - 75 bpm. Therefore mechanical 

variations that respond to neural and hormonal influences 

also affect the electrical properties of the heart in a 

complementary manner called mechano-electric feedback. In 

general, the basis of cellular action potential is the 

transmembrane potential difference. This potential difference 

is assumed negative inside the cell membrane relative the 

outside. Depolarization (diastolic depolarization DD, in the 

case of the SAN) occurs when membrane potential tends 

towards less negative values; hyperpolarization is the case in 

which membrane potential tends towards more negative 

values. Physiological details underlying the general cardiac 

AP are awash in literatures, which include those of Pinnel 

[6], Richard [9] and Katz [10].  

A contentious issue on cardiac electrophysiology is the 

presence or absence of the sodium ion (Na
+
) in the SAN 

cells. In fact there is a litany of opposing literatures on this 

issue. While Katz [10], Arie [11] and several literatures posit 

the presence of Na
+ 

ion in the cells, Richard [9], Wu and Cui 

[12] are of the contrary view. Such uncertainty precludes 

mathematical details and predictions pertaining to physiology 

and medicine (see Keener and Sneyd: [4] ((1998), section 

4.3.2., p.148) vs [7] ((2009), section 12.2.2, p.541)). The 

node has central and peripheral regions. The centre of the 

SAN is normally the leading pacemaker site and the source 

of cardiac APs. The periphery of the SAN is the conduit for 

the action potential from the main pacemaker site in the 

centre to the atrial muscle. Cohort studies by Honjo et al.[13] 

and Zang et al. [14] in line with Inada et al [15] suggested 

the absence of sodium ion at the SAN centre and the 

substantial presence of the same at the periphery. The latter 

hypothesised that the crucial feature of peripheral cells is 

attributable to the presence of the sodium current (iNa). 

Action potential at the centre of the SAN is long with 

relatively positive maximum diastolic potential, MDP (∼−60 

mV) (Inada et al. [15]. The pace making activity at the centre 

is quite slow. 

2. Cardiac Excitation 

The heart is always in a state of systematic electrical 

arousal. Intriguingly enough, it has an autonomous capacity 

to generate such arousal. The bastion of cardiac excitation is 

the SAN. 

2.1. SAN Centre as a Point Source 

The SAN recruits steady excitation through the atria to the 

adjoining atrial cells. Theoretically the SAN centre is the 

point source of excitation. This work considered the case 

where an electrical current I from a source is being 

introduced into a cardiac cell with resistivity ,κ at position 

(x, y, z) = (x0, 0, 0), say. Assuming the cell conserves current, 

then a current density J which flows radially outwards from 

the source, is given by 

24

I
J

Rπ
= ,                                    (1) 

where R is the distance from the source to a point P, and 

4πR
2
 is the area of the neighbourhood of the point source. 

The point P is of an abutting cell to the SAN. Using 

Faraday’s law of electrostatics, the scalar electric potential V 

can be obtained by integrating the electric field from R to ∞, 

which reads 
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where Pncosθ is the Legendre polynomial of order n. The 

infinite series in (3) and (4) are each bounded and converge 

as n→∞ since Legendre polynomials have magnitudes less 

than unity for n >0 . 

The electric scalar potential V(r) can be expressed as an 

infinite sum of spherical harmonic modes given by  
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For r = 0 a bounded and convergent series may be sought 

differently. Intuitively, one may consider the cell as 

cylindrical in shape. Assume the cylinder is bounded above 

and below by the planes z = L and z = - L respectively, and 

on the sides by the cylinder ρ = a [16]. Since the potential 

must be zero at the origin, we take the function Pn(k ρ ) to be 

the usual Bessel function Jn (k ρ  ) [32], which must be 

chosen so that one of its zeroes falls on the bounding 

cylinder. Taking the limit as L approaches infinity, and using 

the cylindrical coordinate ( , , zρ ϕ ), we get the field of the 

point source inside a conducting cylinder as [32]: 
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where Anm are constants regarding the cylindrical 

coordinates which evolves from the orthogonality 

relationships for each of the functions, and knma is the m-th 

zero of Jn(z) .    

2.2. The SAN Currents 

Here the emphasis was not on the cable theory as proposed 

by Poznanski [17] and by Wilfrid [18] which suppose a thin 

long cell with axial symmetry with extra-cellular uniform 

potential. The cardiac membranes consist of several cells 

many of which do not possess the axial symmetry and length 

that are amenable to the cable theory. Consider the intra-

cellular and extra-cellular (i.e. non-SAN) domain D, of 

cardiac cells which consists of ion species (Figure 1). Let A 

be the intra-cellular region consisting of the SAN and Ao the 

centre (core) of the SAN. Thus, D\A denotes the region 

where all ion species suffuse. Define the presence or 

otherwise of an ion species, spi in the region A by the related 

Dirac measure 

is pδ 	�A� � �1, if	�
i	∈A	0, if	�
i	∉A                         (8) 

The absence of any species in the SAN centre means 

A \A o = {spi : spi ∈ A ; spi ∉ A o}      (9) 

 

Figure 1. Schematic of the SAN core. 

At the extra-cellular region D\A the motion of the ions 

does not impact the stimulus that evoke a full-blown 

excitation [1]. Assume a one-dimensional spatial motion 

along x, at time, t. As usual, molecules and ions move down 

their concentration gradient - a diffusion process. By Fick’s 

second law we have the relation  

2

2
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D

t x
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∂ ∂

                          (10) 

In the above equation, c(x, t) is the space-time-dependent 

concentration and D is the ion-particular diffusion 

coefficient. The dynamics of diffusion is marked by random 

migration of ions/molecules and therefore has a probability 

current Nzerem [19]. The migration toward the membrane is 

governed by the stochastic differential equation  

0 0 0 0
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In the above equation, D
1
 is some distribution representing 

the drift process, D is the diffusion coefficient and p(x, t) is 

the probability density function associated with the ionic 

space-time dynamics. Equation (4) above would furnish, as it 

were, the likelihood of obtaining the spatio-temporal 

situation of an ionic species when the initial space and time 

are known.  

The interest is more on the ionic currents that pervade the 

SAN. In Zhang et al. [14] the ion currents observed from 

rabbit SAN cells are iNa, iCa,L, iCa,T, ito, 4-AP-sensitive 

sustained outward current (i sus), iK,r, iK,s, and if. Let us 

employ the seminal Hodgkin and Huxley [2] equation  

M i

dV
I C I

dt
= + ,                                 (12) 

where: 

I is the total membrane current density; 

Ii is the ionic current density; 

V is the displacement of the membrane potential from its 

resting value 

(depolarization negative); 

CM is the membrane capacity per unit area (assumed 

constant);  
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t is time. 

In cardiac tissue, equation (2) may be extended into a 

reaction-diffusion form to accommodate spatial diffusion of 

currents [20] 

.( . ) 0ion

m

IdV
V

dt C
+ − ∇ ∇ =x D x  

where x is the spatial coordinate of each material point in the 

heart; D is the diffusion tensor, which controls the 

transduction orientation and speed of the electrical wave of 

excitation in the cardiac tissue. The equation of SAN current 

density may be written in a more simplified form, though 

with no loss, as 

1

m

dV

dt C
= − ( , , [Ca L Ca T Kr Ks Nai i i i i δ+ + + + Na(A\A0)] + ito + if +isus),                                       (13) 

where iCa,L, iCaT are L- and T-type Ca
2+

 currents, iK,r, iK,s are 

rapid and slow delayed rectifying K
+
 currents, if is the 

hyperpolarization-activated current, isus is the sustained 

current, and ito is the transient outward current. (Note that δ
Na (A\A0) sets iNa to 1or 0 as the case may be, as indicated by 

equation (8)). This measure is intended to arrest the sodium 

ion controversy. However, more is to be done about the 

expression for the Na
+
 ion current; the hyperpolarization 

current if, known as the funny current, consists of the Na
+
 and 

K
+
 ions. It is therefore split into its constituents (see 

equations (21) and (22) below). 

Define the individual currents, in line with Zang et al. 

[14]: 
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where gNa is the Na
+
 conductance, and subsequently gi 

represents conductance for the ion I, m is the activation 

variable for iNa, h is the deactivation variable given by 

1 2(1 )Na Nah F h F h= − +  ,                          (15) 

F is Faraday's constant, R is universal gas constant, T is 

Absolute temperature, FNa is the fraction of inactivation of iNa 

that occurs slowly. As was proposed of the Na
+
 current (see 

Hodgkin and Huxley [2] conductance is controlled by the 

activation variable m and the deactivation variable h (h1 and 

h2 are the fast and slow deactivation variables respectively). 

3

, , ,( 14.1)/6

6 10
( )

1.0
Ca L Ca L L L Ca LV
i g f d V E

e

−

− +

 ×= + − 
+  

,   (16) 

, , ,( )Ca T Ca T T T Ca Ti g d f V E= − ,                     (17) 

where dL and dT are the activation variables for iCa,L and iCa,T 

respectively, and fL and fT are the deactivation variables for 

iCa,L and iCa,T respectively. 

, , ( )K r K r a i Ki g p p V E= −  ,                   (18) 

where pa is the general activation variable for iK,r given by 

pa = (1-FK,r)pa,f + FK,rpa,s ,                               (19) 

where pa,f, pa,s are the fast and slow activation variables for 

iK,r respectively (see Shibasaki [21])  

2
, , ,( )K s K s s K si g x V E= −                      (20) 

f f Na fKi i i= +                                (21) 

( ) ( )Na Na K Kgf y V E f y V E= − + −             (22) 

where y is the activation variable for if (see Pan et al. [22]; 

Arie and Ronald [23]). The equilibrium potentials for Na
+
, 

Ca
2+

, and K
+
, ENa, ECa, EK are respectively given by 
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It is of note that the density of each of the ion currents is 

proportional to membrane capacitance CM. In line with Inada 

et al. [15], conductance g of the ion currents can be 

expressed as a linear function of CM in one dimension. At the 

at periphery and in the centre of the SAN the conductance 

has the form 

( )( ) M c
M p c c

d

C C
g C g g g

C

−
= − +  ,            (26) 

where gP and gC are the conductance for the peripheral and 

central SAN respectively, Cc is the capacitance, in pF, of the 

SAN centre and Cd is the difference between the peripheral 

and central capacitance. From equation (26) above we 

deduce that the linear representation of the conductance can 

be obtained by the join of the points 

( )

( )

M c
c p

d M c

C C
g g

C C C

− −
=

− −
 and 

( )M c d
p c

M c

C C C
g g

C C

− −
=

−
.  (27) 

2.3. SAN Centre/Periphery Ion Currents 

Consider equation (13). The constituent Na
+
 current is 
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iNa [δ Na (A)] + if = iNa [δ Na (A)] + Nagf [δ Na (A)] 

( ) (Na K Ky V E f y V E− + − )          (28) 

The absence of Na
+ 

ion at the SAN centre Ao means that 

the part of permeating if is the iK. Thus, 

 iK ϵ if (Ao ) = fKy(V-EK)                         (29) 

If the absence of this sodium ion at the centre is assumed, 

then the SAN has regional sodium ion concentration 

basically at the periphery. The time derivative of this 

concentration [Na
+
] of the Na

+
 is measured by 

Na

Na r

d Na i

dt z FV

+ 
  = −                           (30) 

where: zNa is the valence of the sodium ion; F is Faraday’s 

constant; Vr is the volume of the region where Na
+
 is 

distributed.  

The proportion of this Na
+ 

ion pervading the region A\Ao is 

1 exp[ / ]NaQ c z E kT= , c1 = constant               (31)  

By equating the right-hand-sides of equations (23) and 

(24) the resulting Na
+
 ion current flowing across the 

peripheral region (iNa,p) is 

1,
Naz E

kT
Na p Na ri c z tFV e= − .                 (32) 

The above equation determines the quantity of sodium ion 

firing across the SAN periphery, which can therefore recruit 

the much required action potential. 

With this absence at the centre and the presence elsewhere 

in the SAN, at least at the periphery equation (13) is modified 

as 

( ),

1
( ( )) ( )

K

m
Ca K Na Na f f Na p to sus

m

dV
i i i i i i i

dt C
δ= − + + + + + +0A \ A ,                                (33) 

where ifNa,p is the sodium ion component of if at least at the 

periphery but not at the centre, iCa and iK represent lumped 

Ca
2+

 and lumped K
+
 currents respectively. (At present, the 4-

aminopyridine (4-AP)-sensitive transient outward current, ito 

is yet to be seen as physiologically important, as claimed by 

Vladimir et al. [24] 4-AP is used in studies in the 

characterization of the potassium channel subtypes, though 

Kenyon and Gibbon [25] asserted that there is no reason to 

claim that ito contains potassium current. 4-AP blocks 

potassium channels and prolongs action potentials).  

2.4. Coupling Conductance 

Away from here [31], the cardiac conduction system 

treated conductance as a source-sink phenomenon, with the 

SAN as the primary source. The SAN is coupled to the right 

atrium by means of gap junction. The equation for the SAN 

centre membrane current together with coupling to the 

abutting cells is 

( ) ,

1
( )

k

m
Ca K f to c m m i

m i

dV
i i i i g V V

dt C
= − + + + − −∑  (34) 

where Vm is the SAN centre cell’s membrane potential, Vm,i 

is the membrane potential of cells connected to the SAN 

centre cell. In the above equation gc is the coupling 

conductance (low gc enhances the SAN pace making, albeit 

reduced coupling current required to recruit atrial firing). The 

gap-junctional coupling conductance is directly dependent on 

the difference of the potentials. The coupling from cell j to 

cell i is a discretized form of the Laplacian: 

Icoupling = gij (Vj-Vi) ≡ gc(V1-V2) 

The associated coupling function is (Kopell and 

Ermentront [26]) 

1 0 0
0

( ) *( )( ( ) ( ))
Ti jg

H V t V t V t dt
T

φ φ= + −∫ . 

where V0(t) is the voltage component of the periodic 

trajectory of the uncoupled system , and V*(t) is the voltage 

component of the adjoint. At the gap junction, H1(0) = 0 , but 

for synapses Hi(0) will not vanish in general. Suppose there 

are two cells, the SAN centre cell1 and an abutting cell2, of 

isopotential compartments with gap-junctional current I2,1 

flowing from cell1 to cell2 . The representative current gc(V1-

V2) is seen as a source term in the current balance equation 

for cell2, with the current issuing from cell1. It is likened to a 

sink term for cell1. Thus, gc(V2-V1) is a source term into cell1 

(see Ritzel [27]). The equations of the coupled system 

becomes 

1
,1 ,1 2 1( )m ions app c

dV
C I I g V V

dt
= − + + −             (35) 

2
,2 ,2 1 2( )m ions app c

dV
C I I g V V

dt
= − + + −             (36) 

where Iions,1 is a function of V1. A large gap junctional 

conductance causes the cells to be tightly electrically 

coupled. Subtract (35) from (36), after dropping the term of 

order 1/gc to get  

1,2
1,2c

dV
V

dt
λ ≅ −                                (37) 

where V1,2 = V1-V2 , V2,1 = V2 -V1 and cλ = Cm/gc. From the 

above equation we get 

1,2 0
c

t

V V e
λ−

≅  ,                              (38) 
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when evaluated at V1,2(0) = V0.  

2.5. Centre is Dependent on Calcium ion (Ca
2+

) 

Cardiac calcium ion, Ca
2+

 consists of the long-lasting 

current iCa,L, and the transient current iCA,T. while the former 

is found in all cardiac cell types, the latter is specific to the 

SAN, the Purkinje cells and the atria. iCa,L is very important 

in pace-making; it is activated at the level of membrane 

potential above -55mV (see Chapman et al. [28]). iCa,L 

channel is slow to open but remains open for a long time 

afterwards. The cardiac delayed rectifier potassium currents 

consist of the fast type iKr and the slow type iKs.  

The iCa,L and iKs are ion-carrying currents with 

physiological (harmless) delay. In what follows, iCa,L, the 

long-lasting Ca
2+

 current is given a closer look. The Ca
2+

 

current lasting duration, owing to the opening of the L-type 

calcium channel, induces an influx of calcium into the 

cardiomyocyte which initiates cardiac excitation/contraction 

coupling. This is a time-hallowed physiological phenomenon. 

The evident delay in the channel closure typically reflect a 

combination of transmission times- processing time and the 

delivery time. A characteristic feature of Na
+
-driven AP of a 

typical cardiac cell is an overdrive (rapid stimulation). This 

requires that pacemaker activity may be inhibited for several 

minutes. In effect, a periodic response may cease to be 

tenable. The Na
+
 absence in the SAN centre, together with 

the iCa,L-driven SAN centre AP reinforce the harmless time 

delay evident in the SAN AP. 

The response of L-type Ca
2+

 current (now, for ease, 

indicated by Ci) to the opening of its channel obeys the 

single-species delay differential equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ,i i i iC t C t k t l t C t m t C t tτ  = − + −ɺ   (39) 

where: 

k(t) is the rate of calcium release from the sarcoplasmic 

reticulum during spontaneous Ca
2+

 spark that marks the onset 

of AP; 

l(t) is the net calcium current sink to the right atrium- the 

major cause of delayed depolarisation rate (since the SAN is 

electrically coupled to the right atrium ) 

m(t) is the calcium sustainability factor during delayed 

depolarisation; 

( )tτ  is the time-dependent delay. 

In virtue of the oscillatory nature of the SAN cells’ APs, it 

is noteworthy that k(t), l(t), m(t) and ( )tτ are continuously 

differentiable ω -periodic functions and k(t)> 0, l(t) > 0, m(t) 

≥ 0, ( )tτ ≥ 0 for ( , )t R∈ = −∞ +∞ . The delay in the term 

( ) ( ( ))im t C t tτ− is physiological (harmless) due to time 

needed for SAN electrical coupling to the right atrium. With 

the probability of gate being open, and using equation (16) 

we write 

, , , ,

, ,

( ) [ ]( ( ) ){ ( ) ( ) [ ]( ( ) )

( ) [ ]( ( ( )) }

i Ca L L Ca L Ca L L Ca L

Ca L L Ca L

C t g d V t E k t l t g d V t E

m t g d V t t E

η η
ξ τ

= + − − + −
+ + − −

ɺ

                                (40) 

where 
3

( 14.1)/6

6 10

1.0 Ve
η

−

− +
×=

+
 , 

3

( ( ( )) 14.1)/6

6 10

1.0 V t te τξ
−

− − +
×=

+
.  

Following Freedman and Jianhong [29], suppose 

[ ]0,
max ( )max t tωτ τ∈= . Then, for any given 

max([ ,0];Rφ τ∈ − ), there exist (0, )λ ∈ ∞ and a unique 

solution Ci (t) = ( ; )iC t φ= of equation (3.1) on max[ , )τ λ− . 

Thus, Ci (t) is continuous on max[ , ),τ λ− continuously 

differentiable, and satisfies equation (40) on (0, )λ  and 

( ) ( )iC θ φ θ= on max[ ,0)τ− . Besides, if ( ) 0tφ ≥ on 

max[ ,0]τ− , then Ci (t) remains nonnegative for all t∈ (0, )λ . 

It can be shown (see: Freedman and Jianhong [29] Shigui 

[30]) that if the equation 

( ) ( ) ( ) ( ) ( ( )) 0k t l t B t m t B t tτ− + − =              (41) 

has a positive, ω -periodic, continuously differentiable 

solution B(t), then the equation (40) has a positive ω -

periodic solution S(t). Besides, if 

( ) ( ) ( ( )) / ( )l t m t S t t S tτ> − for all [0, ]t ω∈ , then S (t) is 

globally asymptotically stable with respect to the positive 

solution of equation (39). This is likened to a physiological 

state of the SAN if each of the other individual ionic current 

is associated with similar condition as the iCa,L under 

consideration . 

In the above equation B (t) is, in the present context, the 

SAN calcium current-carrying capacity. The carrying 

capacity is the primary generator of periodic oscillations of 

the SAN AP. It is noteworthy that the action potential of 

peripheral SAN tissue depends on iNa, while that of central 

SAN tissue depends on iCa,L, rather than iNa. We assume 

( ) / ( ( ) ( ))k t l t m t−  is not a constant since B (t) must be an 

ω -periodic function, in which case the periodic solution S (t) 

is non-constant. The location of the periodic solution S (t) 

may be approximated. To do this, the constants ε  and some 

constant N > 0 may be roughly estimated, as shown in 

Freedman and Jianhong [29] such that 

( )

( )

S t
N

B t
ε ≤ ≤  for [0, ]t ω∈ .                    (42) 

In the event of pathological delay, the ratio S(t)/B(t) will be 

nowhere the interval [ ε , N]. 

3. Conclusion 

This paper considered an aspect of electrophysiology that 

relates to the cardiac membrane and cells. It is untenable to 

undertake a lumped study of cardiac cells due to their 

characteristic peculiarities and heterogeneities. In the light of 

this, this work was particular on the electrophysiology of the 
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sino-atrial node (SAN). The membrane and cells of SAN are 

a sine-qua-non to cardiac pacesetting and ionic action 

potential. The SAN centre is the origin of action potential; 

the SAN as a whole is the source of entire cardiac action 

potential. 

Mathematical analysis of electrophysiology is often 

faced with the problem of inadequate and authentic 

information about cellular composition of ions. This is 

serious setback on the much needed mathematical models. 

The most excruciating irritation regarding cardiac 

electrophysiology is what we may call the sino-atrial 

dilemma. The issue of the presence or lack of the sodium 

ion (Na
+
)

 
in the SAN is still a contestation. Mathematical 

exactitude require unassailable details in cases where 

experimentations precede analysis. In literature (part of 

which is contained here), what appears clearer is the 

presence of the said ion at the periphery and the dearth of 

the same at the centre. All the same, this work is a bit 

pacifying. Any school of thought as regards the sino-atrial 

dilemma may see the modified equation(s) of cardiac 

membrane current here as not offensive (?). 

The SAN centre, which is the origin of cardiac action 

potential, induced more insight into the calcium ion. At the 

onset of action potential calcium is released from its 

warehouse, known as the sarcoplasmic reticulum. The L-

Type calcium ion current, iCa,L is known to be critical to the 

recruitment of action potential. iCa,L channel is slow to open 

but remains open for a long time afterwards. This property 

brings to understanding the physiological (harmless) delayed 

diastolic depolarisation that is due to SAN coupling to the 

right atrium.  

The event in calcium current delay may be described by 

suitable delay differential equation with periodic content. A 

single-species delay differential equation that describes the 

situation was therefore furnished. The single-species 

equation was to cater for the iCa,L dynamics only, as it is not 

the only ion current of the SAN centre. Stability of the 

periodic solution of the equation is descriptive of 

physiological state of iCa,L flow, all else being equal. The 

solution space indicates the permissible time interval within 

which delay is not dangerous, that is when delay is harmless. 

Away from this solution space, there is the likelihood of 

pathophysiology. Specialized cardiac cells, including the 

SAN, are conduction sources and sinks. Flows involving 

sources and sinks in terms of cardiac cell membranes are 

amenable to periodic delays. Delay differential equations, 

including the one presented here are therefore utilized and 

analysed for physiological purposes. 
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