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Abstract: Sidorenko conjectured an integral inequality for a product of functions h(xi, yi) where the diagram of the product is a 

bipartite graph G in [8]. We answered the conjecture positively when the function h is multiplicative or additive separable with 

respect to variables x and y. 
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1. Introduction 

Denote the Lebesgue measure on [0, 1] by µ. Let a fuction 

h(x, y) be bounded, nonnegative and measurable on [0, 1]
2
. 

Let G be a bipartite graph where vertices u1, u2,…,un form the 

first part and v1, v1,…, vm the second part. We denote by E the 

set of pairs (i, j) for which ui and vj are adjacent in G. So |E| is 

the number of edges. The following conjecture was discussed 

in works [2, 3] published in Russian. The same arguments 

were explained in detail again in [8]. 

Conjecture 1 [2]. For any bipartite graph G and any 

function h  
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Two particular cases of Inequality 1 (G is a path, h is 

symmetric; G is a path of length 3, h is not necessarily 

symmetric) were proven in [4, 5] and [6], respectively. 

One might conjecture that the considered products of 

functions are always non-negative correlated. Unfortunately, 

this is not the case. For instance, it would require 
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However, a counterexample to the last inequality was 

found in [7]. 

Conjecture 2 [2]. Let the numbers of edges and vertices of a 

bipartite graph G satisfy the conditions |E| ≥ n; |E| ≥ m. Then, 

for any functions h, f1, f2,…, fn, g1, g2,…, gm, 
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Inequality 2 is essentially stronger than inequality 1. For 

instance, inequality 2 implies [2]: 
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Conjecture 1 and 2 were proven in [2] for various classes of 

graphs. 

2. Main Results 

We start by mentioning a simple example as follows: 

Let : [0,1] [0,1] [0, )h × → ∞  be a function given by 

( , ) .h x y x y= h is trivially non-negative, bounded and 

Lebesgue measurable. Let G be a finite simple bipartite graph 

with {u1, u2} such that u1 to both v1 and v2 and u2 to both v1 and 

v2. Siderenko’s conjecture is positively confirmed because  
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Lemma 3 [1]. Suppose that 1 ≤ r < ∞ and � ∈ �����	is 

non-negative. Then r

X

r

X
fddf )( µµ ∫≥∫ . If r > 1, then 

equality holds if and only if f is (essentially) constant. 

In order to make the understanding of Theorem 4 easier, we 

give a simpler format of it as an example. First let G be a 

simple bipartite graph from u1 to both v1 and v2 and the 

function 0 ≤ ℎ ≤ 1 be measurable on [0, 1]
2
. Let h be written 

as h(x,y)=h(x).g(y) 
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By Lemma 3, we get  
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Now we can give Theorem 4 which is a generalization of 

above mentioned argument. 

Theorem 4. For any bipartite graph G and any 

non-negative, bounded and Lebesgue measurable function h 

such that h(x,y)=f(x).g(y) we have 
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Proof: Let G be a finite simple bipartite graph with 

bipartition {u1,u2,,…um} 
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where d(ui) is the degree of ui.  

By Lemma 3 we know that the inequality 
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satisfies for all natural number n. 

By using Fubini’s Theorem we have  
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Hence the proof was completed. 

Now under the same assumption of G given before 

Theorem 4, let the function 0 ≤ ℎ ≤ 1  be written as 

h(x,y)=f(x)+g(y) which is measurable on [0, 1]
2 
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Since the integrands at second and third order in above 

expression are the same, by Lemma 3 we have 
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Theorem 5. For any bipartite graph G and any function h 

such that h(x,y)=h(x)+g(y), we have 
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By Lemma 3 we get  
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which completed the proof. 

Following Theorem 6 which was given in [1] can be 

considered as an useful means to investigate whether our 

Theorem 4 and Theorem 5 can be generalized to any bounded, 

non-negative and Lebesgue measurable function h. 

Theorem 6 [1]. Suppose than n is a positive integer 

),1[}0{, ∞∪∈qp , not both of p, q are zero, 

)(),( µµ qnpn LgLf ++ ∈∈ , and f and g non-negative. Then 
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If neither f nor g is the zero function then if n + p > 1, 

equality implies that f is constant, and if n + q >1, equality 

implies that g is constant. 

Remark: We do not know whether Theorem 4 is valid for all 

non-negative, bounded and Lebesgue measurable functions h. 

If we can show that Theorem 4 is true for any function h such 

that 

( , ) ( ) ( )s s

s

h x y f x g y=∑  

where fs(x) and gs(y) are polynomials. Then by using Theorem 

4, Theorem 5 and Theorem 6, we can easily generalize it to all 

h by using well-known Weierstrass approximation theorem, 

because polynomials are uniformly dense in C([0, 1]). 
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