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Abstract: In the present paper, a class of coupled van der Pol-Duffing oscillators with a nonlinear friction of higher
polynomial order model which involves time delays is investigated. The coefficients of the highest order of the polynomial
determine the boundedness of the solutions. With special attention to the boundedness of the solutions and the instability of the
unique equilibrium point of linearized system, some sufficient conditions to guarantee the existence of oscillatory solutions for
the model are obtained based on the generalized Chafee's criterion. Convergence of the trivial solution is determined by the
negative real part of eigenvalues of the linearized system. Examples are provided to demonstrate the reduced conservativeness
for the parameters of the proposed results. The results obtained shown that the passive decay rate in the model affects the
oscillatory frequency and amplitude. When a permanent oscillation occurred, time delays affect mainly oscillatory frequency

and amplitude slightly.
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1. Introduction

It is known that the van der Pol (VDP) oscillator could
model the typical self-excited or self-sustained oscillation.
Various coupled van der Pol or van der Pol-Duffing
equations have been applied in physics and engineering.
Many good results have appeared [1-12]. For the following
three-dimensional autonomous van der Pol-Duffing type
oscillator system:

x'(t) = y(b),
y' () = —x(©) + B x3() + e(1 — x2())y(t) — kz(D), (1)
z'(t) = y(@) —z(1).

By analyzing the stability of the equilibrium points, the
existence of Hopf bifurcation is established [1]. Barron has
considered the stability of a ring of coupled van der Pol
oscillators with non-uniform distribution of the coupling
parameter as follows:

x{'(6) + a(xZ(t) — Dx{ (@) + x;(t) = b; (x;_1 () —
2x;(t) + x;41 (1)) (2)

where 1<i<n,b; are the coupling parameter
corresponding to the ith oscillator. For a modified hybrid van
der Pol-Duffing-Rayleigh oscillator for modeling the lateral
walking force on a rigid floor:

x"(£) + yx(t) + wé x(t) — ax?(t) — bx(£)x'(t) +
cx3(t) +dx?(t)x'(t) =0 3)

Kumar et al. have studied the stability of the equation (3)
by the perturbation and energy balance method [3]. Rompala
et al. have considered a system of three van der Pol
oscillators [5]. For a ring of four mutually coupled biological
systems described by coupled van der Pol oscillators, the
stability boundaries and the main dynamical states have been
considered on the stability maps by Kadji et al. [6]. A driven
van der Pol-like oscillator with a nonlinear friction of higher
polynomial order model as follows:

x"(6) = p(1 — x2(t) + ax*(£) — px°())x'(¢) + x(¢t) =
6, sin wt @)

The effects of noise correlation on the coherence of a
forced van der Pol type birhythmic system has been
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investigated by Yamapi et al. [7]. It is well known that the  der Pol equations also have been extensively studied by
time delay is inevitable in many physical and biological = many researchers [13-24]. For example, Li et al. have studied
phenomena such as manufacturing process, nuclear reactors,  the coupled van der Pol oscillators with two kinds of delays
rocket motors, mechanical controlling systems, population  [13]:

dynamics, and so on. Naturally the time delay coupled van

{yi’(t) +wiy () — (1 - y2O))yi () = ea(y,(t — 1) + yi(t — 1)),

5
Y2 () + wiy(6) — e(1 = y3(©)y2(®) = ea(y:(t — ) + y1(t — D). ©

Zhang and Gu used the theory of normal form and central manifold theorem to discuss the following time delay system [14]:

{xi’(t) +e(xZ () — Dxq(8) + x,(0) = a(y, (t — 1) — x,(©)),

" 2 ’ — (6)
yi' (@) + () — Dyi () + y1.(0) = a(x,(t — 1) — y1.(D)).

Motivated by the above models, in this paper we consider the following a ring of time delays Duffing-van der Pol-like
oscillator with a nonlinear friction of higher polynomial order system:

uy' (8) + & [Luf () — kyut(©) + uf () — @ Jui (®) + Euqy (6) + Brui ()
= by [un(t — %) — 2uy (¢ — T,) + up(t — 7)),
uy (t) + &[Lus (1) — kud () +ud(0) — @ |up () + Gu,y(©) + Boud ()

= by[uy (8 — %) — 2u,(t — 7,) + us(t — %)), )

u;'{ (‘;).;.‘;n‘[‘inug(t) - ";nl.l;‘i(f) +ul(6) = @ Jun () + Euuy (t) +ﬁnur3;(f)
= En[un—l(t = Tpo1) = 2up(E — %) +uy(t — 1))

where 0 <[;, k; and 0 <& < 1; &, B, @;, b; € R for each i=1, 2,..., n, 0 < %; are time delays. Our aim is to investigate the
dynamical behavior of n coupled oscillators by means of the generalized Chafee's criterion [25, 26].

2. Preliminaries

For convenience, setting &=¢,;,[; = lp;, k; = kyy, @; = Qg4 & = Cai—1, b; = byi_1, Bi = Bai—1, i = T2i-1 (1 < i < n). Then
the coupled system (7) can be written as the following equivalent system:

x1 () = x3(t),
x3(£) = —cyx1(8) = Braf (¢) + by [Xap_1 (t — Ton_q) — 226 (t — T1) + x3(t — 73)]
+8,a,%, () — %7 ()2, (1) + &2k, x7 (D)%, (1) — 21,27 ()%, (1),
x3(t) = x4(0),
x3(t) = —c3x3(t) — B3x3 (£) + bs[xy (¢ — 1) — 2x3(t — 73) + x5(t — 75)]
0,0, () — €455 ()24 (1) + £4kax3 (x4 () — £41,x5 () x4 (1),

) .. (8)
Xgn—-3(t) = X2n_2(8),
Xpn-2(t) = —Con_3Xan—3() = Bon-3%3n_3(t) + bap_3[Xon_5(t — Ton—s5) — 2Xpp—3(t — Ton—3)
+x2n-1(t = Tono1)] + E2n2n—2%an—2 () = = = E2n_2lpn_2X5n_3(1)X2n_, (1),
Xon-1() = 2%2,(t),
Xpn(8) = —Can_1Xan-1(t) = Bon-1%3n-1(t) + bap_1[Xon_3(t — Ton_3) — 2%2n_1(t — Ton-1)

21 (t = T)] + €200 X0 (1) = €20 X501 (O X0 (£) + -+ = Ex7 Lo X5y 1 ()X, (D).

The matrix form of system (8) is the following: (bij)2nx2n are 2n by 2n matrices as follows:
X'(t) =AX() +BX(t—1) +g X ©)] A = (aij)anxan =

0 1 0 00 - 0 0

where X(t) = [xl(t),xl(t),---,xzn(t)]T, —c;  ay 0 0 0 - 0 0
Xt—-1)= [xl(t_Tl)'OﬁxS(g_Tl)""'xZn—l(t 0 0 0 1 0 0 0

3 - TZTé—l)t O] ) . 0 0 —C3 Qg 0 0 0 s
9X) = [0, -3 (8) — £,x2 (D%, (8) + ko2 (O, (8) -
£21,x () x,(1),0,+,0, = Bon_1X3,_1 (t) — 0 0 0 0 O 0 1
EanXin—1 ()Xo (t) + E2n k%301 (O)X20 () — 0 0 0 0o O —Can-1  Qanzn

sZnZangn—l(t)xZn(t)]T- Both A=(aij)2n><2n and B =



106 Chunhua Feng: Stability and Oscillatory Behavior of the Solutions on a Class of Coupled Van der
Pol-Duffing Equations with Delays

where ay; = €03, Qyq = €44, A2nzn = E2n02n - Let
B = (bij)2nxan i1 0 by 0 0 b \
0 0 000 - 00 bs 0 c3 0 0 0

/—Zbl 0 by 0 0 - b O \ C = (Cij)nxn - | e e e |’

| 0 o 0o o o0 =~ 0 o] \ 0 0 0 0 0 baps /
:i b3 0 —2b; 0 0O 0 0 i bynuy 0 0 0 -+ 0 Cpp

K 0 0 0 0 0 0 0/ where ¢y3 = =2by — ¢y, Cp3 = —2b3—C3,0, Cpn =

byne O 0 0 0 —2byp1 O —2byp—1 — Cop-1-

Lemma 1 Assume that the matrix C is a nonsingular
matrix, then system (8) (or (9)) has a unique equilibrium.

Proof An equilibrium point x* = [x],x3,*, X3,]7 of
system (8) is a constant solution of the following algebraic

Obviously, the origin x,, =0 (k = 1, 2, =, 2n) is an
equilibrium of system (8). The linearization of system (9) at
origin is

equation
X'(£) = AX(0) + BX(t — 1) (10)
x; =0,
—c1X5 = Br(x1)% + by X501 — 2x7 + 23] + £,0,%5 — £,(x1) x5 + £k, (x1) x5 — £,1,(x1)%x; = 0,
x; =0,

—C3X3 — ﬁ3(x§)3 + b3[x] — 2x3 + x5] + e4a4x5 — 84(x§)2x2 + €4k4(x§)4x2 - 5414(95;)69‘2 =0,
] ., T2 =0 ()
* * * * * *
—Con—3X3n-3 — Ban-3(X3n-3)" + ban_3[Xan_5 — 2X3n_3 + X3p_1] + €2n—2Q2n_2X3n >
—&2n(X3n-3)X3m-2 + Ean—2kan—2(Xon-3)*X3n_2 — €2n_2lan_2(X3n-3)%3_» = 0,
X5, =0,
—Con-1%3n-1 = Ban-1(Xon-1)* + ban_1[X3n_3 = 2X5n_1 + X5 ] + €200 X5n — €20 (X3n-1)%5,
+€2nk2n(x;n—1)4x§n - €2nl2n(x;n—1)6x;n =0.

Since x5; = 0 (1 < i < n), from (11) we get

—c1x = B1(x)® + by x50 — 27 + %3] = 0,
—c3x3 — P3(x3)° + bslx] — 2x5 + x5] = 0,

.o . (12)
L_CZn—Bx;n—3 — Bon-3(¥3n-3)° + ban_s[x3n_5 — 2x3n_3 + X3n_4] = 0,
—Con-1%3n-1 = Ban-1(X3n-1)% + ban_1 (X303 — 2%5,_1 + x{] = 0.
System (12) can be written as a matrix form as the have
following: on
DX* =0 (13) V'Ol = Z x;(8) x;(t)
i=1
where X* = [x},x3, -+, X3n_,]", and L
= 1, (D)22(8) + 2%, (O{ =12, (1) — Buxi (1)
diy by 0 = b \ + by [xon—1(t — Top-1) — 2%, — T4)
by dy, by - + x3(t — 13)] + £2a,%, ()
D = (dij)nxn = [ - o, , ) .
Kb 0 o 0 - b2n—3/ —&%1 (£)x2(8) + &2k %1 (D) x2(8) — £20,%7 () x, ()}
4 0 0 - d
e " e + Xzn-1(£) %20, (£)
where  di; = —2by; 1 — Cpiq — Poi1(03-1)*(A < i < ).

3
According to standard results in linear algebraic, if D is a +x2n(O{—Can-1%2n-1() = Pan-1%3n-1(0)

nonsingular matrix, system (13) has only one solution,
namely, the trivial solution. When x5;_; =0 ((1 < i <n),
matrix D changes to C. The proof is completed.

Lemma 2 All solutions of system (8) are uniformly

bounded.
Proof Construct a Lyapunov function V(¢) = f;‘l%xiz @®).

Calculating the derivative of V' (¢) through system (8) we

+ bop—1[X2n—3(t — Ton-3)2%pn_1 (¢
= Top-1) + %, (t — 74)]

€200 Xon (£) — €275, 1 () x5, (1)
+ Sanangn—l(t)xZn(t)
— EanlanX5n_1 (X2, (D)}

=(1 = ¢1)x3 (x5 () = Byx5 ()25 (£) + byoxy (£) [xp-1 ( —
Ton—1) — 2%t —7q) +
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x3(t = 13)] + £2a,x5 (t) — e,xf ()5 (1) + k%7 (x5 (£)

+(1 = c2n-1)X2n-1 () X0 (V) = Ban—1%3n-1 () X25, (1)
+ byp—1 X0 (1)

[X2n-3(t = Tan—3) — 2Xon_1 (£ — Top—1) + x1(t — 71)]

+52na2nx22n(t) - Sanzzn—l(t)xzzn(t)
+ EankonXxn_1 () x5, ()

=&l xP (O)x2(t) — g4y x§(E)x2(t) — v —
E2nlanX5n—1 (x5, () (14)

Obviously, xf (£)xZ(t), x5 ()xF(t), -+ s X5n—1 ()22 (£)
are higher order infinity as x;(t) (1 < i < n) tend to infinity.
Since 0 < &5;l,; (1 <1< n), so there exists a sufficiently
large L > 0 such that

V')l <0 as |x;| > L (1 <i<n), implying that all
solutions of system (8) are bounded.

3. Main Result

First we discuss the stability of the trivial solution of system
(8) (or (9)). Noting that g(X) is a higher order infinitesimal
in a neighborhood of ||X|| =0. Therefore, the stability of
trivial solution of system (10) guarantees the stability of
trivial solution of system (8). We consider the following
auxiliary system:

X'(6) = AX(0) + BX(t — 7°) (15)

where T =max{1y, T3, ", Tan_1 b > Xt—-1t)=
[x,(t —7%),0,x3(t —7%),0,, xpp_1 (t — T%),0].
Theorem 1 Assume that system (8) has a unique

N

t
IX(O|l < LKe ") + K||B|| f dsf
T s

—T*

cK(llAlle“™ + ||Blle*™)

equilibrium point, for selected parameter values
of ay;, byi_1,C2i-1, and &5; (1 < i < m). Let the eigenvalues
of matrix R=A+B be y;(1<i<2n). If Re (y)) (i =
1,2,:-,2n) < —r < 0, then the unique equilibrium point,
namely, the trivial solution of system (8) is stable.

Proof Since Re (y;) (i =1,2,-+,2n) < —r <0, hence
there exists a positive constant K > 1 such that [|e“+5)|| <
Ke "t In (15) for t = 7* we have

t

X'() = (A +B)X () — Bf X'(s)ds

t-1*

t .
=(A+B)X(t) — B[,__.(AX(s) + B(s — tau") )ds (16)
From (16), for t = t* we get

X(t) = e@BE-T)x(7*) —
t - *
B[.ds [ . e“PE)(AX(u) + B(u— tau*) )du (17)

Therefore,
, Xl <
— —T* S — -
LKe &™) + K|IB|| [Lds 7. eI ANIX @Il +
IBIIX (w — ) du (18)

where L = supiej_, -+ IX(O)||. We shall prove that there
exists a positive constant ¢ (< r) such that ||[X(t)| <
LKe= ™) t > ¢* Indeed, select ¢ (< r) such that

KIBI(IAN + IBlle™)(e™ = 1) = c(r —¢)

then from (18) we have

e "I (||AlILKe ™) 4+ ||BI|LKe¢®2T))dy

= LKe &) L K||B|| .

cK(IAll + 1IBlle“) (e — 1)

t
f e—r(t—s)(e—cs _ e—c(s—r*))ds
-

= LKe =) + K||B||

—c(r —

= LKe™ct=")

This means that X(t) = 0 as = oo in system (15). Since
Ty < T° (i =1,2,+--,n), and g(X) is higher infinitesimal
as X(t) — 0, based on the property of delayed differential
equation, we know that the trivial solution of system (8) (or
(9)) is stable. The proof is completed.

Theorem 2 Assume that system (8) has a unique
equilibrium point, for selected parameter values of
Ay, byi_1,Coi—1, and &5; (1 < i < n). Let the eigenvalues of
matrix R=A+B be y; (1 <i < 2n), the eigenvalues of
matrix 4 be p; (1 <i < 2n). If there exists at least one
eigenvalue py, k € {1,2,-+-,2n} such that Re (py) > 0, then
the unique equilibrium point of system (8) is unstable,
implying that system (8) generates an oscillatory solution.

(e—c(s—r*) _ e—r(t—r*))

c)
(19)

Proof Obviously, if the trivial solution of system (10) is
unstable, then the trivial solution of system (9) is also
unstable. Therefore, we only need to consider the stability of
the trivial solution of system (10). The characteristic equation
corresponding to system (10) is

det()& Il.] - ai]- - bl-]-e_’hl') =0 (20)

Noting that each characteristic value of matrix B is zero.
So we have

det()& Il.] - ai]- - bl-]-e_’hl') = leg'l }\i —pP; = 0 (21)

By the assumption, there exits at least one k such that Re
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(Ax) = Re (px) > 0, this means that the trivial solution of
system (10) is unstable, implying that the trivial solution of
system (8) (or (9)) is unstable. Since all solutions of system
(8) (or (9)) are bounded, and system (8) has a unique unstable
equilibrium. Based on the generalized Chafee's criterion, this
instability of the unique equilibrium will force system (8) to
generate an oscillatory solution.

Theorem 3 Assume that system (8) has a unique
equilibrium point, for selected parameter values of
Ay, bai_1,Coi1, and &; (1 <i<n). If there exists one
o, k € {1,2,--+,n} such that

Cak—1 — €2z <0 (22)

then the unique equilibrium point of system (10) is unstable,
implying that system (8) generates an oscillatory solution.

Proof As theorem 2, we only need to consider the
instability of the trivial solution of system (10). For some
k € {1,2,---,n}, consider an auxiliary equation

Vo (£) = —Cor—1Y21 () + b [Var (t — Top—3)
=2y, (t — Top-1)
+ Yar (t = Tope )1+ E21 A2k Y2k (£) (23)

The characteristic equation of (23) is the following

)t+ Cok—1 — E2Qok — bzke_AT2k_3 + szke_ATZk_l -

The parameter values are selected as ¢; = 5.45, ¢c; = 5.65,
cs =5.85; b; =0.075, by =0.085,bs =0.095; a, =
-1.05, a, = —0.55, ag = —0.75; pB; =0.35, B3 =0.25,
Bs = 0.45; [, =045, [, =0.25, [ =0.38; &, =0.0005,
&, =0.0002,e, = 0.0004, and k, =0.35k, =042,
ke = 0.68, respectively, the eigenvalues of matrix R, = A, +
B; are —0.0002 +7.5168i, —0.0002+ 2.4001i, and
—0.0002 £+ 0.7792 i. Obviously, the conditions of Theorem
1 are satisfied. The solutions of system (26) are convergent
(see Figure 1). When the parameter values are selected as
¢, =512, ¢3 =515 ¢3=5.18; b, =0.00175, b;=
0.00185, b; = 0.00165; a, = 0.95, a, = 0.55, ag = 0.75;
B, =0.25 f; =015 f;=045; 1, =0.15 [, =0.24,
lg =0.18; & =0.0005 ¢, =0.0002,& = 0.0004, and
k, = 0.25,k, = 0.32, ks = 0.16, respectively. The
eigenvalues of matrix A; are 0.0024 + 2.2803 i, 0.0001 +
2.2694 i, and 0.0002 + 2.2760 i, the conditions of Theorem
2 are satisfied. System (26) generates an oscillatory solutions

bype AT2kt1 = ( (24)
We show that the characteristic equation (24) of the
auxiliary equation has a real positive root say A*(> 0).
Define a function
h(A) = 2+ Copq — Exxlpr — boe ™ 723 +
2b, e *2k-1 — b, e ~AT2k+1 (25)

Obviously, h(1) is a continuous function of 1. Under the
restrictive condition (22) we have h(0) = cyp_1 — €2k —
by + 2byy — by, Cog—1 — &0z < 0 . Noting that
e M2k-3 50 as 1> o0, eM2k-1 50 as ) > oo, and
e *T2k+1 — () as A — oo, Therefore, there exists a suitably
large A say A,(>0) such that h(d;) =2 +cyp_q —
€210k — bype MT2k=3 4 2b,, e MT2k-1 — p, e~ MT2kt1 >
0. By means of the Intermediate Value Theorem of
continuous function, there exists a A" € (0,A;) such that
h ()= 0, where A" is a positive characteristic root of
equation (25). This means that the trivial solution of the
auxiliary equation (23) is unstable, implying that the trivial
solution of system (10) is also unstable. Based on the
generalized Chafee's criterion, this instability of the unique
equilibrium will force system (8) to generate an oscillatory
solution.

Example 1 Consider the case of n =3 in the following:

x1(t) = x3(t),

% (8) = —cyx1(6) — Byxi (8) + by[xs(t — T5) — 2001t — 71) + x3(t — 73)]
+8,a,%,(t) — %7 (1)x,(£) + €2k, x7F (D)%, () — £,1,x7 (1) x, (1),
x3(t) = x4(0),
$x5(t) = —c3x3(t) — B3x3 (8) + by [xy (¢ — 71) — 2x3(t — 13) + x5(t — 75)]
+eaa,%, (1) — 455 (x4 () + e4kax3 (x4 () — £41,x5 () x4 (1),
x5(t) = x4(t),

x(t) = —csx5(t) — BsxE () + bs[x3(t — 73) — 2x5(t — T5) + x1(t — 71)]
+egaexs(t) — e6x2 (£)x6 (1) + e6ksxs (D)xs(t) — £6lexS () x6 (D).

(26)

(see Figure 2). When the parameter values are selected as
¢; = 25.12, ¢3 = 25.15, ¢s = 25.18, the other parameters
are the same as in Figure 2, we see that the oscillation of the
solutions is maintained. However, the oscillatory amplitude
and frequency both are changed (see Figure 3), implying that
the values of ¢;, c; and c5 affect the oscillatory amplitude and
frequency very much of the solutions. When the parameter
values are selected as c¢; = 0.002, c3; =0.0015, ¢5=
0.0018; b, = 0.00175, b; = 0.00155,bs = 0.00165; a, =
10.95, a, = 10.55, ag = 10.75; B, =0.25, f5 =0.15,
Bs = 0.45; [, =0.15, [, =0.24, [, =0.18; &, = 0.0005,
&, = 0.0002,&6 = 0.0004, and k, =0.25k, = 0.32,
ke = 0.16, respectively, we have ¢; — €,a, = —0.0035 < 0,
c3 — &4,a4 = —0.0006 < 0, and c5 — ggas = —0.0025 < 0.
The conditions of Theorem 3 are satisfied. System (26)
generates an oscillatory solutions (see Figure 4).
Example 2 Consider the case of n = 4 in the following:



The parameter values are selected as ¢; = 0.0025, c;
cs = 0.0022 ¢; = 0.0028; b, =0.00135, b,
0.00125, b5 = 0.00115, b, = 0.00125; a, = 12.85, a, =
12.65, ag = 12.75, ag = 12.45;
Bs =0.22,8, =0.25; [, =0.16, [, = 0.24, l; = 0.18,[ =
&, = 0.00035,¢4 = 0.00032,
0.00036, and k, = 0.35,k, = 0.32, kg = 0.26,kg = 0.36,
respectively. We have c¢; —&,a, = —0.0005 <0, ] I Sy
— g0 = —0.0019 < 0, and g 2 e 15 = 2
c; — ggag = —0.0019 < 0. The conditions of Theorem 3 are
satisfied. System (27) generates an oscillatory solutions (see

0.0024,

0.22; &, =0.00024,
ga4 = —0.002 <0, Cs

Figures 5, 6 and Figure 7).

Time delays: 1.85, 1.64, 1.68; c1=5.45. 03=5.65, c5=5.85.
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x1 (1) = x,(8),
x(£) = =12, () = Braf (£ + by [x7(¢ — 77) = 221t — 71) + x3(t — 73)]
+8,0,%,(t) — £2%F (D)% (8) + £2k,x7 ()%, (8) — &L %7 (D) x, (8),
x5(8) = x, (1),
x3() = —c3%3(t) = B3x3(t) + by [y (t — 71) — 2x3(t — 73) + x5 (t — 75)]
840,34 () — 455 ()4 (8) + £k 4 x5 ()4 (8) — £414x5 (D) x,(2),
x5(8) = x6(0),
x5 (t) = —csxs(t) — Bsxd (£) + bs[x3(t — 73) — 2x5(t — T5) + 2, (t — 77)]
+es6x6 () — 633 ()x6(8) + e6kexs ()x6(8) — &6l6xE (D) x6 (D),
x7(t) = x5(0),
x5() = —c727(£) = Brx3 (t) + by [x5(t — T5) — 2%, (¢ — 75) + %, (t — 71)]
+egagXg(t) — g7 ()x(t) + £gkgx7 ()xg(t) — £5lgx7 () xg(2).

27

Time delays: 0.75, 0.65, 0.68; c1=25.12, c3=25.15, cs=25.18.

B = 0.16, T
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(a) Solid line: x, (t), dotted line: x,(t).

By = 0.28,

&g =

C3_

(b) Solid line: x5(t), dotted line: x,(t).

10 15 20
(c) Solid line: xg(t), dotted line: xg(t)

Figure 3. Oscillation of the solutions with ¢, =25.12, ¢, =25.15, ¢ =25.18.

8 Time delays: 0.75, 0.65, 0.68; c1=l] 002, Cy =0.0015, Cg =0.0018.
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Figure 1. Convergence of the solutions. 0 £ 60

Time delays: 0.75, 0.65, 0.68; 4 =512, ¢ =5.15, cs=5.18.

(c) Solld line: xg(t), dotted Ime xe(l)

Figure 4. Oscillation of the solutions.

Time delays: 0.75, 0,85, 0.68, 0.55; ¢,=0.0025,
¢,=0.0024, ¢=0.0022, ¢,=0.0028.
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Figure 2. Oscillation of the solutions with ¢, =5.12, ¢, =5.15, ¢c; =5.18.

Figure 5. Oscillation of the solutions with delays: 0.75, 0.65, 0.68, 0.55.
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Time delays: 0.075, 0.065, 0.068, 0.055; ¢,=0.0025,
¢,=0.0024, ¢,=0.0022, ¢,=0.0028.

1 1 4
10 30 40
{b) Solid line: x,(t), dashed line: xg(t), dotted line: xg(t).

0 10 20 30 40 50 60
{c) Solid line: %, (1), dotted line: xg(t).

Figure 6. Oscillation of the solutions with delays: 0.075, 0.065, 0.068,
0.055.

Time delays: 1.75, 1.65, 1.68, 1.55; ¢,=0.0025,
¢;=0.0024, ¢;=0.0022, c,=0.0028.

e il 5 3 S
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b Y
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Figure 7. Oscillation of the solutions with delays: 1.75, 1.65, 1.68, 1.55.

4. Discussion

When system generates an oscillatory solution, from the
Figures we know that time delay affects the oscillatory
amplitude and frequency not too much. However, the
positive parameter values ¢y, c3, cs, ¢; affect the stability and
oscillation of the system. The oscillatory frequency changes
too much when different values of ¢;, ¢35, ¢s, and c; are
selected.

5. Conclusion

In this paper, we have discussed the oscillatory behavior of
the solutions on a class of coupled van der Pol-Duffing
equations with delays. Based on the generalized Chafee's
theory, a simple criterion to guarantee the existence of
permanent oscillations, which is easy to check, as compared
to predicting the regions of bifurcation have been proposed.
In this network, the passive decay rate affects the oscillatory
frequency and amplitude. When these time delay systems

generate a permanent oscillation, the delays affect oscillatory
frequency and amplitude slightly.
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