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Abstract: An uncertain variable is a Borel measurable function whose domain is uncertainty space and range is the set of real 

numbers. However, for many reasons, like the difficult of collecting data, the value of an uncertain variable is usually not easy to 

measure accurately. Hence many scholars study the estimation range of the value of an uncertain variable, and usually to estimate 

the upper or lower bounds of the moment of an uncertain variable is the primary idea. Many inequalities are established to 

estimate the above bounds, but there are still some problems on the estimation of the moment of uncertain variables. For instance, 

the even-order moment of an uncertain variable cannot be uniquely calculated at present. So the aim of this paper is to estimate 

the upper or power bounds of the moment of uncertain variables or the uncertain measure of an event by establishing several new 

inequalities. Firstly, we extend the Lyapunov inequality on uncertain variable and this inequality gives the upper bound of the 

even-order moment of an uncertain variable, and as a corollary, the lower bound of the above even-order moment is given. Then 

the inequality of arithmetic-geometry is proved, which estimates the lower bound of the expected value of an uncertain variable. 

After that, two equivalent inequalities are given, which can be used to judge the existence of the expected value of a function of 

an uncertain variable. Finally, as for two independent and identically distributed uncertain variables, the weakly symmetric 

inequalities are investigated to estimate the upper and lower bounds of the uncertainty distributions of the difference of these 

uncertain variables which implies the uncertain measures of several events. The above inequalities extend the application range 

of uncertain variable. 
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1. Introduction 

As we all know, it is usually difficult to precisely measure 

the value of a variable since many reasons, like the statistical 

errors. Hence many scholars study the estimation range of the 

value of a variable for some practical demands. Obviously the 

upper or lower bounds are firstly investigated to estimate the 

value of a variable. So many scholars have established many 

inequalities to estimate the upper or lower bounds of the value 

of the variables.  

Especially in probability theory, some well-known 

inequalities have already been established, such as Jensen 

inequality, Markov inequality, Chebyshev inequality and so on. 

These inequalities provide the basic estimation of the upper or 

lower bounds of the moments of random variables or the 

probabilities of random events. For improving the traditional 

inequalities in probability theory, many scholars established 

different probability inequalities. For instance, Lin [1] 

established four equivalent inequalities and the inequality of 

arithmetic geometry on random variables in 2006. Then for 

pairwise independent random variables, Chen et al. [2] 

generalized a type of moment inequality in 2014. Later in 2015, 

Gavrea [3] presented a Hadamard-type inequality to estimate 

the moments of continuous random variables. For the sums of 

negatively dependent random variables, Zhang [4] established 

Kolmogorov’s and Rosenthal’s inequalities in 2016. In 2017, 

Gibilisco et al. [5] presented an inequality to estimate the 

expected value of several positive random variables and 

proved the necessary and sufficient condition for this 

inequality held. And in 2017, Pelekis et al. [6] proved the 

Hoeffding’s inequality and this inequality estimates the 

probability for the sums of dependent random variables as an 

upper bound. In 2018, Krebs [7] proposed a large deviation 

inequality for sums of random variables of the β-mixing form 

and proved the usefulness of applying the above inequality to 
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the functional kernel regression model for dynamic forecasts. 

And Rio [8] improved the Doob’s inequality and the so-called 

bounded differences inequality in 2018. In 2019, Maurer [9] 

gave a concentration inequality which extends Bernstein’s 

inequality from sums to more general functions.  

In 2007, in order to overcome the drawback of probability 

theory that relies on a large number of sample data, Liu [10] 

founded uncertainty theory which deals with the uncertainty 

based on expert’s experimental knowledge. As one of the 

crucial parts of uncertainty theory, an uncertain variable is a 

Borel measurable function essentially. The domain of this 

function is the uncertainty space and the range is the set of 

real numbers. Similar to random variable, an uncertain 

variable is applied to describe the indeterminate phenomenon. 

Usually two factors, the expected value or the distribution, 

are chose to deal with an uncertain variable. Unfortunately, 

since the difficulties of collecting the experts’ experimental 

data and the errors among different experts’ experimental data, 

the value of an uncertain variable is usually difficult to 

measure accurately. Hence similar to the probability theory, 

scholars propose some inequalities to estimate the upper or 

lower bounds of the moments of an uncertain variable or the 

uncertain measure of an event.  

Some classical inequalities on uncertain variables have 

already been given by Liu [10], such as Jensen’s inequality, 

Markov inequality, Hölder’s inequality and so on. Then based 

on these classical inequalities, some scholars proposed 

several new inequalities to estimate the uncertain variables. 

For instance, a moments and tails inequality on uncertain 

variables was proved by Yang [11] in 2011. Then Tian [12] 

extended Jensen’s inequality, Liapounov theorem and 

Markov inequality for uncertain variables in 2011. Later in 

2015, Zhu [13] discussed the conditions that the uncertainty 

model can be transformed into deterministic environment in 

the variational inequality problems. For the estimation of the 

value of an uncertain variable, many inequalities are 

established but there are still some problems on them. Hence 

in order to improve the methods to estimate the upper or 

lower bounds of moment of an uncertain variable or the 

uncertain measure of an event, this paper will continue to 

investigate several new inequalities on uncertain variable. 

Firstly, in order to estimate an upper bounds of the even-order 

moment of an uncertain variable, a Lyapunov inequality is 

established and a corollary is mentioned for the lower bounds of 

the above even-order moment. Then when its uncertainty 

distribution is unknown, the expected value of an uncertain 

variable is usually difficult to obtain. So for estimating a lower 

bound of the expected value of an uncertain variable with 

unknown uncertainty distribution, the inequality of 

arithmetic-geometry is built and the condition for the equation is 

discussed. Next, a function of uncertain variables is usually an 

uncertain variable. When an uncertain variable’s expected value 

is finite, whether the moment of a function of it exists is required 

to judge. For an exponential form of an uncertain variable, the 

existence of its expected value is discussed by two equivalent 

inequalities. Finally, for two independent and identical 

distributed uncertain variables, we know that the difference of 

these uncertain variables is still an uncertain variable. This 

difference’s uncertainty distribution indicates the uncertain 

measure of the event. Hence two weakly symmetric inequalities 

are given to estimate the upper and lower bounds of the above 

uncertain measure.  

The following is the structure of this paper. In Section 2, 

various inequalities are proposed and proved as a main result. 

Besides, a discussion is given in Section 3. And a conclusion 

is organized in Section 4. 

2. Results 

In this section, 4 groups of inequalities are given and proved. 

2.1. Lyapunov Inequality 

Let ξ  be an uncertain variable and let M  be the 

uncertain measure, the expected value of ξ  is defined by 

follow equation 

{ } { }
0

0
[ ]E M x dx M x dxξ ξ ξ

+∞

−∞
= ≥ − ≤∫ ∫        (1) 

where one of the above two integrals on the right side of the 

equation is finite at least [10]. Then [ ]kE ξ  represents the k

-th moment of ξ  where k  is a positive integer [10]. 

According to the value of k , there are two cases of 

calculating [ ]kE ξ . When k  is an odd number, Liu [14] 

gave one method to calculate the k -th moment of ξ  via  

( )( ) ( )0

0
[ ] 1 .k k kE x dx x dxξ

+∞

−∞
= − Φ − Φ∫ ∫     (2) 

where Φ  is the uncertainty distribution of ξ . When k  is 

an even number, however, there has not been a theoretical 

method to uniquely calculate the k -th moment of ξ  yet. 

Hence we firstly give an upper bound of the k -th moment of 

ξ  by the following inequality. 

Theorem 1 (Lyapunov Inequality). Let ξ  be a positive 

uncertain variable with [ ]pE ξ < +∞ , for any real number 

0p > . Then for any real numbers 0 k s< ≤ , we have 

( ) ( )
1 1

[ ] [ ]k sk sE Eξ ξ≤               (3) 

Proof. For any real numbers 0 k s< ≤ , let  

( )
s

kg x x=                   (4) 

Then, we have 

( ) ( )

( ) ( )

2

2
'' 0

, 0 0,

s k

k
s s k

g x x
k

x

−−
= >

∈ −∞ + ∞U

，
         (5) 
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Thus ( )g x  is a convex function. For any positive 

uncertain variable ξ , replacing ξ  with kξ  in Jensen’s 

inequality [15], we have  

( ) ( )[ ] [ ] [ ]

s s

k k sk kE E Eξ ξ ξ≤ =          (6) 

Then, we obtain 

( )
11

[ ] [ ]k s skE Eξ ξ≤  

Especially, letting 1k = , then we have 

( )
1

[ ] [ ]s sE Eξ ξ≤                  (7) 

Hence the theorem is proved.  

The following result can be derived by this inequality:  

( )[ ] [ ]

k

k s sE Eξ ξ≤                (8) 

That is, when k  is an even number and s  is an odd number, 

the upper bound of [ ]kE ξ  can be estimated. Then a lower 

bound of the k -th moment of ξ  is proved by Corollary 1.  

Corollary 1. Let ξ  be a positive uncertain variable, and 

one assumes that if for any real numbers 1k ≥ , [ ]kE ξ < ∞ , 

then we obtain 

( )1 1[ ] [ ]

k

k k kE Eξ ξ − −≥               (9) 

Proof. By the above Lyapunov inequality, we obviously 

obtain 

( ) ( )
1 1

1 1[ ] [ ]k kk kE Eξ ξ − −≥            (10) 

where 1k ≥ . Thus, we obtain 

( )1 1[ ] [ ]

k

k k kE Eξ ξ − −≥  

The result is proved.  

2.2. The Inequality of Arithmetic-Geometry 

By (1), it is obviously that the expected value of an 

uncertain variable depends on its uncertainty distribution. 

However, when the uncertainty distribution of an uncertain 

variable is unknown, the expected value, including high order 

moment, of it cannot be calculated. But when the logarithmic 

function of this uncertain variable has a known uncertainty 

distribution [15], the above expected value can be estimated 

by the following lower bound.  

Theorem 2. (The Inequality of Arithmetic-Geometry) Let 

ξ  be a positive uncertain variable, then  

[ln ][ ] EE e ξξ ≥               (11) 

The above equation holds if ξ  is degenerate or 

[ln ]E ξ = ∞ .  

Proof. Case I: we assume that [ ]E ξ < ∞ . Let ( )f x x= , 

( ) lnh x x= , then for any 0x > , we have  

( ) ( )f x h x>                 (12) 

Hence for any real number 0x > , we obtain 

( ){ } ( ){ }| | lnx xγ ξ γ γ ξ γ≥ ⊃ ≥        (13) 

Since the uncertain measure satisfies the monotonicity [10], 

we can obtain 

( ){ } ( ){ }| | lnM x M xγ ξ γ γ ξ γ≥ ≥ ≥     (14) 

Then 

{ } { }
0 0

lnM x dx M x dxξ ξ
+∞ +∞

≥ ≥ ≥∫ ∫    (15) 

i.e. 

[ln ] [ ]E Eξ ξ≤ < ∞              (16) 

By Jensen’s inequality [15], we have 

ln [ ] [ ln ]E Eξ ξ− ≤ −              (17) 

which is equivalent to  

ln [ ] [ln ]E Eξ ξ≥               (18) 

Thus, we obtain 

[ln ][ ] EE e ξξ ≥  

Case II: when  is degenerate that means it is not a 

variable but a crisp number [10], hence we have 

               (19) 

Case III: when , we have . Then 

obviously  

[ln ][ ]= EE e ξξ                (20) 

In summary, the inequality is proved.  

2.3. Several Equivalent Inequalities 

Usually if a function is real-valued and measurable, then 

this function of uncertain variables is still an uncertain 

variable [10]. In general, before calculating the expected 

value of the above uncertain variable, we should judge that 

ξ

[ln ][ ] EE e ξξ =

[ln ]E ξ = ∞ [ ]E ξ = ∞
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whether this expected value exists or not. The following 

inequalities give another criterion to judge the existence of 

the above expected value.  

Theorem 3. Let ξ  be an uncertain variable and let [ ]E ξ  

be the expected value of ξ . If [ ]E ξ < ∞ , then the following 

description is equivalent.  

(i) There exist a constant 0H > , for any t H< , we 

have  

[ ]tE e ξ < ∞ .                  (21) 

(ii) There exist a constant 0a > , such that  

[ ]
a

E e
ξ < ∞ .                 (22) 

Proof. If (ii) holds, let H a= . Hence for any 0 t H≤ < , 

we get that 

( ){ } ( ){ }| |
at

e x e x
ξ γξ γγ γ≥ ⊂ ≥         (23) 

Since the uncertain measure satisfies the monotonicity, so 

we obtain  

{ } { }atM e x M e x
ξξ ≥ ≤ ≥          (24) 

For any real number t , the function { }tM e xξ ≥  is 

monotone decreasing respect to 0x ≥ . Hence the function 

{ }tM e xξ ≥  is integrable on [ )0,x ∈ + ∞ , and  

{ } { }
0 0

atM e x dx M e x dx
ξξ+∞ +∞

≥ ≤ ≥∫ ∫     (25) 

which implies  

[ ] [ ]
atE e E e

ξξ ≤ < ∞ .          (26) 

If (i) holds, we have  

[ ]
t

E e
ξ− < ∞                (27) 

and 

[ ]
t

E e
ξ < ∞                 (28) 

i.e.  

[ ]
t

E e
ξ < ∞                 (29) 

Hence there exists a constant 1 2, , , nξ ξ ξL  that satisfies  

[ ]
a

E e
ξ < ∞ . 

Then the theorem is proved. 

2.4. Weakly Symmetric Inequalities 

For the independent uncertain variables 1 2, , , nξ ξ ξL  

[10], we have 

( ) { }
1

1

n n

i i i i
i

i

M B M Bξ ξ
=

=

 ∈ = ∧ ∈ 
 
I       (30) 

where 
sξ  are any Borel sets of real numbers. In 

addition, if 1 2, , nξ ξ ξL，  have the same uncertainty 

distribution, they are said to be identically distributed.  

For two independent uncertain variables which are 

identically distributed (iid), the difference of these uncertain 

variables is still an uncertain variable. Then the uncertainty 

distribution of the above difference can be interpreted as an 

event. The following inequalities offer the upper and lower 

bounds of this event.  

Theorem 4. (Weakly Symmetric Inequalities) Let ξ  and 

'ξ  be iid uncertain variable. Let 'sξ ξ ξ= −  be the 

difference of ξ  and 'ξ . Let real number mξ  be the median 

of ξ  and mξ  satisfies  

{ } 1

2
M mξξ ≥ ≥               (31) 

and 

{ } 1

2
M mξξ ≤ ≥               (32) 

Then for any real numbers x  and c , we have  

{ } { } 1

2

sM x M m xξξ ξ≥ ≥ − ≥ ∧         (33) 

and 

{ } 2
2

s x
M x M cξ ξ ≥ ≤ − ≥ 

 
         (34) 

Proof. Firstly, since ξ  and 'ξ  are iid, then we have  

'm mξ ξ=                 (35) 

By [10], we obtain that sξ , mξξ − , '' mξξ −  and 

( ) ( )''m mξ ξξ ξ− − −  are uncertain variables. Hence  

{ } ( ) ( ){ }
{ }
{ } { }
{ }

''

, ' 0

' 0

1
.

2

sM x M m m x

M m x m

M m x M m

M m x

ξ ξ

ξ ξ

ξ ξ

ξ

ξ ξ ξ

ξ ξ

ξ ξ

ξ

≥ = − − − ≥

≥ − ≥ − ≤

= − ≥ ∧ − ≤

≥ − ≥ ∧

  (36) 

Similarly, we know that 
sξ , cξ − , ' cξ − , and 

( ) ( )'c cξ ξ− − −  are uncertain variables where c  is any 

real number. Then  
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{ } ( ) ( ){ }'

'
2 2

'
2 2

2 .
2

sM x M c c x

x x
M c c

x x
M c M c

x
M c

ξ ξ ξ

ξ ξ

ξ ξ

ξ

≥ = − − − ≥

    ≤ − ≥ − ≥   
    

   ≤ − ≥ + − ≥   
   

 = − ≥ 
 

U

      (37) 

Hence the inequalities are proved. 

3. Discussion 

The moment of uncertain variable is an important concept 

in uncertainty theory; many scholars have studied the 

methods to estimate the moment. Sheng and Kar [16] have 

given some formulas to calculate the moments of uncertain 

variables. In their work, when the uncertainty distribution of 

an uncertain variable is regular, then the k -th moment of this 

uncertain variable can be calculated by its inverse uncertainty 

distribution where k  is a positive integer. By Sheng and 

Kar’s work, arbitrarily positive integer order moments of an 

uncertain variable could be accurately obtained on condition 

that its uncertainty distribution is regular.  

However, by the definition of the regular uncertainty 

distribution, the monotonicity is required in order to obtain 

the inverse uncertainty distribution. Hence the Sheng and 

Kar’s work is restricted by the above drawback.  

Similar to Sheng and Kar’s work, this paper is intent to 

extend the methods to estimate the moments of uncertain 

variables. Unlike their method, this paper established several 

inequalities to estimate the upper or lower bounds of the 

moments through the definition of moment, which avoided 

the requirement of the monotonicity of uncertainty 

distribution. The following are the significances of each 

inequality established in this paper.  

For Lyapunov inequality and its corollary, when the 

odd-order moment of an uncertain variable is known, the 

even-order moment of this uncertain variable can be 

estimated by an upper bound and a lower bound. The above 

result firstly provides the method to estimate the even-order 

moments of an uncertain variable when its uncertainty 

distribution is not regular.  

For the inequality of arithmetic-geometry, when the 

uncertainty distribution of an uncertain variable is unknown, 

a lower bound of its expected value can be given by the 

expected value of the logarithmic function of this uncertain 

variable. In the above result, the logarithmic function of an 

uncertain variable is still an uncertain variable, and its 

uncertainty distribution is assumed to be known.  

For the two equivalent inequalities, it can be used to judge 

the existence of the expected value of an uncertain variable 

before calculating the above expected. Sometimes, when the 

existence is known, some conclusion can be obtained such as 

the runtime of an algorithm.  

For the weakly symmetric inequalities, the uncertainty 

distribution of the difference of two iid uncertain variables 

can be estimated by the lower and upper bounds. When the 

uncertainty distribution is determined, the moment of the 

above difference could be estimated through the definition.  

4. Conclusion 

The primary innovation point of this paper is establishing 

several new inequalities on uncertain variable to estimate the 

upper or lower bounds of the moments of uncertain variable 

or the uncertain measure of events. Firstly, in order to 

estimate an upper bounds of the even-order moment of an 

uncertain variable, a Lyapunov inequality is established and a 

corollary is mentioned for the lower bounds of the above 

even-order moment. Then for estimating a lower bound of the 

expected value of an uncertain variable with unknown 

uncertainty distribution, the inequality of 

arithmetic-geometry is built and the condition for the 

equation is discussed. In addition, two equivalent inequalities 

on the expected value of an exponential uncertain variable are 

proposed to judge the existence of the above expected value. 

Finally, in order to estimate the upper and lower bounds of the 

uncertainty distribution of two independent and identically 

distributed uncertain variables, two weakly symmetric 

inequalities are given and proved. These inequalities improve 

the methods to estimate the value of an uncertain variable and 

extend the application range of uncertain variable.  
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