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Abstract: This paper presents a new mathematical technique for computation of geometric series and summability. This 

technique uses Annamalai’s computing model of algorithmic geometric series and its mathematical structures for further 

development of the infinite geometric series and summability. This could be very interesting and informative for current 

students and researchers. 
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1. Introduction 

Annamalai’s computing model [1] has provided a novel approach for computation of geometric series in a new way. 
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where 0>k  is an integer constant.
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Similarly, we can further generate the infinite geometric series and summability. 
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Here, if 1=a , then 
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Note that the above serial numbers denote the ranges ( ) ( ) ( )1 , 2 , 3 ,...., ( )a a a Na and ( ) ( ) ( )1 , 2 , 3 ,...., ( )b b b Nb . 

2. Conclusion 

In the research study, a novel technique has been presented for formation and computation of infinite geometric series and 

summability.
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