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Abstract: Genetic algorithm’s performance is based on three major factors, which are selection criteria, crossover and 

mutation operators. Each factor has its own significant role but the selection criteria to choose parents from the population is 

the key role to running the genetic algorithm. There is a number of selection schemes that have been introduced in literature 

and all have their own advantages. Most of the selection criterion is chose the parents which give highly optimum values based 

on the theory that healthy parents produce healthy offspring. In the current study, we proposed a new selection scheme which 

selects healthy parents as well as unhealthy parents. The novel selection scheme is simple to implement, and it has notable 

ability to reduce the effected of premature convergence compared to other selection schemes. We apply this new technique 

along with some traditional selection schemes on six benchmark problems and Simulation studies show a remarkable 

performance of the proposed selection scheme. 
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1. Introduction 

Genetic algorithms (GAs) are stochastic search methods 

that mimic natural biological evolutionary processes were 

originally proposed by John Holland in 1960s. He published 

results about GAs in his book “Adaptation in Natural and 

Artificial Systems”, in 1975 [1]. A lot of work has been done 

about GAs with several applications in a frequently cited 

book by Goldberg [2]. GAs work with the help of population 

of chromosomes which are represented by some underlying 

assumptions in a set codes. Selection, crossover and mutation 

operators are applied to successive populations of 

chromosomes to produce new offspring. Individuals are 

selected in the capacity of the parents as would-be generation 

by employing a mechanism of selection. Once they are 

selected these individuals, then result in new offspring by 

mutation and crossing. Eventually, the alternative mechanism 

helps form the next generation from parents and offspring [3]. 

Till the time a desirable condition is achieved, the process is 

continued to be repeated. The flow chart that how GAs work 

is given in Figure 1. 

Selection criteria is the first operator in the reproduction 

phase of GAs. The purpose of the selection is to select an 

individual from the population that will produce offspring for 

the next generation, technically known as mating pool. In 

simple words, the selection is a process to select breeding 

stock from the population. Without selection operator, GAs 

are just simple random methods which give different values 

every time [4]. The key idea of selection is to assess the 

performance of individuals who are selected on the basis of 

fitness. A selection chooses a fitter individual in analogy to 

Darwin’s theory of evaluation survival to fittest and fitness is 

evaluated through adaptation function. A criteria that is based 

on a too strong selection system leads to individuals who are 

significantly fit sub-optimally. If such individuals dominate 

the population, it will bring down the diversity and hence a 

selection that is weak will lead to an evolution that is slow. 
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Figure 1. Flowchart of the Genetic Algorithm. 

Typically, selection schemes are divided into two distinct 

types as proportionate and ordinal-based selections. 

Proportionate-based scheme selects the individuals based on 

their fitness values relative to the fitness of the other 

individuals in the population and ordinal-based schemes 

select individuals based upon their rank and not upon their 

raw fitness within the population. In the case of selection 

mechanism, a strong selection pressure may cause the GAs to 

converge to a local optimum. On the other hand, a type of 

selection that has a low pressure may lead to a random result 

and such a selection may differ from one run to another [5]. 

The purpose of the selection operator is to make the most of 

the best characteristics of a good candidate solution to 

ameliorate the solution from generation to generation which 

forces the GAs to move into the direction of a desirable 

solution [2]. The yardstick that is the most important is the 

selection operator that might have an effect on the working of 

GAs [6]. 

In the literature, there are several selection criterion: for 

example, roulette wheel scheme, stochastic universal 

sampling, the tournament selection and the selection of 

Boltzmann along with other schemes. However, there are no 

specific guidelines or theoretical support to select a proper 

selection method for various problems. This can be a serious 

problem because of numerical results were an improper 

selection method can lead to a poor performance of the GAs 

in terms of both rapidity and reliability. A comparison study 

of the analysis of different selection methods used in GAs by 

Goldberg and Deb [7]. Another study about selection 

schemes comparison was conducted by Blickle and Thiele 

[8]. A blended selection operator which is more exploratory 

in nature in initial iterations and with the passage of time, it 

gradually shifts towards exploitation was introduced by 

Kumar [9]. Jebari and Madiafi [10] proposed a technique that 

can help reduce the dependence of next generation on the 

current one is presented and its efficiency is numerically 

illustrated. Anand et al. [11] influenced of the various 

selection methods on the performance of genetic algorithm 

can be estimated to assist the preference of a selection 

method. Recently, Pandey [12] has done a comprehensive 

study of different selection techniques in GAs. 

Theoretical background about traditional selection 

operators has been discussed in Section 2, proposed approach 

given in Section 3, benchmark functions studied in Section 4, 

experimental results and discussion about the results in 

Section 5 and conclusion in Section 6. 

2. Some Traditional Selection Operators 

There are several selection operators in GAs literature and 

we provide a brief description of the most commonly used 

operators. 

2.1. Roulette Wheel Selection 

The roulette wheel selection (RWS) is traditional and the 

easiest stochastic approach proposed by John Holland [1]. 

The main concept of this selection method is the fact that it 

provides each and every individual i with a probability p (i) 

of being selected proportional to its fitness f (i) from the 

population as: 

���� = 	
����

∑ ��
��
�
�

                                (1) 

A popular inherent flaw of the RWS is the premature 

convergence of the GAs that remains a risk to a local 

optimum. It is mainly owing to the possible existence of 

predominant individual who mostly comes and selected as 

parent. 

2.2. Stochastic Universal Sampling 

The stochastic universal sampling (SUS) was developed 

by Baker [13]. It is a variant of RWS which aimed at 

reducing the risk of premature convergence and a single 

selection method with minimum spread and no bias. SUS can 

be used to make any number of selections and also performed 

in the situations where more than one samples are needed to 

be drawn from the distribution. To selected offspring, the 

SUS ensures which is closer to what is deserved than RWS. 

Figure 2 demonstrates the SUS with individuals mapped to 

contiguous segments of a line, such that each individual’s 

segment is equal in size to its fitness similarly as in RWS. 

For N individuals to be selected, there are equally spaced 

pointers are placed over the line. For 6 individuals (N = 6) to 

be selected, the distance between the pointers is 1/6. 

Selection is to be made for the sample of random number 0.1 

in the range [0, 1/6]. After selection the mating population 

consists of the individuals 1, 2, 3, 4, 6 and 8, the SUS ensures 

a selection of offspring which is closer to what is deserved 

than RWS. 
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Figure 2. Stochastic universal sampling. 

2.3. Stochastic Remainder Selection 

Brindle [14] developed the stochastic remainder selection 

(SRS). The concept that it operates on is proportionate of 

every bit has to be shown in the bit’s incidence in the mating 

pool. In the population of chromosomes, each bit having a   

probability based on its relative fitness. In the mechanism of 

SRS, the relative fitness of a bit is derived as the fitness 

associated with an individual divided by average fitness are: 

�������� =	
��

����
                          (2) 

One parent is selected deterministically based on the 

integer part of Pselecti and then with the help of RWS on the 

rest fractional part to complete the free places in the mating 

pool. SRS gives the highest probability of selection to the 

fittest parents of the population. Also, average occurrence in 

the mating pool is computed as: 

ei = Pselecti ∗ n                             (3) 

2.4. Linear Rank Selection 

Baker [15] has also proposed the linear rank selection 

(LRS). For avoiding the drawback of the premature 

convergence of GAs to a local optimum, LRS was 

employed as a variant of RWS [7]. Here the basis is not 

the fitness, rather it is the ranks of the individuals. The 

worst individual is awarded the rank 1 while the rank n is 

accorded to the best one. The selection probability is 

linearly assigned to the individuals according to their rank: 

���� = 	
�

�
	�	�� + �	�! −	��	�	

���

���
	�               (4) 

Here 	
	#$

�
 and 

	#%

�
 are the probabilities of worst and best 

individuals to be selected respectively. 

2.5. Random Selection 

The random selection (RS) is a very simple technique to 

select parents from the population at random. In terms of 

disruption of genetic codes, the random selection is a little 

more disruptive on the average than RWS. In this technique, 

all of the individuals are allocated equal reproduction 

opportunities [16]. For N individuals, the selection 

probability is: 

�� =	
�

�
                                    (5) 

2.6. Tournament Selection 

A form of tournament selection (TS) attributed to 

unpublished work by Wetzel was studied in [14], and more 

studies using tournament schemes are found in a number of 

works [17─19]. The TS is a variant of rank-based selection 

techniques. There are q individuals that are randomly chosen 

from the population and then the best-fitted individual, 

designated as the winner, is selected for the next generation. 

The process is repeated m times until the new population is 

completed. The parameter q is known as the tournament size 

and usually, it is fixed to q = 2 (binary tournament). As 

shown by Back [20], the selection probability for individual 

ai for q-tournament selection is given by: 

��&�� = 	
�

'(
	��) − � + 1�+ − �) − ��+�         (6) 

3. Proposed Selection Operator 

We observed that the above-described, commonly used 

selection mechanisms provide opportunity only to the best-

fitted individuals to join the mating pool. By the help of such 

selections, a considerable amount of “genetic material” is lost 

which a bad individual contains. The replaced individuals are 

according to the strength of the “loss of diversity”. The 

proportion of not selected individuals of a population during 

the selection phase is the loss of diversity pd. A high loss of 

diversity increases the risk of premature convergence, hence 

it should be as low as possible. To overcome the premature 

convergence, we proposed a new selection criteria which 

always takes the last 25 percent portion (bad individuals) for 

mating process. 

Also, we see in real life, sometimes it may happen that two 

most healthy-parent do not produce a healthy offspring. If 

one of the partners is not healthy, might also have a chance to 

produce a healthy offspring. In GAs, the chromosomes made 

with the joining of bits and with just a slight change within 

the bits, results might happen from worst to best. We can 

provide examples which may prove our justification. The two 

most fitted-individuals produce may not be a better of them 

but the combination of the worst and the best fitted-

individuals might have a best-fitted offspring. For example: 

Maximize f (x) = x
2
; 0 ≤ x ≤ 31                       (7) 
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First, we create an initial population of individuals with 5-

bits-string. For simplicity, let us assume a population of size 

4 where each individual randomly selected. We produce 

offspring with the help of all combination of parents and take 

the arbitrary crossover point between the 3rd and 4th bits. 

The Figure 3 shows that the two most-fitted parents do not 

produce a better offspring comparing with themselves but the 

selection of best and worst strings as parents to reproduce a 

global optimum offspring. 

 

Figure 3. Single point crossover demonstration. 

There is a rare chance to select a worst-fitted individual in 

the mating pool from all other selection schemes. To take 

care of this scenario, a novel selection method has been 

proposed, naming 

“Best-worst” selection criteria. Its aim is to overcome the 

drawback of all other selection methods, i.e., by providing a 

half role to the bad individual to be a successful mating 

candidate. In the proposed scheme, we divide our population 

into four equal parts after assigning the ranks of all 

individuals according to their fitness. Figure 4 describes that 

how we can call only the first and last (fourth) portions of the 

n-size population in mating pool. The obvious characteristic 

of the novel selection scheme is what gives to every 

individual i (after ranks) of the current population with a 

probability p (i) of getting selected from the population as: 

���� 	= 	
,�

-	�-!��
; 1	≤	i	≤	n                       (8) 

Where n is the population size in terms of the number of 

individuals with always a multiple of four. But we select all 

those parents for mating which meet the following 

constraints. 

�	 ≤ 	
-

1
 and �	 ≥ 	

3-

1
+ 1                            (9) 

 

Figure 4. Proposed selection sampling. 

The pseudo-code of Best-worst selection (BWS) scheme 

can be described in Figure 5: 

 

Figure 5. Pseudo-code of proposed (BWS) selection scheme. 

4. Benchmark Functions 

In this study, we are using six multi-model benchmark 

functions that are most popular and used in several studies. 

The necessary information about these functions are as 

follows: 

The Rastrigin Function takes from De Jong’s standard 

functions [21] with the addition of cosine modulation in 

order to produce frequent local minima. This is highly multi-

modal and difficult to find optimum due to regularly 

distributed of its minima locations. The optimization problem 

is stated as follows: 

��4� = 20 + 4�
, − 10 �7��284�� + 4,

, − 10 �7��284,�		 (10) 

−5.12 ≤ x1, x2 ≤ 5.12; 

It has a number of local optima and the global minimum 

value of the function is “0” at (0, 0). 
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The Rosenbrock function is one of five De Jong’s standard 

functions [21]. It is a classic optimization problem also 

known as a banana function because of its distinctive shape 

in a contour plot. It is stated as follows: 

��4� = 100	�4�
, −	4,�

, +	�1 −	4��
,          (11) 

−2.048 ≤ x1, x2 ≤ 2.048; 

The global optimum lies inside a narrow, long, parabolic 

shaped flat valley and to find a minimum point is trivial. To 

find out the global optimum value of this function is difficult, 

that’s why this problem has been continuously used as a 

benchmark to test the performance of new optimization 

techniques or algorithms. It has “0” global optimum value at 

(1, 1). 

The next one is the Colville function which has four 

dimensions and highly irregular pattern to convergence taken 

from [4]. It is stated as follows: 

f (x) = 100 (x2 − x
2

1)
2 
+ (1 − x1)

2 
+ 90 (x4 − x3

2
)

2 
+ (1 − x3)

2
+10.1 ((x2 − 1)

2 
+ (x4 − 1)

2
) + 19.8(x2 − 1) (x4 − 1)          (12) 

−10 ≤ x1, x2, x3, x4 ≤ 10; 

This function is highly multi-modal and not easy to locate 

its optimum points because of its more dimensions. It has a 

global minimum value of “0” at (1, 1, 1, 1). 

The 2-D six-hump camel back function is a global 

optimization test function. Within the bounded region are six 

local minima, two of them are global minima. This function 

is also a highly irregular pattern to convergence taken from 

[4]. It is stated as follows: 

4�	4, + �−4 + 4	4,		
, �4,

, 

f (x) = (4-2.1 x
2

1+1/3 x
4

1) x
2

1+x1x2+(-4+4 x
2

2) x
2

2       (13) 

−3 ≤ x1 ≤ 3 and − 2 ≤ x2 ≤ 2; 

It has a global minimum value of “-1.0316” at two 

different points (-0.0898, 0.7126) and (0.0898, -0.7126). 

The Gold-Price function has taken from [22]. It is stated as 

follows: 

f (x) = [1+(x1+x2 +1)
2
(19−14x

2
1 +3x1

2 
−14x2 +6x1x2 +3x

2
2)][30+(2x1 −3x2)

2
(18−32x1 +12x

2
1 +48x2 −36x1x2 +27x

2
2)]       (14) 

−2 ≤ x1, x2 ≤ 2; 

The function has a global minimum value of “3” at (0, -1) 

The Easom function is unimodal where the global 

minimum has a small area relative to the search space taken 

from [23]. It is stated as follows: 

f (x) = −cos (x1) cos (x2) exp [−(x1 − π)
2 
− (x2 − π)

2
]     (15) 

−100 ≤ x1, x2 ≤ 100; 

The function has a global minimum at (π, π) with “-1”. 

5. Experimental Results and Discussion 

In this section, we compute and explore the performance 

of the proposed selection scheme. We use genetic algorithm 

tool in MATLAB software to compare the proposed selection 

scheme with some of the traditional criterion. For this 

comparison, we fixed some parameters of the genetic 

algorithm. 

All used parameters fixed in our study and given in the 

Table 1. 

Table 1. Fixed Parameters for GAs Tool. 

Population Size 20 

Elite Count 2.0 

Crossover Fraction 0.8 

Generations 300 

Runs 20 

Function Tolerance 1e-6 

Crossover Operator One-point 

Mutation Function Gaussian 

Scaling Function Proportional 

In Table 2, we provide the best results of all six functions 

along various selection methods. We observed that the BWS 

is working better than RWS, SRS and RS for Rastrigin 

function. For Rosenbrock function, only SRS is slightly 

better than BWS. The proposed scheme is performed best 

among all schemes for Colville function and all methods 

behave with smiler pattern for Six-hump, Gold-Price and 

Easom functions. For much better comparison, we show our 

results in Figure 6. 

Table 2. Comparison Results of Best Fitted Values. 

Test Function 
Selection Method 

RWS SUS SRS RS TS BWS Optimum 

Rastrigin 0.0374 0.0012 0.0134 0.0079 0.0032 0.0061 0.0000 

Rosenbrock 0.0049 0.0018 0.0011 0.0013 0.0102 0.0013 0.0000 

Colville 0.0061 0.0467 0.3532 0.1376 0.0029 0.0019 0.0000 

Six-hump -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Gold-Price 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 

Easom -0.9999 -0.9999 -0.9999 -0.9999 -0.9999 -0.9999 -1.0000 
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Figure 6. Comparison of Selection Schemes with Best Fitted Values. 

Table 3 shows the average results with proposed scheme versus five traditional selection methods. 

The novel scheme is performing better on an average basis than RS and TS for Rastrigin function. Rosenbrock function has 

shown the best average value of BWS as compared to all other schemes. BWS is performing slightly less than TS for Colville 

function only and for the Six-hump function there are RWS and SUS perform better than BWS on an average basis. Two 

schemes RWS and RS are little better than BWS for Gold-Price function and BWS is performing best among all selection 

criterion for Easom function. Figure 7 is the graphical display of average values comparison among all selection schemes. 

Table 3. Comparison Results of Average Fitted Values. 

Test Function 
Selection Method 

RWS SUS SRS RS TS BWS Optimum 

Rastrigin 0.2412 0.2793 0.1763 0.5095 0.6845 0.3079 0.0000 

Rosenbrock 0.0245 0.0540 0.0405 0.0810 0.1057 0.0213 0.0000 

Colville 0.0451 1.0245 0.5360 1.0593 0.0203 0.0333 0.0000 

Six-hump -1.0316 -1.0316 -0.9495 -1.0168 -1.1701 -1.0301 -1.0316 

Gold-Price 5.7001 11.1059 11.1000 5.5429 15.9969 5.8147 3.0000 

Easom -0.9998 -0.7992 -0.8999 -0.6854 -0.6999 -0.9999 -1.0000 
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Figure 7. Comparison of Selection Schemes with Average Fitted Values. 

We also present the worst results among all given selection schemes to more close comparison in Table 4. We see that the 

BWS is better than TS for Rastrigin and also than TS and RS for Rosenbrock functions. Only TS is performing slightly better 

than the proposed scheme for Colville function in worst values case. For Six-hump function, two selection schemes RWS and 

SUS are just better performing than the proposed one. Only RS is performing better with worst value than BWS for Gold-Price 

function. For Easom function, BWS is performing best in the worst-value case than all other selection schemes. Figure 8 is the 

graphics display with worst-values comparison among all selection schemes.  

Table 4. Comparison Results of Worst Fitted Values. 

Test Function 
Selection Method 

RWS SUS SRS RS TS BWS Optimum 

Rastrigin 0.9987 0.6910 0.9976 1.1678 1.5787 1.2025 0.0000 

Rosenbrock 0.1025 0.0916 0.0940 0.2274 0.2540 0.1292 0.0000 

Colville 0.0961 2.0314 0.9198 2.5753 0.0845 0.0956 0.0000 

Six-hump -1.0316 -1.0316 -0.2155 -0.9646 -0.2155 -1.0168 -1.0316 

Gold-Price 30.0007 84.0578 30.0003 26.8889 78.9693 30.0000 3.0000 

Easom -0.9995 0.0000 0.0000 0.0000 0.0000 -0.9996 -1.0000 
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Figure 8. Comparison of Selection Schemes with Worst Fitted Values. 

6. Conclusion 

In this paper, a novel and efficient selection scheme for 

GAs is introduced. Our selection scheme chooses the better 

along with weaker chromosomes for the next generation to 

the purpose of optimization. It provides the better 

convergence rate compared to other selection methods. The 

performance of each selection method in terms of best, 

average and worst individual fitness is weighed through the 

implementation of a program in MATLAB. A set of 

experiments on a selected set of multi-modal testing 

functions of varying difficulty was described. Experimental 

results and performance evaluation provided the evidence 

about the improved performance of proposed technique along 

with other selection methods of GAs as a whole. Finally, 

changing the mating procedure from both fitter individuals to 

a better-fitter and worst-fitter would allow different strategies 

to be pursued. For example, by pairing the best and worst 

individuals as parents from the population, a more 

exploitative search could be produced. The novel scheme 

was successfully applied to the optimization problem of a set 

of well-known benchmark functions, which encourages 

further improvements of this idea. 
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