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Abstract: We considering the problem of solving a nonlinear differential equation in the Banach space of real functions and 

continuous on a bounded and closed interval. By means of the fixed point theory for a strict set contraction operator, this paper 

investigates the existence, nonexistence, and multiplicity of positive solutions for a nonlinear higher order boundary value 

problem. 
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1. Introduction 

In the current paper, we considering the problem of 

solving a nonlinear differential equation of nth order. We 

will try to find the solutions of this equation in the Banach 

space. The main tool used in our investigations for 

existence of positive solutions for the nonlinear nth order 

boundary value problem. Let us mention that the theory of 

nonlinear differential equations has many useful 

applications in describing numerous events and problems of 

the real world. On the other hand, the existence results of 

positive solutions for integer order differential equations 

have been studied by several researchers (see [6-9] and the 

references therein), but, as far as we know, only a few 

papers consider the BVP for higher order nonlinear 

differential equations in Banach space of real functions and 

continuous on a bounded and closed interval, (see [1, 3, 5], 

and the references therein), So, the aim of this paper is to 

fill this gap. In this paper, we will obtain the existence and 

nonexistence of positive solution for the BVP (1), (2) and 

(3) in Banach space. The results presented in this paper 

seems to be new and original. The generalize equations are 

often applicable in engineering, mathematical physics, 

economies, and biology.  

 

2. Notation, Definition, and Auxiliary 

Results 

Theorem 2.1 [1, 2, 9]. 

Assume that U is a relatively open subset of convex set K 

in Banach space E. Let :N U K→ be a compact map with 

o U∈ . Then either 

(i) N has a fixed point in U ; or 

(ii) There is a u U∈ and a (0,1)λ ∈ such that   u N uλ= . 

Definition 2.1 An operator is called completely continuous 

if it is continuous and maps bounded sets into precompacts. 

Definition 2.2 Let E be a real Banach space. A nonempty 

closed convex set K E⊂ is called cone of E if it satisfies the 

following conditions: 

(i) x K∈ , oσ ≥ implies x Kσ ∈ ; 

(ii) x K∈ , x K− ∈ implies x o= . 

3. Main Result 

In this section, we will study the existence and 

nonexistence of positive solutions for the nonlinear boundary 

value problem: 

( ) ( ) ( , ( )),       0 t 1,  nu t f t u t= < <              (1) 

(4) 1(1) (0) (0) (0) (0) 0nu u u u u −′ ′′ ′′′= = = = = =⋯ , for all 
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2n ≥                                        (2) 

(0) (0) 0,    where  , 0,    0u uα β α β α β′+ = ≥ + ≻     (3) 

This is equivelent for an integral equation: 
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Theorem 3.1. Under conditions (2) and (3), equation (1) 

has a unique solution. 

Proof. Applying the Laplace transform to equation (1) we 

get 

1 2 3 2 1( ) (0) (0) (0) (0) (0) ( )n n n n n ns u s s u s u s u su u y s− − − − −′ ′′− − − − − − =⋯                                      (4) 

1 2 3 1( ) (0) (0) ( )n n n n ns u s s A s A s u u y s
α
β

− − − −′′− + − − − =⋯  

Where ( ) and y(s)u s is the Laplace transform of ( ) and y(t)u t  respectively. The laplace inversion of Eq.(3.4) gives the final 

solution as: 

1 12 2

0 0

1

0

(1 ) (1 )
( ) ( , ( )) ( , ( ))

( 2)! ( 2)!

( )
                                     ( , ( ))        

( 1)!

n n
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n
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−

∫ ∫

∫

                                                  (5)

The proof is complete.  

Defining :T X X→ as:  

1 12 2

0 0

1

0

(1 ) (1 )
( ) ( , ( )) ( , ( ))

( 2)! ( 2)!

( )
                                     ( , ( ))                    

( 1)!

n n
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s s
Tu t f s u s ds t f s u s ds

n n

t s
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n

β
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− −

−

− −= −
− −

−+
−

∫ ∫

∫

 (6) 

Where X=C [0, 1] is the Banach space endowed with the 

super norm. We have the following result for operator T. 

Lemma 3.1 

Assume that : [0,1]f R R× → is continuous function, then 

T is completely continuous operator. 

Proof: It is easy to see that T is continuous. For 

{ ; ,   0}u M u X u l l∈ = ∈ ≤ ≻ , we 
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1 12 2 1
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where 
0 1, 1

max ( , ( )) 1
t u

L f t u t
≤ ≤ ≤

= + ,  

so T(M) is bounded. Next we shall show the equicontinuity 

of ( )T M . 1 20, [0,1]t tε∀ ∈≻ ≺ .  

Let 

n n
2 1 2 1

( 1)! !
, ,      ,  

2 2
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n n
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L

(n-1)! !

2 2

L

n

γη

ε ε

≤ +

≤ +
 

Thus ( )T M  is equicontinuous. The Arzela-Ascoli theorem 

implies that the operator T is completey continuous. 

Theorem 3.2 

Assume that : [0,1]f xR R→ is continuous function, and 

there exist constants 

1 2

( 1)!
0 c min( ,   (n-1)! , !),       c

n
n o

α
β

−
≺ ≺ ≻ , such that 

1 2( , ( ))f t u t c u c≤ + for all [0,1]t ∈ .  

Then the boundary value problem (1), (2) and (3) has a 

solution. 

Proof: Following [2, 4 and 10], we will apply the nonlinear 

alternative theorem to prove that T has one fixed point. 

Let { };u X u RΩ = ∈ < , be open subset of X , where 

1 2
1 1 2 2

1 1
max(6 , , , , , )

( 1)! ( 1)! ! ( 1)! ( 1)! !

c c
R c c c c

n n n n n n

β β
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≻

We suppose that there is a point u ∈ ∂Ω and 1 (0,1)c ∈  such 

that u Tu= . So, for u ∈ ∂Ω , we have: 
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  R,
6 6 6 6 6 6

R R R R R R< + + + + + =

which implies that T R u≠ = , that is a contraction. Then 

the nonlinear alternative theorem implies that T has a fixed 

point u ∈ Ω , that is, problem(1), (2) and (3) has a solution 

u ∈ Ω . 

Finally, we give an example to illustrate the results 

obtained in this paper.  

Example: For the boundary value problem (1), (2), and (3) 

we solve: 

7

3

7 1
( )

1

u
u t

u

+=
+

                                  (7) 

Apply the theorem 3.2 with  1    and 1α β= = . Then we 

have 1

6!
min( ,6!,7!)c

α
β

≺ . We conclude that the problem (7) 

has a solution. 

4. Conclusion 

In This Paper we investigated the existence, 

nonexistence, and multiplicity of positive solutions for a 

nonlinear higher order boundary value problem on a 

bounded and closed interval by means of the fixed point 

theory for a strict set contraction operator. Let us mention 

that the theory of nonlinear differential equations has many 

useful applications in describing numerous events and 

problems of the real world. The results presented in this 

paper seem to be new and original. They generalize 

equations are often applicable in engineering, mathematical 

physics, economies, and biology. 
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