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Abstract: The main aim of this paper is to investigate the numerical solution of first kind integral equation of logarithmic 

kernel when using spectral method. Our approach consists of limiting the boundary to the unit interval and specify a 

logarithmic kernel. The behavior of the solution on the unit interval was analyzed and the advantages and disadvantages of this 

approach was shown. 
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1. Introduction 

Many problems in engineering and science, can be 

modeled with partial differential equations. If these problems 

involve some well defined region, Ω, with known conditions 

on the boundary Γ, then the equations can be transformed 

into a Fredholm integral equation of the first or second kind, 

[20]. The integral equation of the first kind with logarithmic 

kernel ( "Symm's integral equation") is one of the classical 

integral equations of potential theory. It arises, e.g., from a 

single layer representation for the solution of the problem 

[29, 4, 18, 5, 6, 7], and it has also well-known applications in 

conformal mappings [8, 10]. 

In this paper we will consider equations of the first kind: 

g(t)               (1) 

where f represents some known data at the point t ∈ Γ and K 

is a distribution of source (or sink) terms over the boundary 

[7]. We seek to find the density of this distribution, u. 

The integral equation (1) is inherently ill-posed. That is, it 

can be shown that a small perturbation on f can give rise to 

an arbitrarily large perturbation in u. To substantiate this 

point, consider the singular integral 

      (2) 

For large n, infinitesimal changes for the integral (right 

hand side) correspond to finite changes in the integrand. The 

problem is compounded if instead we consider 

     (3) 

For 0 < α < 1 and n large, then infinitely small changes for 

the integral correspond to infinitely large changes in the 

integrand. Even though (2) is within a constant multiple of 

(3), as n becomes large we can see that small errors in f may 

lead to finite or infinite errors in u. 

For this reason, numerical methods for solving such 

equations are often ill-fated [16, 18]. The simple illustration 

here shows this, is often manifested in high frequency terms 

for the unknown. 

In an attempt to compare this method with the analytical 

solution of (1), we limit the boundary to the unit interval and 

specify a logarithmic kernel. In addition, we impose the 

condition that, u, has zero derivative at the endpoints. The 

kernel and condition on, u, were chosen since these 

characteristics are present in most problems which exhibit 

axial symmetry. 

We implement here spectral methods to solve Symm’s 

integral equation on the unit circle [5, 8] 
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In the specific example used here we have 
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The exact solution is 

                (5) 

using a spectral approach where the unknown is represented 

as a finite sum of orthogonal functions [8]. That is, 

 0 ≤ x ≤ 1,                 (6) 

where {ϕn} is the orthogonal basis of some inner product 

space, in which, u, is a member, and 

 n =0,1,………              (7) 

are the Euler equations that define the coefficients of the 

expansion. The method calculates these coefficients and the 

resulting approximation is thus furnished. There are a few 

advantages and disadvantages with this approach: 

� the approximation is valid for the entire domain as no 

discretization is employed. 

� the properties of the solution are derived from those of 

the basis functions { ϕn }. For orthogonal polynomials, 

and in particular trigonometric polynomials, this would 

mean that the solution is everywhere analytic. This may 

not be expedient if one knows that the solution should 

exhibit some non-analytic behavior. Usually, this 

property is desirable and non-analytic functions can be 

catered for by expanding in a weighted series 

                     (8) 

In this case the basis, {ϕn}, would be orthogonal with 

respect to the weight w. A Maple routine to calculate the 

orthonormal polynomials, up to any order, given any 

integrable positive weight, on any domain was prepared and 

implemented. 

� as we know, the higher order coefficients are usually 

difficult to obtain. It is a well known property of 

orthogonal polynomials that they possess linear roots 

[3] and [2]. Hence, for large n, these functions are 

highly oscillatory and so inverting first kind equations 

can become difficult. In addition, there are 

complications in the numerical integration of integrands 

that are highly oscillatory and singular. 

2. Spectral Method 

Spectral methods [4] are a class of techniques used in 

applied mathematics and scientific computing to numerically 

solve certain differential equations [17], often involving the 

use of the Fast Fourier Transform [9]. The idea is to write the 

solution of the differential equation as a sum of certain "basis 

functions" (for example, as a Fourier series which is a sum of 

sinusoids [13]) and then to choose the coefficients in the sum 

in order to satisfy the differential equation as well as 

possible. 

Spectral methods and finite element methods are closely 

related and built on the same ideas; the main difference 

between them is that spectral methods use basis functions 

that are nonzero over the whole domain, while finite element 

methods use basis functions that are nonzero only on small 

sub domains [15]. In other words, spectral methods take on a 

global approach while finite element methods use a local 

approach. Partially for this reason, spectral methods have 

excellent error properties, with the so-called "exponential 

convergence" being the fastest possible, when the solution is 

smooth [ 21]. 

Boundary integral problems that involve closed boundaries 

[12] must have periodic solutions. This inherent periodicity 

has been previously exploited to construct a solution scheme 

that employs the trapezoidal rule, which is extremely 

accurate for periodic functions. Here we choose to exploit the 

periodicity only to the extent that the unknown is expanded 

in a Fourier series [13]. 

Thus, we present a numerical method for solving a linear 

Fredholm integral equation of the first kind of the form 

 0 ≤ t ≤ L,               (9) 

where it will be assumed that the function f is even and 

periodic 

f(x) = f(−x), −L ≤ x ≤ L.                     (10) 

This condition enables f to be expanded into a Fourier 

cosine series 

,                  (11) 

where 

                    (12) 

Equation (10) is imposed merely as a matter of 

convenience. Without it, equation (11) would be changed so 

that u(x) is expanded into its full Fourier series [13]. We 

make the obvious assumption that (11) converges almost 

everywhere to u(x). In order to evaluate the Fourier 

coefficients (12), the function must be integrable. This 

condition can be relaxed somewhat and other Euler equations 

have been defined for more general classes of functions. 

In what follows we will refer to the Fourier cosine series 

(11) as the Fourier series. Substituting equation (11) into 

equation (9) gives 
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                   (13) 

where 

                 (14) 

According to the well known Riemann-Lebesgue theorem, 

if K(x, t) and u are absolutely integrable, 

Then, 

Bn(t) → 0 and an → 0 as n→∞.                (15) 

Thus the high frequency terms may be neglected from 

(11), and we can approximate f(x) by 

               (16) 

for some * * *

0 1, ,......... , 0Na a a N > . Substituting (16) into (.9), 

we obtain 

.              (17) 

To obtain the Fourier coefficients, N + 1 collocation points 

[19]. 

0 ≤ t0 < t1 < · · · < t N−1 < tN ≤ L,           (18) 

are used to produce the N + 1 equations 

, Where  j= 0, 1,..., N.                                     (19) 

The corresponding matrix equation is 

Aa = f,.                                                                                   (20) 

where 

                                          (21) 

Solving (20) provides a*, a*1,..., a*N, which on 

substitution into (16) yields an approximation to u(x). 

We mention briefly that the integrals in An,j were 

performed by first subdividing at the zeros of the integrand 

and then using a combination of Gauss-Legendre and Gauss-

Log quadrature [1]. That is 

.    (22) 

The first and last integrands in (22) are not singular and 

the integrals are evaluated using a Gauss-Legendre rule over 

each zero of the integrand, the middle two integrals exhibit a 

logarithmic singularity and they are evaluated by a 

combination of Gauss-Log and Gauss-Legendre rules over 

the zero’s of the respective integrands. In this way, the 

logarithmic singularity and the high frequency nature of the 

integrands are both accounted for. 

3. Results 

The Fourier series approximation performs reasonably for 

small N. The exact solution with the approximation are 

coincide for N = 2. The error is around 2%, which is quite 

acceptable for this low order expansion. As expected most of 

the error occurs at the boundary points x = 0 and x = 1 [5, 6, 

7]. This is typical of spectral expansions in that the endpoints 

have the slowest convergence rate and is due to the fact that 

at these points the coefficients, a
*
n, are summed with the 

greatest magnitude. 

It is shown in the following table, the relative error in each 

Fourier coefficient for N = 4, 8 and 16. The error increases 

with n except for the last coefficient. The breakdown in the 

last few terms is quite large where the relative error is 28% 

for N = 8 and 53% for N = 16 The large increase in errors 

near n = N for N = 64 and N = 128 prevent the series from 

realizing its previous convergence rate. 

As N doubles from N = 4, to N = 32, the error decreases by 

an order of magnitude. 

The error then begins to increase, and for N = 64 and 128. 

The error is largest at x = 1. 
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Table 1. Error in the coefficients of the Fourier series for N = 4, N = 8 and N = 16. 

n na  

*

m n

n

a a

a

−
 

N=4 N= 8 N=16 

0 1.0666666666666667 0.2396E-04 0.1126E-05 0.5179E-07 

1 0.4927671482248482 0.7770E-04 0.2725E-05 0.1090E-06 

2 -0.0307979467640530 0.4306E-02 0.8200E-04 0.3437E-05 

3 -0.0019248716727533 0.7569E-01 0.6883E-03 0.1582E-04 

4 -0.0019248716727533 0.1443E-0.2 0.4154E-0.2 0.8204E-04 

5 -0.0007884274371598 0.1882E-01 0.2402E-03  

6 -0.0003802215649883 0.7640E-01 0.6903E-03  

7 -0.0002052341308725 0.2796E+00 0.1753E-02  

8 -0.0000751054943187 0.9088E-02   

9 0.0000751054943187 0.9088E-02   

10 0.0000492767148225 0.1846E-01   

11 -0.0000336566592599 0.3886E-01   

12 -0.0000237638478118 0.7467E-01   

13 -0.0000172531475867 0.1482E+00   

14 -0.0000128271331795 0.2771E+00   

15 -0.0000097336720637 0.5308E+00   

16 -0.0000075190299717 0.7605E-02   

 

4. Conclusion 

The Fourier series method successfully solved the integral 

equation, but the results were disappointing. 

The error deteriorated after an expansion of 32 terms and 

this is due to the great difficulty of finding high frequency 

contributions to the unknown in first kind equations. 

Measures taken to address this point were somewhat 

successful and a more detailed investigation of the expansion 

method is warranted. This is especially true if one notes that 

the traction of an axisymmetric particle is inherently 

periodic.: 

The approximation is valid for the entire domain as no 

discretization is employed. 

The properties of the solution are derived from those of the 

basis functions { ϕn }. For orthogonal polynomials, and in 

particular trigonometric polynomials, this would mean that 

the solution is everywhere analytic. This may not be 

expedient if one knows that the solution should exhibit some 

non-analytic behavior. Usually, this property is desirable and 

non-analytic functions can be catered for by expanding in a 

weighted series. 
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