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Abstract: Glutathione S-transferases (GSTs, EC: 2.5.1.18) and Glyoxalases [Glyoxalase-I (Gly-I, EC: 4.4.1.5) and 

glyoxalase-II (Gly-II, EC: 3.1.2.6)] are major glutathione dependent detoxification as well as important antioxidants enzymes in 

plants. On the other hand, proline and betaine are important osmoprotectants in plants under abiotic stresses including salinity. In 

this study, roles of GST, Gly-I, Gly-II and glutathione were investigated on cytotoxic metabolites in presence of 15 mM proline 

and betaine under 16 dSm
-1

 salinity in leaves of seedlings of a saline tolerant maize inbred CZ-10 to understand the underlying 

saline tolerant mechanism. The salinity stress increased the contents of H2O2, melondialdehyde (MDA), methylglyoxal (MG) 

along with decreased reduced glutathione (GSH) and glutathione redox state over control. The activities of GST and Gly-I 

increased under saline stress. However, activity of Gly-II decreased with stress duration. The application of proline and betaine in 

saline water reduced the contents of H2O2, MDA and MG. Conversely, proline and betaine increased the activities of GST, Gly-I 

and Gly-II, and GSH and glutathione-redox state over salinity stress. The western blotting of the soluble protein also suggested 

the accumulation of maize GST in leaf under salinity stress. The accumulation of GST along with reduced contents of H2O2 and 

MDA suggested its detoxification roles on organic hydroperoxides under saline stress. The higher activities of Gly-I and Gly-II 

concurrently with lower content of MG indicated their protective roles from cytotoxic MG. Considering all, this study concluded 

that both proline and betaine provided protective roles in maize seedlings under salinity stress by maintaining GSH and its related 

detoxification enzymes. 
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1. Introduction 

Salinity is one of the most important abiotic stress factors 

limiting plant growth and productivity of crops and thus, 

increased soil salinity has become an increasingly important 

topic. High exogenous salt concentrations cause ionic 

imbalance in the cells resulting in ion toxicity and osmotic 

stress [1, 2]. Osmotic stress induced by salinity produced 

reactive oxygen species (ROS) such as superoxide radical 

(O2
•-
), singlet oxygen (

1
O2), hydroxyl radical (OH

•
) and 

concomitantly hydrogen peroxide (H2O2) [3, 4, 5] and 

methylglyoxal (MG) [6, 7] in plant cells. ROS are highly 

reactive and toxic to plants and can lead to cell death by 

causing damage to proteins, lipids, DNA and carbohydrates [5, 

8]. At the same time, MG can react with and modify other 

molecules including DNA and proteins [6], whereas proteins 

being one of the major targets of ROS. Therefore ROS and 

MG are highly toxic and must be detoxified by cellular 

responses, if the plant is to survive and grow [9]. 

Proline and betaine are the most common compatible 

solutes that contribute to osmotic adjustment, stabilization and 

protection of membranes, proteins and enzymes [10, 11, 12]) 

from damaging effects of salt/osmotic stresses. In addition to 
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their roles as osmoprotectants, proline and betaine might 

perform a protective function by scavenging ROS [11, 13]. 

Exogenous proline and betaine improve salt tolerance by 

upregulating stress-protective proteins [14] and reducing 

oxidation of lipid membranes [1, 12]. 

Plants possess both non-enzymatic and enzymatic 

antioxidant defense systems to protect their cells against ROS 

[9, 15]. Among the non-enzymatic antioxidants, reduced 

glutathione (GSH) is the most abundant low molecular weight 

thiol in plants and plays an important role in the detoxification 

of ROS and MG [9]. Among the GSH dependent enzyme, 

glutathione S-transferases (GSTs) are an ancient and diverse 

group of multi-functional proteins that are widely distributed 

amongst living organisms. They can function as GSH 

transferases, GSH-dependent peroxidases, GSH-dependent 

isomerases and GSH-dependent oxidoreductases [16], as well 

as functioning as non-enzymatic carrier proteins and 

antioxidant recycling [17]. Up to 90 genes encoding GSTs are 

transcribed in different plant species, most of which are 

differentially induced by stress, and they play important parts 

in enzymatic thiol-dependent ROS scavenging mechanisms 

[18, 19, 20]. Importantly, after discovering of GST in maize in 

1970, large number of studies was reported on vacuolar 

sequestration of endogenous substrates into vacuole [21, 22, 

23, 24, 25]. However, reports on response of maize GST under 

saline stress is very limited. On the other hand, in plants, the 

MG is detoxified mainly by glyoxalase system [6] which 

consists of two enzymes: glyoxalase-I (Gly-I) and 

glyoxalase-II (Gly-II). Gly-I uses reduced GSH to convert 

MG into S-D-lactoylglutathione (SLG). Then Gly-II converts 

SLG to D-lactate and one molecule of reduced glutathione is 

recycled back into the system [26]. A large number of research 

group reported the role of glyoxalases in plant responses to 

salt stress [6, 7, 27, 28, 29]. Proline and betaine also reported 

to increase glyoxalaes [30, 31, 32], but this type of findings 

are limited in maize. In this report, the protective roles of GST, 

glyoxalases and GSH in maize seedlings in presence of 

proline and betaine under saline stress will be discussed. 

2. Materials and Methods 

2.1. Plant Materials and Stress Treatments 

 

Fig. 1. Performance of maize inbred CZ-10 under different concentrations of 

NaCl induced salinity. 

Twenty five maize inbreds were screened against different 

levels of salinity (8, 12 and 16 dSm
-1

 salinity). Among them 

CZ-10 survived whole life in all salinity levels (Fig. 1). 

Therefore, CZ-10 was termed as tolerant inbred and was 

selected as plant materials in this study. In this study, the 

seedlings were grown in Petridis (9 cm i.d.) and eight day old 

seedlings were subjected for imposing 16 dSm
-1

 salinity stress 

induced by NaCl with and without 15 mM proline and betaine. 

Data were recorded from fully expanded leaves after 1, 4 and 7 

days of stress implementation and calculated from three 

independent experiments each containing at least two 

replications. 

2.2. Extraction of Soluble Protein for GST and Glyoxalase 

Assay 

Fresh leaves of 8-day old seedlings were extracted by 

homogenizing in an equal volume of 25 mM Tris-HCl buffer 

(pH 8.0)  containing 1 mM EDTA, 1% (w/v) ascorbate and 

10% (w/v) glycerol with mortar pestle. The homogenate was 

centrifuged at 11,500×g for 15 min, and the supernatant was 

used as a soluble protein solution for enzyme assay and 

Western blot analysis. 

GST (EC: 2.5.1.18) activity was determined 

spectrophotometrically by the method of Rohman et al. [33]. 

The reaction mixture contained 100 mM Tris-HCl buffer (pH 

6.5), 1.5 mM GSH, 1 mM 1-chloro-2,4-dinitrobenzene 

(CDNB), and enzyme solution in a final volume of 0.7 ml. The 

enzyme reaction was initiated by the addition of CDNB, and 

the increase in absorbance was measured at 340 nm for 1 min. 

The activity was calculated using the extinction coefficient of 

9.6 mM
−1

 cm
−1

. 

Gly-I (EC: 4.4.1.5) assay was carried out according to 

Yadav et al. [6]. Briefly, the assay mixture contained 100 mM 

Na-phosphate buffer (pH 7.0), 15 mM magnesium sulphate, 

1.7 mM GSH, and 3.5 mM MG in a final volume of 0.8 ml. 

The reaction was started by the addition of MG, and the 

increase in absorbance was recorded at 240 nm for 1 min. The 

activity was calculated using the extinction coefficient of 3.37 

mM
−1

 cm
−1

. 

Gly-II (EC: 3.1.2.6) activity was determined according to 

the method of Hoque et al. [32] by monitoring the formation 

of GSH at 412 nm for 1 min. The reaction mixture contained 

100 mM Tris-HCl buffer (pH 7.2), 0.2 mM 5,5′-dithio-bis 

(2-nitrobenzoic acid) (DTNB), and 1 mM SLG in a final 

volume of 1 ml. The reaction was started by the addition of 

SLG, and the activity was calculated using the extinction 

coefficient of 13.6 mM
−1

 cm
−1

. 

2.3. Extraction and Measurement of Glutathione 

Second leaves (0.5 g fresh weight) were homogenized in 3 

ml ice-cold acidic extraction buffer 5% meta-phosphoric acid 

containing 1 mM EDTA) using a mortar and pestle. 

Homogenates were centrifuged at 11,500×g for 15 min at 4°C, 

and the supernatant was collected for analysis of ascorbate and 

glutathione. 

The glutathione pool was assayed according to Yu et al. [34], 
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utilizing 0.4 ml of aliquots of supernatant neutralized with 0.6 

ml of 0.5 M K-phosphate buffer (pH 7.0). Based on enzymatic 

recycling, glutathione is oxidized by DTNB and reduced by 

NADPH in the presence of glutathione reductase (GR), and 

glutathione content is evaluated by the rate of absorbance 

changes at 412 nm of 2-nitro-5-thiobenzoic acid (NTB) 

generated from the reduction of DTNB. Oxidized glutathione 

(GSSG) was determined after removal of GSH by 

2-vinylpyridine derivatization. Specific standard curves with 

GSH and GSSG were used. 

2.4. Measurement of H2O2 

H2O2 was assayed according to the method described by Yu 

et al. [34]. H2O2 was extracted by homogenizing 0.5 g of leaf 

tissue with 3 ml of 50 mM K-phosphate buffer (pH 6.5) at 4°C. 

The homogenate was centrifuged at 11,500×g for 15 min. The 

supernatant (3 ml) was mixed with 1 ml of 0.1% TiCl4 in 20% 

H2SO4 (v/v), and the mixture was then centrifuged at 

11,500×g for 15 min at room temperature. The optical 

absorption of the supernatant was measured 

spectrophotometrically at 410 nm to determine the H2O2 

content (Є= 0.28 µM
−1

 cm
−1

) and expressed as micromoles per 

gram fresh weight. 

2.5. Measurement of Lipid Peroxidation 

The level of lipid peroxidation was measured by estimating 

MDA, a decomposition product of the peroxidized 

polyunsaturated fatty acid component of the membrane lipid, 

using thiobarbituric acid (TBA) as the reactive material 

following the method of Heath and Packer [35]. Briefly, the 

leaf tissue (0.5 g) was homogenized in 3 ml 5% (w/v) 

trichloroacetic acid (TCA), and the homogenate was 

centrifuged at 11,500×g for 10 min. The supernatant (1 ml) 

was mixed with 4 ml of TBA reagent (0.5% of TBA in 20% 

TCA). The reaction mixture was heated at 95°C for 30 min in 

a water bath and then quickly cooled in an ice bath and 

centrifuged at 11,500×g for 15 min. The absorbance of the 

colored supernatant was measured at 532 nm and was 

corrected for non-specific absorbance at 600 nm. The 

concentration of MDA was calculated by using the extinction 

coefficient of 155 mM
−1

 cm
−1

 and expressed as nanomole of 

MDA per gram fresh weight. 

2.6. Measurement of MG 

Leaf tissue (0.3 g) was extracted in 3 ml of 0.5M perchloric 

acid. After incubating for 15 min on ice, the mixture was 

centrifuged at 4
o
C at 11,000×g for 10 min. A colored 

supernatant was obtained in some plant extracts that was 

decolorized by adding charcoal (10 mg/ml), kept for 15 min at 

room temperature, and centrifuged at 11,000×g for 10 min. 

Before using this supernatant for MG assay, it was neutralized 

by keeping for 15 min with saturated solution of potassium 

carbonate at room temperature and centrifuged again at 

11,000×g for 10 min. Neutralized supernatant was used for 

MG estimation following the method of Wild et al. [36]. An 

aqueous 500 mM N-acetyl-L-cysteine solution (pH 7.0) was 

freshly prepared. The reaction was started by adding 20 µl of 

the N-acetyl-L-cysteine solution (final concentration up to 10 

mM), and the formation of the product 

N-α-acetyl-S-(1-hydroxy-2-oxo-prop-1-yl)cysteine was 

recorded at a wave length of 288 nm. MG was calculated from 

standard curve of MG. 

2.7. Determination of Protein 

The protein concentration in the leaf extracts was 

determined according to the method of Bradford [37] using 

BSA as a protein standard. 

2.8. Extraction of Crude Protein for GST Purification 

Eighty gram of maize seedlings was homogenized in an 

equal volume of 25 mM Tris-HCl buffer (pH 8.0) containing 1 

mM EDTA, 1% (w/v) ascorbate and 10% (w/v) glycerol with 

Waring blender. The homogenates squeezed in a nylon cloth 

and was centrifuged at 11500×g for 15 min, and the 

supernatant was used as crude enzyme solution. 

2.9. DEAE-Cellulose Chromatography 

Proteins were precipitated by ammonium sulfate at 65% 

saturation from the supernatant and centrifuged at 11,500×g 

for 10 minutes. The proteins were dialyzed against 10 mM 

Tris-HCl buffer (pH 8) containing 0.01% (w/v) 

β-mercaptoethanol and 1 mM EDTA (buffer A) overnight to 

completely remove low molecular inhibitors. The dialyzate 

(crude enzyme solution) was applied to a column (1.77 cm i.d. 

× 20 cm) of DEAE-cellulose (DE-52, Whatman, UK) that had 

been equilibrated with buffer A and eluted with a linear 

gradient of 0 to 0.4 M KCl in 750 ml of buffer A. The high 

active eluted peak at around 91.67 mM KCl was collected for 

further purification. 

2.10. Hydroxyapatite Chromatography 

The pooled high active GST fractions separated by 

DEAE-cellulose column chromatography, was applied on a 

hydroxyapatite column (1.5 cm i.d. × 5.5 cm) that had been 

equilibrated with buffer A. The column was eluted with a 300 

ml linear gradient of potassium phosphate buffer (K-P buffer; 

0-20 mM, pH 7.0) in buffer A. The high active fraction (5 ml) 

was found to elute which was collected and further purified by 

affinity chromatography. 

2.11. Affinity Chromatography 

The collected sample was applied to a column (0.76 cm i.d. 

× 4.0 cm) of S-hexyl glutathione agarose (Sigma, St. Louis, 

MO) that had been equilibrated with 10 mM Tris-HCl buffer 

(pH 8.0) containing 0.01% (v/v) β-mercaptoethanol (buffer B). 

The column was washed with buffer B containing 0.2 M KCl 

and eluted with buffer B containing 1.2 mM S-hexyl 

glutathione. The high active protein fractions eluted with 

S-hexyl glutathione were combined and dialyzed against 

buffer B and the dialyzate was used as the purified GST. 
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2.12. Rabbit Treatment for Antibody Production 

A rabbit (weighing about 2.5 kg) received subcutaneous 

injections of a 0.5 mg of purified GST protein in Freund’s 

complete adjuvant at several sites. After two weeks, the rabbit 

was given a first booster injection of 0.5 mg of the purified 

GST protein in incomplete adjuvant, and then a second 

booster injection of 0.5 mg of the purified protein in 

incomplete adjuvant was given two weeks after the first 

booster injection. Blood was taken from the ear vein one week 

after the second booster injection. 

2.13. SDS-PAGE and Western Blotting 

To check the accumulation of GST, SDS-PAGE was done in 

12.5% (w/v) gel containing 0.1% (w/v) SDS by the method of 

Laemmli [38] followed by western blotting following the 

protocol of Perkin Elmer Life Science Inc., USA). 

3. Results and Discussion 

The CDNB conjugated GST activities were observed to 

increase with duration under NaCl induced salinity stress (Fig. 

2A). The activity increased only 15% over control at 1 day 

stress which increased to 65% and 59%, at 4 day and 7 day, 

respectively. The maize seedlings pretreated with 15 mM of 

proline increased the GST activities over control (44%, 90% 

and 63% at 1, 4 and 7 day of stress, respectively) and NaCl 

stress (25%, 20% and 9% at 1, 4 and 7 day stress, respectively) 

(Fig. 2A). Betaine treated seedlings also showed induced the 

GST activities (26%, 37% and 40%, at 1, 4 and 7 day stress, 

respectively). Since GST activity increased strongly under 

salinity stress in presence and absence of proline and betaine, 

maize GST was separated by a DEAE-cellulose 

chromatography. Three GST peaks were found to elute at 91.7, 

162.5 and 234.1 mM KCl  accounting for 92.2%, 6.2% and 

1.6% of total activity. The GST eluted at 91.7 mM KCl was 

farther purified by hydroxyapatite and affinity 

chromatography as described in materials and methods. The 

purified GST was used to prepare polyclonal antibody in a 

rabbit blood serum. The western blot analysis of soluble 

protein extract with the antibody also showed significant 

accumulation of the GST in saline stressed seedlings with or 

without proline and betaine treatment (Fig. 2B). 

 

Fig. 2. Activities of GSTs (A) and accumulation of dominant GST (B) in maize seedlings induced by proline (P) and betaine (B) under 16 dSm-1 salinity stress. The 

activity of each enzyme was expressed in nmolmin-1mg-1 protein. Values represent the mean ± SE from three independent experiments. 

 
Fig. 3. Contents of H2O2 (A) and MDA (A) in maize seedlings induced by proline (P) and betaine (B) under 16 dSm-1 salinity stress. Values represent the mean ± 

SE from three independent experiments. 
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The level of H2O2 contents sharply increased with duration 

of salinity stress in leaves of maize seedlings compared to the 

untreated control (Fig. 3A) and the highest increase (2.9 folds) 

was observed at the 7 day of stress. Both proline and betaine 

treated seedlings maintained the levels of H2O2 contents lower 

(23%, 31% and 43% by proline and 12%, 33% and 36% by 

betaine at 1, 4 and 7 day stress, respectively) compared to the 

seedlings subjected to saline stress without treatment. The 

lipid peroxidation levels in leaf tissues, measured as the MDA 

content, are represented in Fig. 3B. Like H2O2, MDA contents 

increased remarkably with stress duration. At 7 day of stress, 

the level was 2.2 fold higher in NaCl stressed seedlings 

compared to control. Importantly, application of proline and 

betaine successfully alleviated the H2O2 levels (25%, 35% and 

41% by proline and 21%, 30% and 29% by betaine at 1, 4 and 

7 day stress, respectively). 
GSTs are an ancient and diverse group of multi-functional 

proteins that are widely distributed amongst living organisms. 

Originally defined solely as enzymes that catalyze 

conjugation of the tripeptide glutathione (GSH) to an 

electrophilic substrate [21], it is now clear that GSTs catalyse 

a variety of reactions. Early plant GST research focused on the 

role of GSTs in herbicide resistance and vacuolar 

sequestration of anthocyanins in maize [39]. In the present 

study, the induced GST activity and accumulation of GST (Fig. 

2A, B) under salinity might play important physiological role 

like vacuolar sequestration of maize flavonoids like 

anthocyanin as anthocyanin has been reported to accumulate 

under saline stress [40]. On the other hand, high activity might 

be associated with recycling and stabilizing flavonoid [17, 41] 

to protect cell from toxic effect. 

In addition to being induced by xenobiotic-type stresses, 

plant GST expression is activated by abiotic stress like 

chilling [42], hypoxic stress [43], dehydration [44, 45], 

wounding [46], pathogen attack [47], ethylene [48], auxin [21], 

H2O2[49] and the defense signal salicylic acid [49]. GSTs have 

been shown to possess GST activity towards 

4-hydroxy-2-nonenal (HNE) [50], a naturally occurring lipid 

peroxidation product that can cause oxidation and alkylation 

of proteins and DNA. Potentially, GST activity allows GSTs to 

detoxify electrophilic compounds by catalyzing their 

conjugation to GSH, while GSH peroxidase (GPX) activity 

allows GSTs to directly detoxify lipid and DNA peroxidation 

products [51]. It is also possible that the induced GST 

activities (Fig. 2A, B) could detoxify HNE as well as MDA, 

another natural lipid peroxidation product, under stress 

condition. In this study, we found to accumulate H2O2 and 

MDA under salinity stress concurrently with high GST 

activity while presence of proline and betaine boosted up the 

GST activity in the seedlings along with lower H2O2 and MDA 

contents (Fig. 2 and 3) suggested it’s detoxification role by 

conjugation or directly detoxification via GPX activity. An 

increase in the level of H2O2 and lipid peroxidation in 

saline-treated seedlings resulted in increased oxidative 

damage probably due to impairment of the antioxidant defense 

system [52, 53]. Conversely, a decreased level of H2O2 and 

MDA in both proline and betaine treated seedlings (Fig. 3A, B) 

suggested that both proline and betaine protect against 

saline-dependent oxidative damage by enhancing antioxidant 

defense [1, 30, 31, 54, 55]. 

Saline stress caused changes in GSH and GSSG contents in 

maize seedlings (Fig. 4A, B). The GSH content decreased as 

the stress period increased (24% at 4 day and 38% at 7 day 

stress). On the contrary, GSSG contents increased enormously 

with stress duration (2.73 fold at 4 day and 5.73 fold at 7 day) 

resulting in significant decrease in the glutathione redox state. 

Importantly, both proline and betaine significantly contributed 

to maintain the NaCl mediated reduced GSH redox state (Fig. 

4C). 

 
Fig. 4. Contents of GSH (A) and GSSG (B), and glutathione redox state [GSH/(GSH+GSSG) ratio] (C) in maize seedlings induced by proline (P) and betaine (B) 

in x axis under 16 dSm-1 salinity stress. Values represent the mean ± SE from three independent experiments. 
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Fig. 5. MG in maize seedlings induced by proline (P) and betaine (B) under 

16 dSm-1 salinity stress. Values represent the mean ± SE from three 

independent experiments. 

Reduced glutathione is the most important antioxidant in 

plant that scavenges ROS either directly or indirectly by 

participating in the ascorbate-glutathione cycle [8, 56]. It can 

regenerate ascorbate through reduction of dehydroascorbate via 

the ascorbate-glutathione cycle [8]. Although defense against 

stress situations sometimes occurs irrespective of the GSH 

concentration [9], the increased level of GSH pool is generally 

regarded as a protective response against oxidative stress [57], 

In this study, salt stress decreased in GSH with stress duration, 

contrary, caused a significant increase in GSSG levels (Fig. 4A, 

B). Under salt stress, proline and betaine not only increased 

GSH contents remarkably, but also decreased the level of GSSG 

under salinity stress, suggesting the contribution of proline and 

betaine in maintenance of the glutathione redox state under 

salinity. Improved GSH contents and glutathione redox state 

have also been reported previously [32, 58]. 

The accumulation of MG increased in maize leaf under 

salinity stress (Fig 5). At 7 day of stress implementation, the 

concentration MG was 2.3 times higher in stress seedlings 

over control. Presence of proline and betaine in NaCl solution 

caused remarkable decrease in cytotoxic MG in the leaves. At 

7 day, proline and betaine alleviated 31% and 25% of MG in 

leaves of NaCl stressed seedlings. 

 
Fig. 6. Activities of Gly-I (A) and Gly-II (B) in maize seedlings induced by proline (P) and betaine (B) under 16 dSm-1 salinity stress. The activity of each enzyme 

was expressed in µmolmin-1mg-1protein. Values represent the mean ± SE from three independent experiments.

Salinity stress increased Gly-I activities by 17%, 14% and 

18% over control at 1, 4 and 7 day stress, respectively, in 

maize seedlings (Fig. 6A). In presence of proline and betaine, 

the seedlings showed higher activity compared to salinity 

stress alone, where proline induced 30%, 41% and 38% higher 

activities at 1, 4 and 7 day stress, respectively. In case betaine 

treatment, 26%, 32% and 28% higher activities were obtained 

at 1, 4 and 7 day stress, respectively. Unlike Gly-I, Gly-II 

activity decreased with stress duration (Fig. 6B). At 1 day, 

proline and betaine increased Gly-II activities by 30% and 

19%, respectively, over salinity stress. However, this level 

decreased with stress period, and at 4 and 7 day, the activities 

were increased by13% and 15%, respectively, by proline 

application and 17% and 12%, respectively, by betaine 

application. 

The glyoxalase system consists of two enzymes (Gly-I and 

Gly-II) acts to convert the potential cytotoxic MG to non-toxic 

hydroxyacids such as lactate [9]. Gly-I use GSH to convert 

MG to SLG, while the hydrolytic reaction catalyzed by Gly-II 

liberates the lactic acid and free GSH. In several plant species, 

upregulation or overexpression of these enzymes increases 

tolerance to abiotic stresses [27, 29]. The present investigation 

demonstrated that saline stress caused accumulation of MG in 

maize cell (Fig. 5). Under salt stress, though Gly-I activity 

increased, Gly-II activity decreased with stress duration (Fig. 

6). The decrease in Gly-II activities under salinity stress 

suggested that the detoxification of excess MG under salinity 

stress might slow the process in maize seedlings. In proline 

and betaine treated seedlings, both Gly-I and Gly-II increased 

along with lower contents of MG suggesting their 
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antioxidative role via increases in glyoxalase activities. 

Previously, Gly-I and Gly-II activities were reported to 

increase under sanity stress in presence of proline and betaine 

in rice (Hasanuzzaman et al. 2014) and mungbean (Hossain et 

al. 2011). However, in white cell of tobacco, betaine failed to 

maintain GLy-II activity under salinity [32]. 

4. Conclusion 

Taken as a whole, the results suggest that GST and 

glyoxalases play important role in surviving tolerant maize 

genotype through detoxification and antioxidant activities 

under salinity stress. However, activity of Gly-II was inhibited 

under salinity stress. The higher activity of GST along with 

lower MDA suggested its protective role through 

detoxification. Presence of proline and betaine in saline 

enhanced the activities of GST and glyoxalases as well as 

improved GSH homeostasis. However, the protective role by 

antioxidants is complex and involved many of the enzymatic 

and non-enzymatic antioxidants. Therefore, this study 

suggested more research in this regard. 
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