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Abstract: Symbiogenesis overshadows the importance of other eukaryogenetic processes. By working on the 
endosymbiotic cellular heredity in its entirety, it transformed the eukaryotic world. This mini-review strived to produce a 
concise account of symbiogenetic heredity of membranes in eukaryotes. Symbiogenesis integrated the endosymbiotic 
alpha-proteobacterium and cyanobacterium with the host, by utilising almost all the major prokaryotic components of 
membranes and protein translocation machinery along with a lot of eukaryotic inventions. It beautifully compartmentalized 
the eukaryotic cell by putting the prokaryotic membranes in continuity with the eukaryotic membranes and produced a 
whole spectrum of membrane topologies. Topogenesis of symbiogenetic hereditary membranes produced cell organelles 
with a diversity of metabolic capabilities. Development of protein translocation system manifests real ingenuity of 
symbiogenetic processes which integrates the working of entire compliment of cellular organelles. Protein translocation 
systems are also chimera of prokaryotic and eukaryotic components. 
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1. From Prokaryotes to Eukaryotes to 
Symbiosis 

The living world produced two major kinds of cells: 
bacteria and eukaryotes. Bacteria appear on the evolutionary 
timescale around 3.5 billion years ago. The evolutionary 
timescale shows the birth of eukaryotes near to 1 billion 
years old [1]. Around 60 major innovations qualified the 
bacteria to enter into the eukaryotic world. These innovations 
supported three major realms of change: (1) the eukaryotic 
cell materialised the cytoskeleton and endomembrane system 
in coordination with the evolution of phagotrophy; (2) DNA-
membrane attachments when internalised through 
phagocytosis, disrupted bacterial division; which resulted in 
the evolution of nucleus and mitotic cell division; (3) 
perfection of phagotrophy opened the doors for another 
important biological process ‘symbiogenesis’ [1].  

The prokaryotic world does not support the intracellular 
symbiosis [2, 3]. On the evolutionary timescale, it emerged 
with the materialisation of phagocytosis by radically 
remodelling a bacterium. When radically transformed, that 
remodelled bacterium possessed complex internal cell 
membranes, endoplasmic reticulum (ER), endosomes, and 
lysosomes [1,4-6]. This architecture was required to 

support phagotrophy in the ancestral eukaryotes. 
Phagotrophy created possibilities of symbiosis between 
ancestral eukaryotic cells and prokaryotic world.  

Symbiogenetic processes selected only few of symbiotic 
consortia and transformed the eukaryotic world. It also set 
the stage for the evolution of intracellular digestion of the 
prey, which actually expanded the adaptive zone for the 
organisms. The evolution of phagotrophic complement 
‘actomyosin motility system’ provided enough support to 
the intracellular digestion to materialise the ingestion of 
whole prey [1]. In the eukaryotic evolution, this strip of 
timescale produced the most wide-ranging innovations in 
protein molecular machineries [1,2,5,7]. 

2. Symbiosis to Symbiogenesis 
In context of phagocytosis, there are few unprecedented 

developments on the evolutionary timescale. First is the 
emergence of intracellular symbiosis between ancestral 
phagotrophic eukaryotes and the prokaryotic world, in spite 
of the presence of an operational intracellular digestion of 
the prokaryotic prey. Second development is the 
transformation of symbiosis into symbiogenesis. 
Symbiogenetic processes worked on few stable symbiotic 
consortia of ancestral eukaryotes and prokaryotic 
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symbionts and produced stunning diversity of eukaryotic 
life on Earth.  

Symbiogenetic processes orchestrated the cellular 
heredity in its entirety. It produced stable mergers of the 
DNA, membranes, ribosomes etc. from two distinct cellular 
worlds. This mini-review focuses on one aspect of 
symbiogenetic inheritance: membrane heredity. 

3. Symbiogenesis of Two Major 
Symbiotic Consortia 

Symbiogenetic evolutionary timescale shows major 
activity on a symbiogenetic consortium between an α-
proteobacterium and phagotrophic ancestral eukaryote [8-
10]. Here symbiogenesis integrated the bacterial respiration 
with the eukaryotic cell. It converted the endosymbiont into 
an operational organelle: mitochondria. This integration 
involved grand but heritable changes in the components of 
membranes and DNA compliment.  

Around 500 million years later, another important 
symbiogenesis is spotted on the evolutionary timescale. Here 
symbiogenetic processes worked on a symbiotic consortium 
between a mitochondriate host and cyanobacterial symbiont 
[11-13]. Photosynthetic symbiont was permanently 
integrated with the heterotrophic host as plastid. 

There are innumerable interesting aspects of 
symbiogenesis. To name a few for instance: transfer of some 
of the genome of endosymbionts into the host nucleus and 
loss of most of the remaining genome; reconfiguration of 
endosymbiont membranes to retarget the nuclear encoded 
proteins; invention of the protein translocation machinery to 
transport the proteins across the membranes of endosymbiont.  

Therefore symbiogenesis is a grand process which deals 
with not just the addition of an extra foreign genome to a pre-
existing cell, but it also integrates and establishes the 
inheritance of host and endosymbiont membranes. Along with 
it, it also materialised operational protein-targeting systems for 
the endosymbionts turned organelles [14,15]. This mini-
review gives a concise account of symbiogenetic membrane 
topogenesis and heredity with only necessary details of 
symbiogenetic accomplishments in protein translocation.  

4. Cellular Hereditary Matrix and 
Symbiogenesis 

Life cycle of a eukaryotic cell passes through a complex 
matrix of independent hereditary processes which sustain a 
dynamic molecular cellular architecture within the fluidity of 
molecular world. This hereditary matrix operates the gene 
heredity in conformity with the membrane heredity. It 
manufactures molecular components of membranes and 
inserts them into continuously pre-existing supramolecular 
structures [16]. Each genetic membrane type has a distinct 
composition of molecular components which include the 
proteins and lipids, which is marvellously maintained during 
growth. 

Membrane heredity is associated with DNA heredity up 
to the extent that the properties of receptors and targeted 
proteins are encoded by genes. Although this is essential 
but it is not sufficient without the preformed cell structures 
[16,17]. Membrane operations require distinct membrane 
topology with unique receptors in the correct polarity 
[15,18,19], which a cell cannot create de novo in spite of 
possessing all the respective genes [20].  

Symbiogenetic processes not only preserved the hereditary 
wealth of prokaryotic genetics in its entirety but also 
recombined and augmented it. Symbiogenesis constructed 
endomembrane system from the components borrowed from 
prokaryotic inheritance and some eukaryotic inventions 
[14,15,18]. Symbiogenetic processes conserved prokaryotic 
membrane constructs for over hundreds of millions of years.  
Membranes of thylakoids are genetic membranes and also 
possess distinct topology. Thylakoids in plastids and 
cyanobacteria mostly contain glycolipids and sulpholipids, 
not phospholipids [16]. They actually evolved directly from 
those of a cyanobacterium, and symbiogenetic processes did 
not change their topology, chemistry, or function [21]. 
Retention of membrane heredity for hundreds of millions of 
years, even after the loss or relocation of genes from the 
respective organelles emphasizes the immense stability of 
membrane heredity [16]. 

Cellular world cannot produce two supramolecular 
structures membranes and chromosomes de novo from their 
constituent components. They are always constructed by 
division and growth or fusion of pre-existing membranes. 
Interestingly, all the diverse membranes of the millions of 
living species are actually lineal descendants of those of the 
first bacterial cell [18-20].  

There are numerous distinct types of membranes in a 
eukaryotic cell. DNA replication proceeds on the pre-
existing DNA template. Likewise, membrane growth 
(polarity of molecular assemblies, their location in the 
supramolecular matrix etc.) depends entirely on the pre-
existing membranes [16]. Purely genetic membranes, like 
the nuclear envelope/RER membranes or mitochondrial 
inner or outer membranes, always arise by growth and 
division of already existing membranes [18]. Some 
membranes, for example, lysosomal membranes do not 
possess this genetic continuity. Like DNA genomes, genetic 
membranes are also a part of an organism’s germ line [16]. 

5. Membranes Orchestrated the Protein 
Code at the Early Stages of Evolution 

It is argued that at early stages of evolution, membranes 
had been orchestrating important functions. If we look at 
the level of complexity of protein synthesis machinery, then 
it seems impossible that it evolved before membranes. 
Most of the scientists think that this function had been 
performed by the membranes, replicators, and catalysts, in 
a symbiotic consortium. This symbiotic consortium set the 
stage for the origin of code and thereby mediated the 
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transition from molecular world of independent replicators 
to a nucleic acid/protein/lipid world of reproducing 
organisms [22]. 

Membranes initially worked as functional 
supramolecular bases. Evolutionary processes selected this 
supramolecular structure as a grand reproductive unit or the 
proto-organism. It is argued that what proteins now 
accomplish as enzymes, it had been achieved primarily 
through their structures while held within the membranes. 
Membranes as biological supramolecular structures 
contained amphipathic peptidyl-tRNAs and prebiotic mixed 
lipids. Biological membranes accomplished the respective 
work from the peptidyl-tRNAs by bringing their polarity 
and affinity for water in a specific range. Peptidyl-tRNAs 
worked as genetically-specified lipid analogues [22].  

Here proteins were also engaged in coupling the flow of 
energy with the phosphorylation of genes and peptide 
precursors, through the kinases anchored in the membrane. 
All these processes actually operated on the outer surface of 
an ‘inside out-cell’, which materialised a hydrophobic code 
with four prebiotic amino acids and proline. It actualised 
initiation by isoleucine anticodon CAU. Supramolecular 
membrane structures anchored all the necessary proteins and 
nucleozymes. Working on four amino acids code slowly 
upgraded to ten-acid doublet code by evolving hydrophobic 
substrate binding and addition of catalytic domains and 
signal peptides. It also improved replication, translation, and 
lithophosphorylations. It also set the stage for this 
supramolecular setup to go for parasitism, and predation [22].  

At this stage on the evolutionary timescale, Cavalier-
Smith [22] proposes the fusion of two ‘inside out-cell’, 
actually produced a protocell, which consisted of double 
envelope, protocytosol, internal genome and ribosomes, 
and periplasm. It contained a concentrated autocatalytic 
internal cytosolic soup, which could support an 
intermediary metabolism. These conditions yielded 12 new 
amino acid assignments, termination, rapid freezing of the 
22-acid code, and consequently recruitment of anticodons. 
Here we see the materialisation of photoreduction, CO2 
fixation, and lipid synthesis prior to photophosphorylation.  

Here this fusion infused the evolution of signal 
recognition particles, chaperones, compartmented proteases, 
and peptidoglycan before transforming into a complex 
autotrophic, anaerobic photosynthetic bacterium [22]. 
Prokaryotic world actualised photosynthesis at this stage on 
the evolutionary timescale. All this work strictly depended 
on the attributes of membranes like molecular composition, 
localisation, and polarity. Symbiogenetic processes 
preserved these attributes and set the cell-division 
processes in such a way as to ensure the inheritance of 
membranes in the entirety of their functions. 

6. Translocation 

One of the important aspects of membranes is convening 
the molecular traffic across the cellular compartments. 
Complexity of translocation machinery depends on the 

complexity of respective membrane topology. Plasma 
membrane in all eukaryotic cells is single. However, α-
proteobacteria (ancestors of mitochondria) and 
cyanobacteria (plastid ancestors) have a cell envelope 
which consists of an inner cytoplasmic membrane (CM) 
and an outer membrane (OM) [7]. The CM and OM are 
distinct in both architecture and chemistry. In both 
organelles (plastid and mitochondrium), symbiogenetic 
processes converted the prokaryotic CM and OM into 
double envelopes while the phagosomal membranes were 
removed [23,24].  

Symbiogenesis re-situated a lot of endosymbionts’ genes 
into the host nucleus, but no big change in working location 
of proteins and lipids [25]. Organelles have to import 
thousands of nuclear encoded proteins from cytosol [26,27], 
which is materialised with the help of symbiogenetic 
protein translocation systems [28]. Symbiogenetic 
configuration of mitochondria and plastids produced 
numerous morphologies with diverse metabolic abilities 
[29]. It materialised non-photosynthetic potentials in some 
plastids, for instance, isoprenoid synthesis, fatty acid 
synthesis, and heme synthesis [30,31].  

Protein import mechanisms and membrane topology 
divide plastids into three major groups [32]: (i) Plastids in 
biliphytes and Viridaeplantae [32] are situated in the 
cytosol and covered with a double-membraned envelope. 
These plastids originated directly from a cyanobacterium 
[23] and import of nuclear encoded proteins requires only 
transit sequences [33-35]; (ii) Secondary chromist plastids 
are situated in the lumen of rough endoplasmic reticulum 
(RER). To materialise the transportation of proteins both 
signal and transit sequences are needed [15,36,37]; (iii) 
Symbiogenesis materialised the most complex topogenesis 
in chlorarachnean plastids. These plastids are surrounded 
by two additional smooth membranes.  

Ancestral chlorarachnean acquired six distinct genetic 
membranes directly from a green alga. The sixth genetic 
membrane was actually produced by modification of the 
host phagosomal membrane [16]. Secondary plastids in 
chromists also consist of four membranes [14,15,37]. 
Primary plastids reside in the cytoplasm, whereas 
secondary plastids are situated within the lumen of the 
endomembrane system [38]. Here, installing and/or 
reconfiguring the protein import apparatus across four 
membranes was even more difficult [39-41]. But 
symbiogenetic processes succeeded in establishing the 
transport of nuclear encoded proteins in these plastids [42-
48] by orchestrating a chimera of host and symbiont protein 
components [49-51].  

Symbiogenesis bestowed a great push to the eukaryotic 
evolution. Incorporation of plastid with the cellular 
metabolism produced three eukaryotic lineages of plants. 
Plants that diverged from these lineages, at around 400 to 
475 million years ago on the evolutionary timescale [52], 
consequently settled on the terrestrial environment. It paved 
the way for animals to populate the terrestrial lands.  



 Journal of Plant Sciences 2014; 2(2): 82-88  85 
 

6.1. Eukaryotic Protein Translocation Processes 

Deeper study of the important eukaryotic protein 
translocation machineries reveals the real ingenuity of 
symbiogenetic processes. It either directly employed 
prokaryotic inventions or combined them with some 
eukaryotic traits and produced chimera of molecular 
assemblies [53-55]. There are three important eukaryotic 
protein translocation molecular assemblies in eukaryotes: 
(i) the ER-associated degradation (ERAD) transport 
machinery of the endoplasmic reticulum, (ii) the 
peroxisomal importomer and (iii) SELMA, the pre-
protein translocator of complex plastids. Outwardly, they 
appear quite different. But in the mechanism of their 
operations, they actually show close similarity, which 
indicates a common ancestor. Phylogenetic analyses also 
support their common ancestry. It shows that 
evolutionary forces effectively recycled the pre-existing 
components [41,56,57].  

Materialisation of these translocation machineries 
actually supported the compartmentalisation in the 
eukaryotic cells, which allowed the separation of 
complex metabolic processes [58]. Symbiogenetic 
processes played the most important role in assembling, 
and situating operational molecular translocation 
assemblies and subsequently compartmentalising the 
eukaryotic cell [7,30,58-60]. 

ERAD translocation molecular assembly exports 
misfolded proteins from the ER lumen into the cytosol, 
where they are degraded by the proteasome [61,62]. All 
essential components of this system have been found to 
be the chimera of the host and red algal endosymbiont 
[57,63-65].  

Peroxisomes are present in most eukaryotes and 
involved in various oxidative reactions [66]. Transport 
across the peroxisomal membrane into the matrix is 
facilitated by the so-called peroxisomal importomer [67-
69]. SELMA is pre-protein translocation molecular 
assembly which is present in secondary plastids and 
involved in the translocation of nucleus-encoded plastid 
proteins across the second outermost membrane of 
complex plastids in cryptophytes, haptophytes, 
heterokontophytes, and some apicomplexans 
[36,57,58,70-72].  

The above three protein translocation machineries 
share some interesting similarities at the level of 
mechanism. Each involves ubiquitination of transport 
intermediates by specific enzymes and subsequent 
extraction by AAA-ATPases. Their proteins also share a 
conserved domain structure. These evidences suggest a 
common origin for all three translocation molecular 
systems [58]. Phylogenetic analyses also support it 
[65,69,73]. In knitting together the transport 
infrastructure and processes for the compartments of 
eukaryotic cell, symbiogenesis not only recycled the pre-
existing components of transport systems but also it 
employed the prokaryotic mechanisms [58]. 

Translocation apparatus also triggered rearrangement in 
the DNA hereditary archives i.e. the transfer of 
symbiotic genes into the host nucleus [23].  

7. Conclusions 
It is argued that life stepped into the real cellular world 

by the fusion of two cup shaped ‘inside out ancestral cells’ 
which produced a protocell. In the initial stages of cellular 
evolution, membrane played important role in hosting the 
symbiosis among the biomolecules in this protocell. Here 
membrane materialised supramolecular assemblies of 
biomolecules which could perform important functions for 
the cell. Evolutionary forces selected the inheritance of 
important formations of membranes. Membrane heredity 
actually precedes the DNA heredity [22,74,75].  

Complex molecular assemblies of biomolecules in the 
membrane engaged in evolution of efficient digestive 
processes in the protocells. Perfection in the inheritance of 
membranes and efficient metabolic processes gave rise to 
the prokaryotic world. With the rearrangement and 
inventions of proteins, prokaryotic world materialised the 
machinery for photosynthesis. Photosynthesis emerges on 
the evolutionary timescale at around 2.5 billion years ago 
[30,76].   

Radical changes in a bacterium set the course for the 
evolution of eukaryotes. Perfection in phagotrophy 
amplified the pace of eukaryogenesis. Phagocytosis opened 
the possibilities for symbiosis. Symbiosis opened the doors 
for symbiogenesis. Evolutionary timescale highlights the 
working of symbiogenesis of mitochondria from a stable 
endosymbiotic consortium of an alpha-proteobacterium and 
phagotrophic ancestral eukaryote around 1.5-2 billion years 
ago. It materialised an efficient aerobic metabolism in the 
autotrophic eukaryotic world [77].  

Around half a billion years later, another symbiogenesis 
selected an endosymbiotic consortium between 
endosymbiotic cyanobacterium and a mitochondriate host. 
Here the eukaryotic world stepped into autotrophic realm. 
One interesting feature of symbiogenesis is that it preserved 
cellular heredity in its entirety. This mini-review focused on 
some salient features of symbiogenetic heredity of 
membranes in the eukaryotic world. It provided the 
eukaryotic world with around 13 kinds of genetic 
membranes [25].  

Eukaryotic cell could not sustain this diversity of genetic 
membranes without the symbiogenetic apparatus for 
protein import. This translocation machinery is also 
chimeric from the level of components of molecular 
assemblies to entire molecular assemblies. Symbiogenesis 
therefore exquisitely compartmentalised the eukaryotic cell. 
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