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Abstract: This paper concerns a problem of calibrating implied volatility in generalized Hull-White model from the market 

prices of zero-coupon bonds. By using the regularization method, we establish the existence and stability of the optimal solution, 

and give the necessary condition that the solution satisfies. Finally numerical results show that the method is stable and effective. 
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1. Introduction 

Interest rate is one of the most basic economic variables in 

financial market. In finance, the solutions to many problems, 

such as the design, the pricing and innovation of financial 

products, have to be based on the study of the term structure of 

interest rate. Research of the term structure and the dynamic 

risk management of interest rates directly relates to the 

financial market, especially the bond market's stability and 

prosperity. In recent years, along with the rapid development 

and expand of the bond market, many new types of bonds and 

other interest rate derivatives emerge constantly, the research 

on term structure of interest rate becomes more important. In 

finance, how to establish the interest rate model or 

characteristic the dynamic changes of the term structure 

effectively, thus to predict the future changes in interest rates 

scientifically, is difficult and meaningful. So far, a lot of 

interest rate models have been proposed and widely used. In 

general, assuming the short term interest rate as r , we use the 

following stochastic differential equation to establish the 

interest rate model 

( , ) ( , ) ( ),dr r t dt r t dZ tµ σ= +            (1) 

Where ( , )r tµ  is the drift term and denotes the 

instantaneous expectation of the interest rate changes, ( , )r tσ  

is called the volatility or diffusion term which denotes the 

instantaneous variance of the interest rate changes, ( )Z t  

denotes a standard Wiener process. 

Different interest rate models have the different drift or 

volatility terms, in which the most widely used interest rate 

model is the single factor model, such as Vasicek model, CIR 

model, Hull-White model(1990), CEV model and Hull-White 

model (1994) [1]-[5]. In [6], Hull and White give the 

generalized Hull-White model in which some function of the 

short-rate obeys a Gaussian diffusion process of the following 

form 

( ) ( ( ) ( ) ( )) ( ) ( ).df r t a t f r dt t dZ tθ σ= − +         (2) 

where ( ), ( )t a tθ  and ( )tσ  are deterministic functions of t , 

( )f r  is a function of r . The generalized Hull-White model 

contains many popular term structure models as special cases. 

In this paper, we consider the case that a  is a constant and 

( )f r r= . 

Since parameters in the interest rate model can not be 

directly observed, in order to truly describe the market data 

information, thus to better price the interest rate derivatives 

and risk measurement, it is necessary to solve the inverse 

problem of calibrating parameters that are used in the term 

structure model. Much research has been done on the inverse 

problem to reconstruct parameters from market prices [7]-[12]. 

At present, there are many methods to solve this kind of 

problems, such as regularization method, maximum 

likelihood method, full Bayesian method and optimization 

method [13]-[15]. In [16], Tang and Chen develop expansions 

for the bias and variance of parameter estimators for Vasicek 

and CIR processes, which helps to understand why the drift 

parameters are more difficult to estimate than the diffusion 
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parameter, and then they study the first order approximate 

maximum likelihood estimator for linear drift processes. A 

parametric bootstrap procedure is proposed to correct bias for 

general diffusion processes with a theoretical justification. In 

[17], Rainer gives the general structure of optimization in the 

context of calibration of stochastic models for interest rate 

derivatives. Based on the relevant market data, a novel 

numerical algorithm for the optimization of parameters in 

interest rate models is presented. In [18], Rodrigo and Mamon 

propose a new method to calibrate the Vasicek and CIR 

models by defining an appropriate generating function and 

deriving recursive relations between the derivatives of the 

generating function and the bond prices. The parameters of the 

models are then recovered by solving a system of linearly 

independent equations arising from the recursive relations. 

In all of the above papers, zero-coupon prices, yield rate 

curves, or forward rate curves are treated as inputs. In this 

paper, based on [18], with the regularization theory, we 

propose a new regularization method to calibrate the implied 

volatility of interest rate in generalized Hull-White model 

from the market prices of zero-coupon bond. By using the 

regularization method, we establish the existence and stability 

of the solution, and give the necessary condition the solution 

satisfies. Finally numerical results show that the method is 

feasible. 

The outline of this paper is as follows. In section 2, based on 

the generalized Hull-White model, we formulate the 

calibration problem. In Section 3, we address the 

regularization method to transform the calibration problem 

into the regularization problem and give the main results in 

this paper. In section 4, we present the results of our numerical 

experiments. In section 5, some concluding remarks are given. 

2. Formulation of the Calibration 

Problem 

In this section, based on the generalized Hull-White model, 

the calibration problem of implied volatility is formulated. 

In this paper, we consider the following generalized 

Hull-White model. Under the risk-neutral measure, suppose 

that the behavior of short-term interest rate ( )
t

r r r t= =  is 

modeled by the following stochastic differential equation  

( ( ) ) ( ) ( ),
t

dr t ar dt t dZ tθ σ= − +           (3) 

where a  is a constant speed of mean reversion, ( )Z t

denotes a standard Wiener process, ( ), ( )t tθ σ  are 

deterministic functions of time t , and ( ) /t aθ  represents the 

mean-reverting level. 

Denote the price of a zero-coupon bond at time t  with 

maturity T  by ( ),P t T  of which the face value is one unit. 

Based on the above model, it has a risk-neutral valuation 

representation 

( )

( | ( )),

T

t
r s ds

P e r t
−∫= E              (4) 

where ( )⋅E  denotes the expectation operator. Applying the 

general method for derivative security pricing [3], we get the 

partial differential equation for a zero-coupon bond in the 

form 

2 2

2

( )
( ( ) ) 0.

2

P t P P
t ar rP

t rr

σ
θ

∂ ∂ ∂
+ + − − =

∂ ∂∂
       (5) 

The final condition is given by 

( , ) 1.P T T =                   (6) 

It is known that the solution of the equations (5)-(6) has an 

exponential affine form [19] 

( , ) exp( ( , ) ( , )).
t

P t T A t T r B t T= −           (7) 

Substituting (7) into (5) gives 

2
( ) 2

( , ) ( , ) ( ) ( , ) 0, ( , ) 0,
2

t
A t T B t T t B t T A T T

σ
θ′ + − = =     (8) 

'( , ) - ( , ) 1 0,    ( , ) 0.B t T aB t T B T T+ = =         (9) 

Solving the above ordinary differential equations, we obtain 

2

2( )
( , ) ( , ) ( ) ( , ) ,

2
( )

T

t

s
A t T B s T s B s T ds

σ
θ= −∫     (10) 

( )
1

( , ) . 
a T t

e
B t T

a

− −−
=              (11) 

Given the market prices of zero-coupon bond *
(0, )P T  

with different maturities T , we consider the following 

calibration problem. 

Calibration problem. Determine the implied volatility 

function ( )tσ  such that the solution of (5)-(6) at initial time

0t =  satisfies 

* ˆ(0, ) (0, ), [0, ],P T P T T T∈≐           (12) 

where T̂  is the largest maturity of zero-coupon bond. 

Here the crucial step is how to define ≐ in (12), so that the 

theoretical price fits the empirical price as well as possible. 

The common definitions are 

*
(0, ) (0, ).P T P T=                  (13) 

*
log (0, ) log (0, ),P T P T=            (14) 

for all ˆ[0, ]T T∈  or the mean square error 

* 2

0
[ (0, ) (0, )] .

T

P u P u du−∫            (15) 

is minimized for each ˆ[0, ]T T∈ . 

In this paper, we define ≐  as 

*

0 0
log (0, ) log (0, ) ,

T T
n n

u P u du u P u du=∫ ∫       (16) 
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where n is a non-negative integer [18]. In other words, it can 

be interpreted as that all of the moments of log (0, )P ⋅  and 
*

log (0, )P ⋅  are equal. 

3. Regularization Method 

In this section, applying the regularization method to 

calibrate the implied volatility, we transform the calibration 

problem to the regularization problem and obtain the existence 

and stability of the solution, as well as the necessary condition 

that the solution satisfies. 

3.1. Calibration Problem Transformation 

Firstly, from the equation (7), we get 

0
log (0, ) (0, ) (0, ),P T A T r B T= −          (17) 

and then have 

*

0
0 0 0

(0, ) (0, ) log (0, ) ,
T T T

n n n
u A u du r u B u du u P u du− =∫ ∫ ∫   (18) 

From the equation (10)-(11), 

2

2

0

( )
(0, ) ( , ) ( ) ( , ) ,

2
( )

T s
A T B s T s B s T ds

σ
θ= −∫      (19) 

1
(0, ) ,

aT
e

B T
a

−−
=              (20) 

Thus

 
2

2

0 0 0

( )
(0, ) ( , ) ( ) ( , )

2
( )

T T u
n n s

u A u du u B s u s B s u dsdu
σ

θ= −∫ ∫ ∫  

2

2

0 0 0

( , )
( ) ( ) ( , )

2

n
T T T u

n

s

u B s u
s duds u s B s u dsduσ θ= −∫ ∫ ∫ ∫  

0 0 0
( ) ( , ) ( ) ( , ) ,

T T u
n

n
s L s T ds u s B s u dsduρ θ= −∫ ∫ ∫  

where  

( ) 2

2

2

(1 )
( ) ( ), ( , ) .

2
    

n a u s
T

n
s

u e
s s L s T du

a
ρ σ

− −−
= = ∫     (21) 

In the remainder of this paper, we take the calibration of 

volatility ( )tσ  equivalent to that of ( )tρ . Inserting the 

above equation into the equation (18) and rearranging it, we 

have 

0
( ) ( , ) ( ), 0,1, ,

T

n n
s L s T ds g T nρ = = …∫        (22) 

where 

*

0
0 0

( ) log (0, ) (0, )
T T

n n

n
g T u P u du r u B u du= +∫ ∫  

0 0
( ) ( , ) .

T u
n

u s B s u dsduθ+∫ ∫            (23) 

Define operators n
K  as follows 

0
: ( ) ( , ) ,

T

n n
K s L s T dsρ ρ= ∫            (24) 

then we have 

( ).
n n

K g Tρ =                (25) 

The equation (25) is a Fredholm integral equation of the fist 

kind and is an ill-posed problem under noisy propagation. 

Thus, the calibration problem is transformed into the 

following regularization problem which lies in minimization 

of the functional 

2 2

1

0

1 1
min ( ) : ( )

2 2

k

n n

n

J K g Tλρ
ρ ρ λ ρ

∈Ω
=

= − +∑ � � � � 2

2

1
,

2
λ ρ ′+ � �  (26) 

where 1 2 1 2
{( , ) , 0}λ λ λ λ λ= >∣  is the so-called regularization 

parameters, k is a limited nonnegative integer. ⋅� �  denotes 

the Euclidean 2
L -norm. Here we define Ω  as 

1 ˆ ˆ{ ( ) ([0, ]) | (0) 0, ( ) 0}.t H T Tρ ρ ρ′ ′Ω = ∈ = =      (27) 

which implies the volatility at the initial and long time is a 

constant. 

3.2. Main Results 

Theorem 1 (Existence) There exists at least one minimal 

element ρ ∈ Ω , such that 

( ) min ( ).J Jλ λρ
ρ ρ

∈Ω
=              (28) 

Proof. Suppose m
ρ  is a minimizing sequence, we have 

1
inf ( ) ( ) inf ( ) ,

m
J J J

m
λ λ λρ ρ

ρ ρ ρ
∈Ω ∈Ω

≤ ≤ +        (29) 

As ( )
m

J Cρ ≤� � , it is obviously to get ( , )
m n m

Kρ ρ  are 

bounded. Take a weak convergence subsequence arbitrarily 

and denote as ( ),
m n m

Kρ ρ  still for convenience. 

Thus 

, .
m n m n

K gρ ρ ρ→ →             (30) 

Form the property of n
K , we can get ,ρ ∈ Ω

n n
K gρ = . 

Hence as the results of Lebesgue control convergence 

theorem and the weakly lower semi-continuity of 2
L -norm, 

we obtain 

( ) lim inf ( ) min ( ).
n

n

J J J
ρλ λ λρ ρ ρ

→∞ ∈Ω
≤ =        (31) 

Therefore ( ) min ( ),J J
ρλ λρ ρ

∈Ω
=  which means ρ  is one of 

the solutions of the regularization problem (26). 

Theorem 2 (Stability) Suppose ,
( )

n
g Tδ  are data with 

perturbation and 

,
( ) ( ) .

n n
g T g Tδ δ− ≤� �              (32) 
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In addition, we assume ,
( ), ( )t tλ δ λρ ρ  are the solutions of 

the regularization problem (26) respectively corresponding to 

,
( )

n
g Tδ  and ( ).

n
g T  Let ,

( ) ( ) ( ),e t t tλ λ δρ ρ= −  then we have 

1

.
1

2
e

k δ
λ

≤
+

� �                (33) 

Proof. As ,
( )tλ δρ  is the minimal solution of ( )J λ ρ  

corresponding to ,
( ),

n
g Tδ  then for 0 1,α∀ ≤ ≤  

,
( ) ,t eλ δρ α+ ∈ Ω  we have 

, 0
( ( ) ) | 0.

d
J t e

d
λ λ δ αρ α

α =+ =           (34) 

Calculating the above equation gives 

, , 1 , 2 ,

0

, , , 0.
k

n n n

n

K g K e e eλ δ δ λ δ λ δρ λ ρ λ ρ
=

′ ′< − > + < > + < >=∑  (35) 

Similarly, we obtain 

1 2

0

, , , 0.
k

n n n

n

K g K e e eλ λ λρ λ ρ λ ρ
=

′ ′< − > + < > + < >=∑   (36) 

Subtracting the equation (36) from (35) and using the 

Schwartz's inequality yields 

2 2 2

1 2

0

k

n

n

K e e eλ λ
=

′+ +∑� � � � � �  

,

0

,
k

n n n

n

g g K eδ
=

= < − >∑  

2
2

0 0

( 1)
.

4

k k

n n

n n

k
K e K e

δδ
= =

+≤ ≤ +∑ ∑� � � �       (37) 

then 

2
2 2 2

1 1 2

( 1)
.

4

k
e e e

δλ λ λ +′≤ + ≤� � � � � �      (38) 

So we have 

1

1
.

2

k
e

δ
λ

+≤� �  

The above theorem shows that the solution of the 

regularization problem (26) is stable. In the following, we will 

give the necessary condition by calculating the Euler equation. 

Theorem 3 (Necessary condition) Suppose ( )tλρ  as the 

solution of the regularization problem (26), then ( )tλρ
satisfies 

1 2

0

( ) 0,
k

n

n

H λ λ λρ λ ρ λ ρ
=

′′+ − =∑         (39) 

where 

ˆ ˆ

0

ˆ( , ) ( ) ( ) ( , ) , [0, ],
T T

n n n n
s

H L s t t dt g T L s T dT s Tλ λρ ρ= − ∈∫ ∫ɶ    (40) 

and 

( , ) ( , ) , [0, ],
( , )

ˆ( , ) ( , ) , [ , ].

T

n n
s

n T

n n
t

L s T L t T dT t s
L s t

L s T L t T dT t s T

∈
=

∈






∫

∫
ɶ       (41) 

Proof. For 0 1α∀ ≤ ≤ , assume 

*
( ) ( ) ( ( ) ( )).t t t tλ λρ ρ α ρ ρ= + −ɶ          (42) 

Obviously, we have ( )tρ ∈ Ωɶ  if 
*
( ), ( ) .t tλρ ρ ∈ Ω  By using 

the Fubini theorem, we get 

0

( )
0.

d

d

λ
α

ρ
α = =
ɶ
∣

J
             (43) 

Denote 
*
( ) ( ) ( )t t tλρ ρ ϕ− =  and integral by parts, 

1 2

0

, ,( ) 0, .
k

n n n

n

K g T Kλ λ λρ ϕ λ ρ ϕ λ ρ ϕ
=

′′< − > + < > − < >=∑  (44) 

( ),
n n n

K g T Kλρ ϕ< − >  
ˆ

0 0
( ( )) ( , ) ( )

T T

n n n
K g T L s T s dsdTλρ ϕ= −∫ ∫  

ˆ ˆ

0
( ) ( ( )) ( , )

T T

n n n
s

s K g T L s T dTdsλϕ ρ= −∫ ∫  

ˆ ˆ ˆ

0 0
( ) ( , ) ( ) ( ) ( , )( )

T T T

n n n
s

s L s t t dt g T L s T dT dsλϕ ρ= −∫ ∫ ∫ɶ  

, ,
n

H λρ ϕ=< >                 (45) 

we have 

1 2

0

, 0.
k

n

n

H λ λ λρ λ ρ λ ρ ϕ
=

′′< + − >=∑          (46) 

As the arbitrariness of ϕ , we can get the Euler equation as 

following 

1 2

0

0,
k

n

n

H λ λ λρ λ ρ λ ρ
=

′′+ − =∑  

which is the necessary condition λρ  satisfies. 

4. Numerical Experiments 

In this section, we discuss the implementation for the 

calibration problem, present two numerical examples to 

illustrate the effectiveness of the proposed method, and 

examine the dependence of the calibration results on all the 

parameters k , λ  and the noise level δ . 

4.1. Discrete Scheme 

Suppose the market prices of zero-coupon bond with 

maturity dates 
0 1 2

ˆ0
N

T T T T T= < < < < =⋯  are given. 

Without loss of generality, we assume the dates are equal 
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distance distribution with ˆ /T T N∆ = . In addition, suppose 

that when 0
T T= , 0

( )tρ ρ= , when 
1

(1 )
i i

T T T i N
−

< ≤ ≤ ≤ , 

( )
i

tρ ρ= . 

Define Root Mean Square Error (RMSE) as follows 

2

1

1
( ( ) ) ,

N

i i

i

RMSE T
N

ρ ρ
=

= −∑            (47) 

where ( )
i

Tρ  is the exact solution and i
ρ  is the numerical 

solution. 

Based on midpoint discrete scheme, as i
s T=

( 1, 2, , 1)i N= … − , The two integral equations in the right side 

of (40) can be discretized respectively as following 

1

1ˆ

0
0

( , ) ( ) ( , ) ( )
j

j

N
T T

n i n i
T

j

L T t t dt L T t t dtρ ρ+
−

=

≈∑∫ ∫ɶ ɶ  

1
1

1

0 2

( , ) ,
2

N
j j

n i
j

j

L T T T
ρ ρ−

+

+=

+
≈ ∆∑ ɶ           (48) 

where 1

2

.
2

j
j

T
T T

+

∆
= +  

1
ˆ 1

( ) ( , ) ( ) ( , )
i

j

j

T

n n i
T

N
T

n n i
T

j i

g T L T T dT g T L T t dt
+

−

=

≈∫ ∑∫  

1
1

1

2

( ) ( )
( , ) .

2

N
n j n j

n i
j

j i

g T g T
L T T T

−
+

+=

+
≈ ∆∑         (49) 

In addition, the third term in the left side of the equation (39) 

can be discretized as

 
1 1

2

2
.

i i i

i

T

ρ ρ ρ
ρ + −− +′′ =

∆
             (50) 

Above all, we obtain 

1
1

1 1

0 0 2

( , )
2

k N
j j

n i i
j

n j

L T T T
ρ ρ

λ ρ
−

+

+= =

+
∆ +∑∑ ɶ  

1 1

2 2

2
, 1, 2, , 1.     i i i

i
F i N

T

ρ ρ ρ
λ + −− +

− = = … −
∆

     (51) 

where  

1
1

1

0 2

( ) ( )
( , ) .

2

k N
n j n j

i n i
j

n j i

g T g T
F L T T T

−
+

+= =

+
= ∆∑∑       (52) 

The initial and boundary conditions in the equation (27) 

imply that 

0 1 1
, .

N N
ρ ρ ρ ρ−= =             (53) 

In order to further simplify the symbols, we introduce the 

notation ,
( 1,2, , 1)

n

i j
l i N= … −  as follows 

1 1
1

2 2

, 1 1

2 2

1

2

1
( ( , ) ( , )) , 1,

2

( ( , ) ( , )), 2, , 1,
2

( , ), .
2

n i n i

n

i j n i n i
j j

n i
N

L T T L T T T j

T
l L T T L T T j N

T
L T T j N

+

− +

−

+ ∆ =

∆
= + = … −

∆
=











ɶ ɶ

ɶ ɶ

ɶ

    (54) 

Therefore 

1 2

0

( ) ,
k

n

n

A E B Fλ λ ρ
=

+ − =∑           (55) 

where E  is an identity matrix of N N× , 

1,1 1,2 1, 1 1,

2,1 2,2 2, 1 2,

1,1 1,2 1, 1 1,

,

0 0 1 1

n n n n

N N

n n n n

N N

n

n n n n

N N N N N N

N N

l l l l

l l l l

A

l l l l

−

−

− − − − −

×

=

−

 
 
 
 
 
 
 
 

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

1

2

2

1

,

1 1

1 2 1
1

,

1 2 1

1 1 0

N

N N

F

F

F

B
T

F −

×

=

−

−

=
∆

−

−

   
   
   
   
   
   
   
   

⋱ ⋮  

4.2. Numerical Results

 

In the following, we give two examples for the calibration 

of implied volatility and consider the dependence of the 

numerical results on the parameters: ,k  λ  and the noise 

level δ . 

Example 1. We assume 0.05,a =  
0

0.03,r =  0.5

( ) 0.1 ,
t

t teθ −=  

ˆ 5, 10,T N= =  
3 2

2
5

( ) ( ) 0.06 0.002( ).
3 2

t t
t tρ σ= = − − +  

The market prices for zero-coupon bonds with different 

maturities are calculated by the equation (7). 

Table 1. RMSE for different k and λ . 

*λλλλ  5 3e −  1 2e −  5 2e −  1 1e −  

0k =  0.0037 0.0046 0.0067 0.0077 

1k =  0.0020 0.0020 0.0032 0.0040 

2k =  0.0018 0.0018 0.0016 0.0016 

3k =  0.0017 0.0015 0.0014 0.0013  

Table 2. Minimum RMSE and the corresponding λ . 

 0k =  1k =  2k =  3k =  

1
λ

 
0.0038 0.0309 0.2308 0.9362 

2
λ

 
0.0020 0.0174 0.1392 0.6538 

RMSE 0.0011 9.4123e-4 8.1878e-4 7.9297e-4 
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First we consider the parameter k  and assume that 
*

1 2
.λ λ λ= =  Let *

5 3,1 2,5 2,1 1e e e eλ = − − − −  and 

0,1, 2, 3k = . Figure 1a-1d show the calibration results with 

different k  and *λ . Table 1 shows the corresponding 

RMSE. From Figure 1a-1d, it is clear that when *λ  is the 

same, a larger k  gives better calibration results, which can 

be seen obviously form Table 1. That is easy to be 

understood from the expression (26) of regularization 

problem. In addition, from Figure 1a-1d we can also find that 

the error of the numerical solution at the end point is 

relatively large, which is due to that the kernel function 

( ), 0
n

L T T = . But as the variable k  gets larger, the error at 

the end point is well improved. 

Next we consider the regularization parameters  

 

Figure 1a. Calibration results for different k  and λ . 

 

Figure 1b. Calibration results for different k  and λ . 

 

Figure 1c. Calibration results for different k  and λ . 

 

Figure 1d. Calibration results for different k  and λ . 

 

Figure 2. Exact and calibrated volatilities. 
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Figure 3. Error for different δ . 

1 2
( , )λ λ λ= . From Table 1, we can see that for different k , 

the values of λ  corresponding to minimum RMSE are 

different. Here we use the linear search method to choose the 

values of 1 2
( , )λ λ λ= . Table 2 shows the minimum RMSE 

and the corresponding λ  for different k  which can further 

verify that larger k  yields better calibration. Figure 2 shows 

the comparison of the corresponding numerical solution and 

the exact solution for different k . 

Finally we consider the noise level parameter δ . In the 

following we fix 3k = , 
1 2

( , ) (0.9362, 0.6538).λ λ λ= =  

Suppose that the noisy data takes the form 

( ) ( )(1 ),
n n

g T g T z
δ δ= +              (56) 

where z  stands for uniformly distributed random numbers. 

Then we describe the influence of the noisy data to the 

numerical results by the following expression 

2

1

1
( ) ,

N

i i

i

Error
N

δρ ρ
=

= −∑           (57) 

where i

δρ , i
ρ  are respectively the numerical solutions with 

and without noisy data. 

Figure 3 plots the corresponding RMSE with different 

noise levels δ . It can be seen that smaller noise levels yield 

smaller RMSE and better calibration results which means 

that the numerical result is stable and our proposed method is 

feasible. 

Example 2. Let 2
( ) ( ) 0.01cos( ) 0.06

5
t t t

π
ρ σ= = + , and the 

other variables are the same as those for example 1. 

Again, we consider the three parameters which are the same 

as those in the first example. Considering the parameter k , 

table 3 gives the RMSE for different k and *λ . Similarly, it can 

be seen that a larger k is needed in order to achieve better 

calibration for the same 1
λ and 2

λ . 

 

Table 3. RMSE for different k  and λ . 

*λλλλ  5 3e −  1 2e −  5 2e −  1 1e −  

0k =  0.0151 0.0171 0.0209 0.0227 

1k =  0.0092 0.0101 0.0138 0.0157 

2k =  0.0053 0.0062 0.0080 0.0090 

3k =  0.0023 0.0027 0.0043 0.0051 

Considering the parameter ,λ  table 4 gives the minimum 

RMSE and the corresponding λ  for different k . In addition, 

the numerical solutions are plotted against exact solution with 

different parameters of k  in Figure 4. 

Table 4. Minimum RMSE and the corresponding λ . 

 0k =  1k =  2k =  3k =  

1
λ

 
0.0091 0.0785 0.6030 0.9940 

2
λ

 
8.65e-4 0.0078 0.0630 0.1420 

RMSE 0.0010 8.4053e-4 7.0756e-4 6.9624e-4 

 

Figure 4. Exact and calibrated volatilities. 

 

Figure 5. Error for different δ . 

Finally, in order to consider the parameter δ , the other two 

parameters are fixed as 3k = , 1 2
( , )λ λ λ= = (0.9940, 0.1420).  

Figure 5 shows the corresponding error for different δ  from 
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which we can see that smaller δ  contributes to a better 

calibration. 

In conclusion, the results and conclusions obtained from 

example 2 are the same as those for the first example, which 

further verify that the proposed method is feasible. 

Based on all of the above observation, it can be concluded 

that a larger parameter of k  is preferred in order to obtain a 

better calibration. 

5. Conclusion 

In this paper, we present a stable and effective method for 

the calibration of the implied volatility in generalized 

Hull-White model from the market prices of zero-coupon 

bonds with different maturities. Based on the generalized 

Hull-White model, we transform the calibration problem to 

the regularization problem and establish the existence, 

stability of the solution and necessary condition that the 

solution satisfies. In the numerical experiment, two examples 

are considered and the effects of all the parameters are 

reported on the calibration. The results show that larger k

yields better calibration and the proposed method is stable and 

effective. We point out some future directions along the line of 

calibration of parameters in interest rate models. It is 

interesting and challenging to solve the problem using the real 

market data. An even more challenging problem is to consider 

a calibration problem of two or even more parameters at the 

same time in the model, such as the drift term and the volatility 

term. We hope to be able to address these issues and report the 

progress elsewhere in the future. 
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