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Abstract: To realize optical wireless power transmission, atmospheric propagation of eye-safe wavelength (1.57µm) laser 
beams was theoretically investigated. Laser beams are affected by the presence of water vapor and aerosols which absorb and 
scatter the laser energy. The scattering coefficients of water molecules and aerosols were estimated to be about 6.3 × 10-7 and 5.6 
× 10-5 m-1, respectively, at wavelength (λ0) of 1.57µm. Furthermore, the absorption coefficients of moist air at 30% relative 
humidity and aerosols were estimated to be about 6.16 × 10-3 and 2.52 × 10-5 m-1, respectively, at λ0 = 1.57µm. Then simulation 
of laser beam propagation in the moist atmosphere at λ0 = 1.57µm was performed using these coefficients. Under the condition of 
no wind, the beam intensity decreases rapidly with increasing the length z and the rate of decrease slows down as the beam radius 
(ω) increases. When zh is defined as the z where the normalized intensity is halved, the zh (= 25 m) at ω = 20 mm when input 
power P = 10 W is about three times longer than that (= 8 m) when P = 100 W. This result indicates that the thermal distortion of 
laser beams due to accumulated heat around the z axis becomes more conspicuous as the optical power increases. The effect of 
this thermal beam distortion can be weakened when the laser beam is subject to crosswinds. Under the condition of gentle 
uniform wind with wind velocity v = 5 m/s, propagation of laser beams with ω = 20 mm was studied when P = 100 W. The zh (= 
105 m) when v = 5 m/s is about 13 times longer than that (= 8 m) when v = 0 m/s. Thus, under conditions of v = 5 m/s and 30% 
relative humidity, laser beams with P = 100 W and ω = 20 mm can propagate over 100 m without damaging the initial beam 
shape at λ0 = 1.57µm. 
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1. Introduction 

Wireless power transmission (WPT) is an important 
technology to transmit energy remotely from a power source 
to an electrical apparatus [1]. WPT technology relies on 
electromagnetic radiation, such as microwaves and/or optical 
beams, to enable long-distance energy transfer. 

As for microwave WPT (MWPT), a large-sized 
phased-array antenna is necessary for increasing the 
directivity and transmission efficiency owing to large 
diffraction effect of microwaves. In addition, high power 
electromagnetic radiation results in the serious issue of 
electromagnetic interference (EMI) to the target apparatus and 
surrounding electrical devices. 

 
Figure 1. Basic concept of OWPT. 

On the other hand, optical WPT (OWPT) is the only WPT 
technology with the advantages of long transmission distance, 
high directivity, and no EMI noise [2]. Even compared with 
MWPT, OWPT has the potential to maintain high efficiency 



16 Yoshito Shuto:  Effect of Water and Aerosols Absorption on Laser Beam Propagation in Moist Atmosphere at   
Eye-Safe Wavelength of 1.57 µm 

over long transmission distances due to small diffraction 
effect of light. Figure 1 shows basic concept of OWPT. 

The light source (laser or light emitting diode) and the O/E 
converter (solar cell, etc.) are basic devices of OWPT. Solar 
cell has advantages of high O/E conversion efficiency and 
thin thickness. 

 
Figure 2. Absorption spectra of commercially available solar cells and 

semiconductors. 

Figure 2 shows the absorption spectra of several 
commercially available solar cells and semiconductors. As 
shown in Figure 2, GaAs and hydrogenated amorphous 
silicon (a-Si:H) exhibit large absorption coefficients (αs) of > 
106 m-1 at the wavelength of < 0.8 and < 0.65µm, 
respectively. These αs are larger than that of crystalline 
silicon (c-Si). On the other hand, GaSb exhibits large α of > 
105 m-1 at the wavelength range from 1.4 to 1.7µm. 

Miyamoto and coworkers reported vertical cavity surface 
emitting laser (VCSEL) array and/or light emitting diode 
(LED) based OWPT systems using c-Si and/or GaAs solar 
cells [2-6]. In their systems, operation wavelengths of light 
sources were 0.975/0.850 and/or 0.810µm. 

Increasing the laser power raises the issue of safety to the 
human body. Laser safety is governed by the IEC 60825-1 
standard [7]. This standard gives safety limits for exposure to 
laser light. Safety limits vary by wavelength and duration of 
exposure. Generally speaking, the longer the wavelength and 
the shorter the irradiation time, the higher the safety [8]. 

Sahai and Graham proposed laser diode array based 
OWPT systems using a commercially available GaSb 
semiconductor as an O/E converter [9]. In their system, a 
commercially available multi-mode InGaAsP/InP 
edge-emitting laser diode array was used as a light source 
and the oscillation wavelength of the semiconductor laser 
was set to 1.40µm considering laser safety. 

Furthermore, Mukherjee and coworkers reported laser 
power transfer experiments across a distance of 30 m at an 

eye-safe wavelength of 1.55µm [10]. In their system, a diode 
pumped high power fiber laser and lattice-matched 
InGaAsP/InP were used as a light source and O/E converter. 
A maximum O/E conversion efficiency of about 45% was 
achieved at an incident laser power density of about 1 kW/m2 
and above [10-12]. 

High-power erbium (Er)-ytterbium (Yb) co-doped fiber 
lasers operating in the eye-safe wavelength regime around 
∼1.5-1.6µm have been investigated by several research 
institutes [13-23]. A high output power of ≥ 100 W in the 
continuous-wave (CW) laser operation at λ0 ≃ 1.57µm using 
cladding-pumped Er-Yb-co-doped large-core fibers [17, 21, 
23] has been reported. 

In order to transfer high-power laser beam to a distant O/E 
converter, the laser beam must propagate through the moist 
atmosphere. Atmospheric propagation of laser beams at 
eye-safe wavelength of 1.57µm is affected by the presence of 
water molecules and aerosols which absorb and/or scatter the 
laser energy. 

In this article, we investigated the effect of water 
molecules and aerosol on high-power laser beam propagation 
in the moist atmosphere at λ0 = 1.57µm. 

2. Extinction Coefficients of Water and 

Aerosols 

The relationship between the extinction coefficient (αext), 
the absorption coefficient (αabs), and the scattering coefficient 
(αsca) is given by 

���� � ���	 
 �	��            (1) 

2.1. Scattering Coefficients 

Scattering of laser beams in the atmosphere is caused by 
gaseous molecules and aerosols. The molecular scattering is 
appreciable only for the shorter visible wavelengths while 
beyond about 1µm the scattering can be attributed to the 
atmospheric aerosols [24]. 

The αsca value of water molecules in the atmosphere was 
6.0-6.5 × 10-7 m-1 at λ0 = 1.57µm [25]. 

On the other hand, the αsca values of aerosols vary greatly 
depending on weather conditions, especially the absolute or 
the relative humidity, and seasons [26]. If the aerosol size 
distribution is known, as well at the effective index of 
refraction of the aerosol, the αsca can be calculated using the 
Mie scattering theory [27-29]. 

Barnhardt and Streete estimated the αsca values at various 
relative humidity using a two-component composite of 
continental and maritime size distributions of aerosols [24]. 
Their estimated αsca value for a 2.5:1.0 continental: maritime 
mixing for 50% relative humidity was about 5.6 × 10-5 m-1 at 
λ0 = 1.57µm [24]. 

McClatchey and Selby reported aerosol scattering data for 
both clear (23-km visibility) and hazy (5-km visibility) 
conditions [30]. The αsca value for clear atmosphere condition 
was about 6.2 × 10-5 m-1 at λ0 = 1.57µm [30]. 
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Estimated αsca value (5.6 × 10-5 m-1) of aerosols is close to 
that (about 6.2 × 10-5 m-1) for clear condition. 

2.2. Absorption Coefficients 

2.2.1. Water 

In the atmospheric absorption at λ0 = 1.57µm, the 
dominant molecular absorber is water vapor. 

 
Figure 3. Absorption coefficients of water. 

Figure 3 shows the absorption coefficients of water at 293 
K for the spectral region from 0.2 to 1.8µm [31, 32]. 

As shown in Figure 3, water molecules exhibit a strong 
absorption peak at 1.45µm and an absorption coefficient αw 
of liquid water is about 8.0 × 102 m-1 at λ0 = 1.57µm [31]. 

On the other hand, the relationship between the water 
vapor density ρv (unit: kg m-3) at 300 K and relative humidity 
h is given by the following equation [33]. 

�
 � 0.02557 ∙ �              (2) 

When relative humidity h is 30%, the ρv value at 300 K 
was estimated to be about 7.67 × 10-3 kg m-3 by using Eq. (2). 

By comparing this water vapor density with the density ρ 
(= 996.62 kg m-3 [34]) of the saturated water at 300 K, the 
water content cw per 1 m3 of moist air at 30% relative 
humidity was estimated to be about 7.7 × 10-6. 

By using cw and αw, the absorption coefficient αabs of moist 
air at 30% relative humidity is given by 

���	 � �� ∙ ��              (3) 

By using Eq. (3), the αabs of moist air at 30% relative 
humidity was estimated to be 6.16 × 10-3 m-1 at λ0 = 1.57µm. 

2.2.2. Aerosols 

Aerosol light absorption in the atmosphere is dominated by 
black carbon (BC) with additional significant contributions 
from brown carbon (BrC) and mineral dust (MD) [35]. The 
αabs values of aerosols have been estimated at the visible and 
near-visible wavelengths [35-44]. 

In this subsubsection, the αabs value of aerosols (BC, BrC, 
and MD) at λ0 = 1.57µm were estimated as follows. 

Parameters related to aerosol absorption are shown in 
Table 1. 

Table 1. Parameters of aerosol absorption. 

Parameter Unit BC BrC MD 

kVIS - 0.79 [36] 0.27 [41] 0.0027 [44] 
βVIS 106 m-1 18.1 6.2 0.062 
βNIR 106 m-1 6.3 1.3 0.022 
AAC - 1.0 1.5 1.0 
ρ kg m-3 1,350 [34] 1,350 [34] 1,510 [34] 
c µg m-3 ∼5 [45] ∼2 [46] ∼18 [47] 
αNIR 10-5 m-1 2.3 0.19 0.027 

In this table, the subscripts VIS and NIR indicate that the 
physical properties were identified at wavelengths (λ) of 0.55 
and 1.57µm, respectively. 

k and β are the imaginary part of the refractive index and 
the absorption coefficient of an aerosol material. 

βVIS is related to kVIS as 

���� � ����� 
!�� ,               (4) 

where λVIS = 0.55µm. 
On the other hand, βNIR is related to βVIS as 

�"�# � ���� $!%�&!�� '
())*

,        (5) 

where λNIR = 1.57µm and AAC is the absorption Ångström 
coefficient [48]. AAC close to 1 is expected in spectral 
regions where the refractive index of the aerosol material has 
a weak spectral dependence, just like BC [36, 41] and MD, 
whereas AAC = 1.5 is assumed to BrC [41]. 

By using the mass concentration c, mass density ρ, and 
βNIR, the absorption coefficient αNIR of the aerosol material is 
given by 

�"�# � �
+�"�#               (6) 

As shown in Table 1, the αNIR value of BC is larger than 
those of BrC and MD. The sum of αNIR values of BC, BrC, 
and MD is defined as the absorption coefficient αabc of 
aerosols. 

This αabs (= 2.52 × 10-5 m-1) is smaller than that (6.16 × 
10-3 m-1) of moist air at 30% relative humidity. 

McClatchey and Selby reported aerosol absorption data for 
both clear (23-km visibility) and hazy (5-km visibility) 
conditions at λ0 = 1.57µm [30]. The αabs values for clear and 
hazy conditions were about 1.0 and 4.9 × 10-5 m-1, 
respectively [30]. The αabs (2.52 × 10-5 m-1) estimated above 
is between the values of the clear and hazy condition. 

Scattering and absorption coefficients of water vapor and 
aerosols estimated at λ0 = 1.57µm are listed in Table 2. 

Table 2. Scattering and absorption coefficients at 1.57µm. 

Parameter Unit 
Water Vapor 

(30%RH) 

Aerosols (BC, 

BrC, MD) 

αsca 10-5 m-1 0.063 5.6 
αabs 10-3 m-1 6.16 0.0252 

In the following calculation, the sum (= 6.19 × 10-3 m-1) of 
αabs values of water vapor and aerosols was used as the 
absorption coefficient αabs of the moist atmosphere. On the 
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other hand, the extinction coefficient αext (= αabs + αsca) was 
used as α. 

3. Simulation of Gaussian Laser Beam 

Propagation 

Propagation of Gaussian laser beams in the moist 
atmosphere was investigated theoretically. 

3.1. Laser Beam Propagation with No Crosswind 

In this subsection, for the sake of analysis, we assumed 
that there is no relative motion (no wind) between the laser 
beam and the moist air. Laser beam propagates along the z 
direction at λ0 = 1.57µm. 

When laser beams propagate in the moist atmosphere, 
thermal distortion of laser beams arises because the absorbed 
laser power in the atmosphere changes the index of refraction 
and therefore changes the beam intensity itself [49]. A stable 
state is created by balancing the dissipation of heat due to 
heat conduction in the xy-plane orthogonal to the traveling 
z-direction of light and the increase in heat due to absorption 
of laser power by water vapor and aerosols in the 
atmosphere. 

The steady state solution for an initially collimated 
Gaussian laser beam propagating through the atmosphere at a 
point z away from the output end (z = 0) of laser was derived 
as follows: [49, 50]. 

�	-�,/,01
�2 � exp 67�8 7 �9:/9

;9 < =->, ?, 8, @, A1    (7) 

where I0 = I (0, 0, 0) and ω is the beam radius of the 
Gaussian laser beam. In this equation, the intensity I (x, y, z) 
was normalized by dividing by I0. 

The function g represents the effect of thermal distortion 
of the laser beam. This function is given by 

g (x, y, z, P, ω) 

� exp B $CDCE'F!G�;9 H8 
 �IJKLMN(O
PKLM Q R(S�9:/9T/;9V       (8) 

where ∂X/ ∂Y (= -0.92 × 10-6 K-1 [33]), λ (= 0.02614 W m-1 
K-1 [34]), and n (= 1.000274) are the thermal coefficient of 
the refractive index, thermal conductivity, and refractive 
index of the moist atmosphere at 300 K and λ0 = 1.57µm, 
respectively. P is the initial power of the Gaussian laser 
beam. 

When x = y = 0, Eq. (7) can be rewritten as 

�-Z,Z,01
�2 � exp B7�8 
 $CDCE'F

!G�;9 H8 
 �IJKLMN(O
PKLM QV       (9) 

The normalized intensity distributions of laser beam at ω = 
10, 20, 30, and 40 mm were calculated using Eq. (9) when P 
= 10 or 100 W, 30% relative humidity, and λ0 = 1.57µm. The 
calculated results are shown in Figures 4 and 5. 

 
Figure 4. Normalized intensity distributions of laser beams with P = 10 W 

and ω = 10, 20, 30, and 40 mm at 30% relative humidity and λ0 = 1.57µm. 

 
Figure 5. Normalized intensity distributions of laser beams with P = 100 W 

and ω = 10, 20, 30, and 40 mm at 30% relative humidity andλ0 = 1.57µm. 

As shown in Figures 4 and 5, the beam intensity decreases 
rapidly with increasing z and the rate of decrease slows down 
as ω increases. 

Let zh be the z where the normalized intensity is halved, 
then the zh (= 25 m) at ω = 20 mm when P = 10 W is about 
three times longer than that (= 8 m) when P = 100 W. 

This result indicates that the thermal distortion of laser 
beams due to accumulated heat around the z axis becomes 
more conspicuous as the optical power increases. 

The effect of this thermal beam distortion can be 
weakened when the laser beam is subject to crosswinds [51]. 

In the following subsection, we described the calculation 
results of Gaussian laser beam propagation in moist 
atmosphere with gentle uniform crosswind at λ0 = 1.57µm. 

3.2. Laser Beam Propagation with Gentle Uniform 

Crosswind 

When an initially collimated Gaussian laser beam 
propagates in the moist atmosphere with transverse air flow, 
thermal distortion of the beam is not symmetrical around the 
z axis because of the asymmetry introduced by the 
one-dimensional wind velocity. 

For the sake of analysis, we assumed that there is a 
uniform wind with the velocity v in the x direction. 

Taking into account this problem, the steady state solution 
for the initially Gaussian laser beam was derived by 
Gebhardt and Smith [52]. The solution is as follows: 
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Here ρ (= 1176.3 kg m-3 [34]) and Cp (= 1007 J kg-1 K-1 

[34]) are the density and specific heat of the moist 
atmosphere at 300 K, respectively. erf (x) is the error 
function with respect to x. 

For the function f, the following formula holds for all z. 

∬f	->, ?, 81n>	n?	 � �oXpqrXq           (12) 

 
Figure 6. Normalized intensity distribution of laser beam at z = 0 m with v = 5 m/s and 30% relative humidity. 

 
Figure 7. Normalized intensity distribution of laser beam at z = 50 m with v = 5 m/s and 30% relative humidity. 

 
Figure 8. Normalized intensity distribution of laser beam at z = 100 m with v = 5 m/s and 30% relative humidity. 
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Figure 9. Normalized intensity distributions of laser beams with P = 100 W 

and ω = 20 mm when v = 0 and 5 m/s, 30% relative humidity and λ0 = 

1.57µm. 

The intensity distributions of laser beam at z = 0, 50, and 
100 m were calculated using Eq. (10) when v = 5 m/s, P = 
100 W, ω = 20 mm, 30% relative humidity, and λ0 = 1.57µm. 
The calculated results are shown in Figures 6-8. 

As shown in Figures 7 and 8, the beam intensity decreases 
with increasing z without damaging the initial beam shape. 
At z = 100 m, the intensity of laser beam is about half of the 
initial intensity at z = 0 m. 

When x = y = 0, the normalized intensity distributions of 
laser beam with P = 100 W and ω = 20 mm were calculated 
using Eq. (10) when v = 5 m/s, 30% relative humidity, and λ0 
= 1.57µm. The calculated results are shown in Figure 9. For 
reference, this figure also shows the calculation results when 
v = 0 m/s. 

As shown in Figure 9, the zh (= 105 m) when v = 5 m/s is 
about 13 times longer than that (= 8 m) when v = 0 m/s. 

When a lattice-matched InGaAsP/InP is used as an O/E 
converter for 1.57µm laser beams, a maximum O/E 
conversion efficiency (about 45%) was achieved at an 
incident laser power density of about 1 kW/m2 and above 
[10-12]. 

If P = 100 W and ω = 20 mm is assumed, an incident laser 
power density of about 1 kW/m2 and above is achieved when 
the normalized intensity I / I0 is larger than 0.0126. 

This minimum I / I0 (0.0126) is realized at z ∼ 610 m when 
v = 5 m/s, 30% relative humidity, and λ0 = 1.57µm. 

The intensity distribution of laser beam at z = 610 m were 
calculated using Eq. (10) when v = 5 m/s, P = 100 W, ω = 20 
mm, 30% relative humidity, and λ0 = 1.57µm. The calculated 
result is shown in Figure 10. 

 
Figure 10. Normalized intensity distribution of laser beam at z = 610 m with v = 5 m/s and 30% relative humidity. 

As shown in Figure 10, the laser beam is shifted into the 
direction of the flow and the distorted crescent shape of the 
laser beam appears. This is a self-induced thermal lens effect 
caused by thermal distortion of laser beam [52]. 

Thus, under conditions of v = 5 m/s and 30% relative 
humidity, laser beams with P = 100 W and ω = 20 mm can 
propagate over 100 m without damaging the initial beam 
shape at λ0 = 1.57µm. 

4. Conclusion 

Atmospheric propagation of eye-safe wavelength (1.57µm) 
laser beams is affected by the presence of water vapor and 
aerosols which absorb and scatter the laser energy. The 

scattering coefficients of water molecules and aerosols were 
estimated at wavelength (λ0) of 1.57µm. Furthermore, the 
absorption coefficients of moist air at 30% relative humidity 
and aerosols were estimated to be about 6.16 × 10-3 and 2.52 × 
10-5 m-1, respectively, at λ0 = 1.57µm. Then laser beam 
propagation in the moist atmosphere at λ0 = 1.57µm was 
theoretically investigated using these coefficients. Under the 
condition of no wind, the beam intensity decreases rapidly 
with increasing the length z and the rate of decrease slows 
down as the beam radius (ω) increases. When zh is defined as 
the z where the normalized intensity is halved, the zh (= 25 m) 
at ω = 20 mm when input power P = 10 W is about three times 
longer than that (= 8 m) when P = 100 W. This result indicates 
that the thermal distortion of laser beams due to accumulated 
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heat around the z axis becomes more conspicuous as the 
optical power increases. The effect of this thermal beam 
distortion can be weakened when the laser beam is subject to 
crosswinds. Under the condition of gentle uniform wind with 
wind velocity v = 5 m/s, propagation of laser beams with ω = 
20 mm was studied when P = 100 W. The zh (= 105 m) when v 
= 5 m/s is about 13 times longer than that (= 8 m) when v = 0 
m/s. Thus, under conditions of v = 5 m/s and 30% relative 
humidity, laser beams with P = 100 W and ω = 20 mm can 
propagate over 100 m without damaging the initial beam 
shape at λ0 = 1.57µm. 

The eye-safe wavelength of 1.57µm is very close to the 
lowest loss wavelength (1.55µm) of optical fibers. For this 
reason, the optical power generated from the light source at 
1.57µm can be carried through the optical fiber with almost 
no loss. So it is possible to bring the optical power close to 
the target through the optical fiber and then emit the light 
beam toward the target from there. 

It is a great advantage of using a light source with an 
eye-safe wavelength of 1.57µm that an optical wireless 
power transmission system can be constructed flexibly by 
incorporating optical fiber in some suitable section. 
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