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Abstract: This paper proposes a new structure of lattice predictors, which applies to a stagger-period sequence. To deal with 

the sequence’s time-varying periods, the stagger-period lattice predictor has a linear time-variant processing structure, whose 

reflection coefficients and delay units need to match the input sequence periods for optimality. The staggered lattice predictor’s 

operation is relatively complex, of ∑M forward and backward reflection coefficients, M its order; and a uniform-period lattice 

predictor consists of M forward and backward coefficients. Based on Burg’s uniform-period lattice algorithm, we propose the 

staggered Forward and Backward Error Minimum algorithm to determine this predictor’s reflection coefficients and prove its 

optimality in the sense of minimum mean square error. By means of staggered forward and backward transversal predictors, we 

also propose the staggered Levinson-Durbin relations and prove it holds in the Appendix; these relations play an important role in 

researching the staggered lattice predictor. For practical application, we present a corresponding reflection coefficient estimation, 

the staggered Arithmetic Mean method, which substitutes for the ensemble mean with the limited-sample mean, and minimizes 

the estimate’s variance in the least square error sense. Through many computer simulations, we investigate convergence 

performance and learning characteristic of this type of predictor with three observation goals: the reflection coefficient, 

prediction error, and frequency response; the investigations reveal relationships between the convergence performance, learning 

characteristic and the balance factor, length of averaging window. In order to apply the staggered lattice predictor to an actual 

field, we illustrate a moving target indicator for Doppler radar with a stagger-period pulse emission and pulse compression 

waveform technology. Our simulation tests demonstrate that the staggered block lattice filter with essential artificial intelligence 

(AI) can efficiently detect weak targets submerged in the stationary and nonstationary clutters. The AI includes five heuristic 

strategies based on radar professionals’ knowledge to preserve targets and reject false alarms. 

Keywords: Lattice Predictor, Stagger-Period Signal Processing, Lattice Prediction Convergence, Moving Target Indicator, 

Artificial Intelligence 

 

1. Introduction 

For about five decades, many researchers studied lattice 

prediction theories and applied them to many fields, such as 

speech analysis and identification, geophysical exploration, 

spectrum estimation, adaptive clutter suppression, etc. [1-7]. 

A lattice predictor has prominent advantages over a 

transversal predictor using matrix inversion solution: 

independent, cascaded modular operation, low sensitivity of 

coefficient quantization, and less complex computation. They 

are extensively valued in system identification and adaptive 

filtering. Gediminas Simkus et al. proposed a low latency 

audio coding scheme composed of differential pulse code 

modulation and block companded (compress to expand) 

quantization [4]. Its encoder and decoder contain the same 

lattice predictors of finite impulse response (FIR) form, using 

the plain gradient adaptive lattice algorithm of low 

computational complexity. The prediction error signal is 

transmitted from the encoder output to the decoder input and 

the reconstructed signals are the same. This scheme 

introduced a small delay and improved the perceptual audio 

quality significantly. Kensaku Fujii et al. proposed a method 

to estimate reflection coefficients of a lattice filter, which 
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decreases number of the divisions to unity when the lattice 

order is high [5]. The method produces the least prediction 

errors under a condition that the backward reflection 

coefficients are replicas of the forward reflection coefficients. 

Through the theoretical derivation of differential equation, 

Rui Zhu et al. proposed a normalized lattice filter with a 

single pole and single zero structure [6]. It is less complex in 

computation and can acquire the frequency of a complex, 

input signal. The computer simulation demonstrated that its 

convergence rate is faster than the conventional 

gradient-based adaptive notch filter. B. M. Keel et al. 

designed a complex lattice filter used for the weather radar to 

reject ground clutters when observing a dry microburst [7]; 

they incorporated the square root normalized 

recursive-least-squares algorithm to estimate the reflection 

coefficients. The clutter data were acquired from realistic 

radar returns of an airport; the test results indicated that the 

clutter was rejected by about 30 dB with little attenuation of 

the weather signal in the relevant range cells. 

The above contributions were based on the uniform-period 

signal sources. In real-world, there exists a class of 

stagger-period signals and irregular-interval array signals, 

which may be deliberately produced or naturally acquired. 

When the stagger-period signal is predicted or filtered or its 

spectrum is estimated with the theories and methods of the 

uniform-period lattice predictor, the resulting performances 

may seriously decline. To solve such a problem, some 

scholars have been researching on the related stagger-period 

signal processing [8-13]. Zhang Xubao proposed the theory 

of FIR filters for stagger-period sequence, introduced the 

concepts and the time-variant property of the staggered filters 

[13]. He described the design principles of stagger-period 

frequency-selective FIR filters and presented the 

stagger-period matrix inversion and eigenvalue solutions of 

signal-noise-ratio maximization. He also introduced the 

moving target indication /indicator (MTI) filter bank design 

with optimal improvement factor and the mathematical 

programming to search for the best stagger-period code. 

Referring to philosophies and methods of the 

uniform-period lattice, based on the criterion of minimum 

mean square errors (MSE), this paper studies a new lattice 

structure which applies to predicting the stagger-period 

sequence, called the stagger-period or staggered lattice 

predictor. The next section presents the operation principle 

and properties of the staggered lattice predictor based on 

staggered transversal predictors. Section 3 studies the 

optimality theory and reflection coefficient algorithms of this 

lattice predictor. In section 4, the reflection coefficient 

estimation methods and convergence performance of this 

predictor in stationary sequences are presented, tested, and 

discussed. In section 5, the learning characteristic of this 

predictor in nonstationary sequences is investigated by 

different observation goals. In section 6, to demonstrate the 

applicability in signal detection, we design a staggered block 

lattice predictor for an MTI, which incorporates essential 

heuristic strategies, to verify the performance of detecting 

moving target and rejecting false alarm. The last section 

summarizes all the stagger-period prediction research and 

gives several exclusive conclusions. In the Appendix, we 

prove the stagger-period Levinson-Durbin (L-D) relations. A 

lattice predictor can be of all-zero or all-pole form. In this 

paper, we study the former only. 

2. Structure of a Stagger-Period Lattice 

Predictor 

2.1. A Uniform-Period Lattice Predictor 

Over fifty years ago, Levinson, Durbin, et al. researched an 

algorithm: recursively updating coefficients of the transversal 

predictor from low order to high order, instead of matrix 

inversion operation; later, the efficient algorithm became 

popular in analytical applications [1]. Based on the L-D 

algorithm, Itakura and Saito derived a lattice structure with 

stage-by-stage operation, which is uniquely equivalent to the 

combination of forward and backward transversal predictors 

in the sense of equal prediction errors [14]. In the 

uniform-period case, given a discrete-time complex sequence 

z (nT), n ∈{0, 1, ⋯}, T is the sampling period, the forward 

and backward prediction errors of an order M lattice predictor 

at the stage m are computed, respectively, 

e�� (n)= e���� (n)+R�∗ e���	 (n−1), m	∈{1, 2, ⋯, M},  (1) 

e�	 (n)= e���	 (n−1) +R�e���� (n), m	∈{1, 2, ⋯, M},  (2) 

e�� (n)= e�	(n)= z (
T),            (3) 

where R�∗ and R�  are forward and backward reflection 

coefficients, respectively, * complex conjugation. The lattice 

predictor has M forward and backward reflection coefficients. 

In the analytic sense, both the reflection coefficients meet |R� 

|<1. From the L-D recursive algorithm, when M forward and 

backward transversal predictors are given, the equivalent M 

forward and backward lattice reflection coefficients are 

determined and vice versa. Thus, if the transversal predictors 

are optimal in the minimum MSE sense, the resulting lattice 

predictor is so. The reflection coefficients {R�} can also be 

determined from other algorithms, e.g., Burg’s Harmonic 

Mean algorithm [15]. 

However, the uniformed lattice predictor does not apply to a 

stagger-period sequence since the sequence periods are 

unmatched by the lattice delay units. Table 1 lists the 

prediction error powers of a uniformed lattice predictor of 

order 4 in uniform-period and stagger-period stationary 

sequences of two models. One model C-MS0 is a 

single-Gaussian spectrum clutter, its parameters are: power P� 

60 dB (noise 0 dB), frequency F� 0 Hz, and standard variance 

D� 3.6 Hz; another C-MS4 is dual-Gaussian spectrum clutter, 

C-MS0 mixed with an additional clutter whose parameters are 

P�  40 dB, F�  72 Hz, and D�  14.4 Hz. The reflection 

coefficients of the uniformed lattice were analytically 

obtained from the transversal predictor with minimum MSE 

and L-D algorithm [1]. In the table, we see that on the 1st data 

row, the period of uniform-period sequence is 2.78 ms, error 

powers of the predictor are −50.3 and −36.5 dB in C-MS0 and 
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CMS4, respectively. However, for a stagger-period sequence, 

period scale 2.42:2.92:2.62:2.82:3.12 ms, average period 2.78 

ms on the 2nd row, the error powers of the predictor are −39.8 

and −27.8 dB in C-MS0 and CMS4, respectively, much larger 

than −50.3 and −36.5 dB; and more error powers on rows three 

to six indicate the similar degradation. Thus, the performances 

of the uniformed lattice predictor degrades about 10 dB. 

Table 1. Error powers of a uniform-period lattice predictor with 

uniform-period and stagger-period sequences. 

Periods of Sequences (ms) 

T1:T2:T3:T4:T5 

Sequence models 

C-MS0 C-MS4 

(dB) (dB) 

2.78:2.78: 2.78:2.78:2.78 −50.3 −36.5 

2.42:2.92:2.62:2.82:3.12 −39.8 −27.8 

2.92:2.62:2.82:3.12:2.42 −37.9 −28.8 

2.62:2.82:3.12:2.42:2.92 −37.2 −25.4 

2.82:3.12:2.42:2.92:2.62 −47.4 −22.5 

3.12:2.42:2.92:2.62:2.82 −36.8 −23.9 

2.2. A Stagger-Period Lattice Predictor 

In the case of stagger-period discrete-time signals, some 

concepts for prediction study are essential to know at first. 

Given a discrete-time sequence z (t�), n ∈	{0, 1, ⋯}, when 

time {t�} meets t� − t��� ≠ t��� − t�, the sequence is called 

the stagger-period sequence. A stagger-period sequence can 

have infinite stagger periods; in reality, the periods are always 

finite, denoted by T�=t� − t��� , n ∈{1, 2, ⋯, N�}, N�  is 

number of the stagger periods. If {z (t� )} has N�  stagger 

periods and the other periods repeat the N� periods, its stagger 

periods are Nt-circular. When N� =1, it declines to a 

uniform-period sequence; thus, a uniform-period sequence is a 

special case of the stagger-period sequences. Figure 1 shows 

waveforms of a circulating stagger-period complex sequence, 

N�=5, the stagger-period scale, T1:T2:T3:T4:T5= 2.42:2.92: 

2.62:2.82:3.12 ms. 

 
Figure 1. Waveforms of a stagger-period complex sequence. 

Assuming that a stagger-period sequence z (t�), n	∈{0, 1, 

⋯	}, is stationary, its M samples are denoted by a vector Z	= 

[z	(t�), z	(t�), ⋯ , z	(t�	)]
T
, 

T
 transition. When a transversal 

predictor of order M predicts z	 ( t� ) and its transversal 

coefficients are denoted by a vector H	= [h	(t�), h	(t�), ⋯, 
h	(t�)]

T
 as in Figure 2, this predictor is referred to as the 

stagger-period (or staggered) one-step backward transversal 

predictor. The prediction error between the input z(t�) and 

the predicted value z"(t�) is 

e	(t�) =	z(t�)+z"(t�) =	z(t�)+H	#Z	,       (4) 

where † is conjugation transition. When $(t�) times h	∗(t�) 

=1 is summed with z"(t�) as denoted by the dashed lines in 

Figure 2, the structure turns into a transversal prediction filter, 

also a transversal predictor for short. Given that the 

covariance matrix of stagger-period vector Z	 is M&
	, whose 

elements are E{ z ( t' ) z∗ ( t( )}, i, j 	∈ {1, 2, ⋯ ,M}, E{} 

expectation operator, and the covariance vector between Z	 

and z	(t�	) is R)	, whose elements are E{z(t�)z∗(t')}, i ∈{1, 

2,	⋯ ,M}, the stagger-period Yule-Walker equation can be 

derived as [13] 

M&
	H	 =	R&	                (5) 

Because M)
	 does not have Toeplitz property, we have to 

prove that the solution of (5),	H	, results in the minimum 

E{|e	(t�)|�}. By the orthogonality theory [1], it was proved 

that (5) holds for the stagger-period sequence; here we omit 

the proof due to its similarity to the uniform-period case. 

 
Figure 2. A stagger-period one-step backward transversal predictor of order M. 

Given that M)
�  is the covariance matrix of stagger-period 

vector Z�=[z	 ( t� ), z	 ( t� ), ⋯ , z	 ( t��� )]
T
 and R)�  is the 

covariance vector between Z� and the predicted z	(t�	), in 

the same way above, we proved that the optimal coefficients 

of the staggered one-step forward transversal predictor, H�, 
is the solution of the staggered Yule-Walker equation 

M&
�H�	=	R&�                (6) 

Therefore, the staggered forward and backward transversal 

predictors are optimal in the minimum MSE sense. In 

practice, the input sequence always contains additive noise, 

so, M)
	 and M)

�  are non-singular matrixes and the solutions 

of (5) and (6) always exist. 

Based on the above staggered backward and forward 

transversal predictors, we proposed a staggered lattice 

predictor structure of order M, as shown in Figure 3. Its signal 

streams are the same as those of a uniformed lattice predictor 

but its major elements are time-variant. The input sequence 

z(t�), n ∈{0, 1, ⋯} is of stagger periods and R�	 (t�) and 

R�� (t�) are the reflection coefficients of the mth (1 to M) 
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stage, T-(t�) is delay time of the mth stage, and e�	 (t�) and 

e�� (t�) are the backward and forward prediction errors of the 

mth stage, at time t�, b and f the superscripts of backward or 

forward prediction, respectively. Each stage operation is 

modularized and the mth stage prediction errors at time t� are 

computed as 

e�� (t�)=e���� (t�)+R�� (t�)e���	 (t���), m	∈{1, 2,⋯, n}, n	∈{1, 2, ⋯, M},                (7) 

e�	 (t�)=e���	 (t���)+R�	 (t�)e���� (t�), m	∈{1, 2,⋯, n}, n	∈{1, 2, ⋯, M},                (8) 

e�� (t�)=e�	(t�)=z(t�), n∈{0, 1, …, M}                                (9) 

 
Figure 3. A stagger-period lattice prediction filter of order M. 

In order to achieve optimal prediction, R�� (t�) and R�	 (t�) 
of each stage are determined by not only the last errors but 

also observation time t�, thus, the reflection coefficients of 

the staggered predictor are time-variant, and with {z(t�)} 

coming from t��� to t�, an order m lattice has ∑m forward 

and backward reflection coefficients, ∑m sum of the 

sequence 1, 2, ⋯, m. In other words, a staggered lattice 

predictor of order M is composed of all the orders 1 to M 

lattices at different time. From formulas (7) to (9), given the 

forward and backward prediction errors at stage m−1, the 

two-type prediction errors at stage m are calculated in the 

computationally efficient manner. 

Assuming that the input {z(t�)} is stationary, in terms of (7) 

to (9), the reflection coefficients of mth stage of the staggered 

lattice predictor are derived in the minimum MSE sense as 

R�� (t�)=
�/{1	234

5 (�6)	1	234
7∗ (�634)}

/{91	234
7 (�634)9

:
}	

, m	∈{1, 2, ⋯, n}, n	∈{1, 2,⋯, M},                    (10) 

R�	 (t�)=
�/{1	234

5∗ (�6)	1	234
7 (�634)}

/{91	234
5 (�6)9

:
}	

, m	∈{1, 2, ⋯, n}, n	∈{1, 2,⋯, M},                    (11) 

by differentiating |e�� (t�)|�  and |e�	 (t�)|�  with respect to 

R�� (t�) and R�	 (t�), respectively, and setting the derivatives 

to zero. Note that these operations need to apply the Wirtinger 

calculus [1]. Thus, the two formulas feature the local 

optimality of the staggered lattice predictor, called the 

staggered Forward and Backward Error Minimum algorithm. 

In the case of stationary sequence, one of the staggered 

predictor’s properties is no guarantee that 

R�� (t�)=R�	∗(t�), m	∈{2, 3, ⋯, n}, n	∈{2, 3, ⋯, M}, (12) 

except that R�� (t�)=R�	∗(t�). Another property of the predictor is 

that its reflection coefficients do not ensure to meet both 

|R�� (t�)|<1 and |R�	 (t�)|<1,         (13) 

unlike the uniformed lattice. This is not critical because this 

structure in Figure 3 is equivalent to an all-zero FIR filter, 

rather than an all-pole filter of infinite impulse response form. 

However, the denominators of (10) and (11) are the error 

powers which may be close to zero, so, the predictor has a 

instability risk in application. Our many computer tests below 

verify the issue and give an efficient solution. 

Table 2 lists the prediction error powers of five order 4 

staggered lattice predictors with five different stagger periods. 

Two tested stagger-period sequences are still models C-MS0 and 

C-MS4 in Table 1. The prediction error powers with C-MS0 are 

from −49.1 to −51.3 dB and with C-MS4 from −38.3 to −35.4 

dB, depending on the period scale; these powers have about ±1 

dB deviation from those powers of the uniformed predictor in 

Table 1. These staggered lattice predictors ensure the matches 

between their reflection coefficients and the input sequence’s 

stagger periods, so they still gain the minimum MSE. 

Table 2. Error powers of stagger-period lattice predictors with 

stagger-period sequences. 

Periods of Sequences (ms) 

T1:T2:T3:T4:T5 

Sequence models 

C-MS0 C-MS4 

(dB) (dB) 

2.42:2.92:2.62:2.82:3.12 −51.3 −38.3 

2.92:2.62:2.82:3.12:2.42 −49.7 −35.9 

2.62:2.82:3.12:2.42:2.92 −50.5 −37.1 

2.82:3.12:2.42:2.92:2.62 −50.4 −35.8 

3.12:2.42:2.92:2.62:2.82 −49.1 −35.4 

3. Global Optimality of the 

Stagger-Period Lattice Predictor 

3.1. Global Optimality of the Staggered Lattice Predictor 

Given that a stagger-period sequence is z(t�), n	∈{0, 1, ⋯} 

and the coefficients of order m (1 to M) forward transversal 

prediction filter are h�� (t�, τ	(	
� ), j	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, 

m}, at time t�, it predicts z(t�) as shown in Figure 4, when 

{z(t�)} is coming from t��� to t�, number of the forward 

prediction filters at the different time is ∑m. Similarly, given 
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that the coefficients of order m backward transversal prediction 

filter are {h�	∗(t�, τ	(	
	 )}, when it predicts z(t���) as shown in 

Figure 5, number of the backward predictors at the different 

time is ∑m too. Under the condition that forward and 

backward errors of the orders 1 to m transversal predictors 

equal those errors of the orders 1 to m lattice predictors in 

Figure 3, respectively, the reflection coefficients of the ∑m 

lattice predictors are determined by the coefficients of the ∑m 

forward and backward transversal predictors as follows, 

R�� (t�)= h�� (t�, τ�� ), m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}, (14) 

R�	 (t�)= h�	∗(t�, τ�	 ), m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M} (15) 

Relations (14) and (15) will be proved in Appendix in the end. 

The relations indicate that in the case of stagger-period sequences, 

when the ∑M optimal forward and backward transversal 

predictors in the minimum MSE sense are given, the ∑M 

equivalent optimal lattice predictors are uniquely determined. 

 
Figure 4. A forward transversal prediction filter of order m. 

 

Figure 5. A backward transversal prediction filter of order m. 

For an example of relations (14) and (15), given a 

staggered input sequence z(t�), z(t�), and z(t�), the order 2 

staggered forward and backward transversal predictors are 

composed of separate two order 1 and one order 2 

coefficient sets at the different time, which determine six 

equivalent reflection coefficients at the corresponding time 

as follows. 

At time t�, for the inputs z(t�) and z(t�), the order 1 

forward and backward transversal coefficients determine the 

order 1 lattice coefficients, 

R�� (t�)	= h�� (t�, τ�� ), R�	(t�)	= h�	∗(t�, τ�	) 

At time t�, for the inputs z(t�), z(t�) and z(t�), the order 1 

and order 2 forward and backward transversal coefficients 

determine the order 1 and order 2 lattice coefficients, 

respectively, 

R�� (t�) = h�� (t�, τ�� ), R�	(t�)	= h�	∗(t�, τ�	) and R�� (t�) = h�� (t�, τ�� ), R�	(t�)	=	h�	∗(t�, τ�	) 

Note that the other eight transversal coefficients do nothing and are excluded above. Here they are 

h�� (t�, τ�� ), h�	∗(t�, τ�	), and h�� (t�, τ�� ), h�	∗(t�, τ�	), and h�� (t�, τ�� ), h�	∗(t�, τ�	), h�� (t�, τ�� ), h�	∗(t�, τ�	). 

On the contrary, given that an input sequence is {z(t�)}, at 

time t� , forward and backward reflection coefficients of 

order m (1 to M) lattice predictor are {R�� (t�) } and 

{R�	 (t�)}, respectively, as in Figure 3, and forward and 

backward transversal predictors of order m are {h�� (t�, τ(�)}, 

and {h�	∗(t�, τ(	)}, respectively, as in Figures 4 and 5, when 

z(t�) is coming from t��� to t�, under the condition that 

the prediction errors of the order m forward and backward 

lattices equal those errors of the order m forward and 

backward transversal predictors, respectively, the equivalent 

coefficients of the ∑m staggered forward and backward 

transversal predictors are determined by the coefficients of 

the ∑m staggered lattice predictors from low order to high 

order as follows. 

h�� (t�, τ�� ) = R�� (t�), m	∈{1, 2,⋯, n}, n	∈{1, 2, ⋯, M},                           (16) 

h�	∗(t�, τ�	 ) = R�	 (t�), m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},                          (17) 

h�� (t�, τ>
� ) = h���� (t�, τ>

� ) +R�� (t�)	h���	∗ (t���, τ��>
	 ), k	∈{1, 2, ⋯, m−1}, m	∈{2, 3, ⋯, n}, n	∈{2, 3, ⋯, M},  (18) 

h�	∗(t�, τ>
	) = h���	∗ (t���, τ>

	) +R�	 (t�)	h���� (t�, τ��>
� ), k	∈{1, 2, ⋯, m−1}, m	∈{2, 3, ⋯, n}, n	∈{2, 3, ⋯, M}  (19) 

These relations will be proved in Appendix in the end. We 

call the relations (14), (15), and (16) to (19) the staggered 

L-D relations. These recursion relations indicate that in the 

case of a staggered sequences, when an optimal lattice 

predictor operates in terms of (7) to (9), the equivalent 

optimal transversal predictors are recursively determined, 

from low order to high order. Due to the time-varying periods, 

the optimal transversal predictors of order M have ∑M 

forward and backward transversal sub-predictors at the 

different time. At the time t�, the forward and backward 

coefficients of the order M transversal predictors can achieve 

the global optimality from low order to high order in the 

minimum MSE sense; according to the staggered L-D 

relations, the corresponding order M lattice predictor at t� 

is equivalent to the global optimal transversal predictor. Thus, 

the full local optimality of a staggered lattice predictor results 
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in its global optimality. 

For an example of relations (16) to (19), given a 

staggered input sequence z(t� ), z(t� ), z(t� ), an order 2 

staggered lattice is composed of six (2∑2) reflection 

coefficients. At time t�, the order 1 lattice coefficients with 

z(t�) and z(t�) determine the order 1 forward and backward 

transversal coefficients, 

h�� (t�, τ�� ) = R�� (t�), h�	∗(t�, τ�	) = R�	(t�) 

and at time t�, the other order 1 lattice coefficients with z(t�) 

and z(t�) determine the other order 1 forward and backward 

transversal coefficients, 

h�� (t�, τ�� ) = R�� (t�), h�	∗(t�, τ�	) = R�	(t�) 

and the order 2 lattice coefficients with z(t�), z(t�) and z(t�) 

recursively determine the order 2 forward and backward 

transversal coefficients, 

  h�� (t�, τ�� ) = R�� (t�), h�� (t�, τ�� ) = h�� (t�, τ�� ) + R�� (t�)	h�	∗(t�, τ�	), and 

h�	∗(t�, τ�	) = R�	(t�), h�	∗(t�, τ�	) = h�	∗(t�, τ�	) + R�	(t�)	h�� (t�, τ�� )  

Additionally, the other six transversal coefficients h�� (t�, τ�� ) 

=1 and h�	∗(t�, τ�	) =1, m ∈ {1, n}, n ∈ {1, 2} are known as 

defined above. Thus, the staggered L-D relations result in 

computationally efficient transforms, from lattice structure to 

transversal structure and in reverse. 

3.2. Frequency Responses of a Staggered Lattice Filter 

Given that input sequence {z(t�)}, n	∈ (0, 1, …), is of 

N� -circular stagger periods T' , i ∈ {1, 2, ⋯,  N� }, its 

average sampling frequency F? = 	N� /∑ T'
AB
'C� . When the 

stagger-period scale meets T�:T�:⋯TAB= k�:	k�:⋯kAB , the 

ordered integers {k'} are called the period code of {T'}. If 

{k'}are mutually prime and meet 

τ	=	T�/k�	=	T�/k�	= ⋯	TAB/kAB ,         (20) 

we call the ratio τ the highest common divisor of these 

periods. Given a staggered backward transversal filter hE
	(t�), 

n∈{0, 1, ⋯}, its frequency response is defined as [13] 

HE
	(f)	=∑ hE

	(t�)e�(�G��6H
�C� , f ∈ [−FI/2, FI/2],   (21) 

where Fp= 1/τ is called frequency response cycle of the 

staggered filter, it is also spectrum cycle of the sequence 

{e�(�G��6)} and equal to F? ∑ k'
AB
'C� /N�. In practice, {hE

	(t�)} 

is always windowed to a length, e.g., Np, the frequency 

response in (21) is time-variant and is redefined as 

HE
	(f, t�) = ∑ hE

	(t�)e�(�G��6
AJ��
KC�        (22) 

When the superscripts b are substituted with f and the periods 

of {t�} are inverse, (22) represents the forward transversal 

filter response HE
� (f, t�). Similarly, the frequency response of 

a staggered lattice filter of limited order is time-variant too. 

For an order M staggered lattice filter, the frequency 

response of its backward prediction is defined as 

HL
	(f,	t�) =e�

	 (t�, e�(�G��6), f ∈[−FI/2, FI/2],   (23) 

where e�
	 (tK, e�(�G��6) is the backward prediction output at 

time tK when the input is {e(�G��6}. When the superscripts b 

in (23) are substituted with f, it represents the forward 

prediction frequency response of the lattice filter, HL
� (f, t�). 

Both the frequency responses are related to the reflection 

coefficients {R�� (t�)}, {R�	 (t�)}, periods {T' }, and the 

stagger-period scale, so, they are different; in contrast, for a 

uniformed lattice filter, its forward and backward responses are 

the same. Figure 6 shows four frequency responses of the 

forward and backward transversal filters and equivalent lattice 

filter of order 4. The two transversal filters are the solutions of 

(5) and (6) and the lattice filter is obtained by L-D relations (14) 

and (15). The covariance matrix is calculated with a clutter 

sequence of double-Gaussian spectrum, which mixes the 

clutter C-MS0 with another clutter, P� 30 dB, F� 72 Hz and 

D�  14.4 Hz
1

. The stagger-period scale is 

2.42:2.92:2.62:2.82:3.12 ms; its average pulse repeat 

frequency (PRF) is 360 Hz. The green and red curves represent 

the forward and backward lattice predictor responses, 

respectively; the black and dark red represent the forward and 

backward transversal predictor responses, respectively. We 

observe that the two forward responses are the same and 

overlapped, and the two backward responses are so too. 

However, the forward and backward responses are not exactly 

the same due to inverse order of periods. The resulting 

responses would be the same, if the test sequence was 

uniform-period. The four responses in Figure 6 have a deep 

notch of about −55 dB at 0 Hz and a wide notch of about −18 

dB between 10 and 90 Hz. Such frequency response shapes 

match the test clutter spectrum and the entire overlaps of the 

forward/backward responses verify the staggered L-D relations 

(14) and (15). 

 
Figure 6. Frequency responses of a staggered lattice and its equivalent 

transversal prediction filters. 

                                                             
1
 In this paper, all clutter spectra are Gaussian. P�, D�, and F� denote power 

normalized to noise, standard deviation bandwidth, and center frequency of 

mountain or terrain clutter, respectively; PM , DM , and FM  the corresponding 

parameters of weather clutter; P�  and F�  the corresponding parameters of 
Doppler target signal. 
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4. Convergence Performance of a 

Staggered Lattice Predictor 

4.1. Algorithms of Staggered Reflection Coefficients 

In the case of uniform-period sequence, basic 

algorithms of lattice reflection coefficients include the 

Forward and Backward Error Minimum, Geometric Mean 

and Harmonic Mean [14, 15]. For the stagger-period 

stationary sequence, given a staggered lattice predictor of 

order M as shown in Figure 3, here we present three 

similar algorithms. The staggered Forward and Backward 

Error Minimum is just (10) and (11) in section 2, the two 

formulas are individually optimal to forward or backward 

prediction in the minimum MSE sense. The staggered 

Geometric Mean algorithm is 

R�� (t�)=R�	∗(t�)=
�/{1	234

5 (�6)	1	234
7∗ (�634)}

[/{91	234
7 (�634)9

:
	91	234

5 (�6)9
:
}]4/:	

, m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}        (24) 

Obviously, the algorithm makes the forward and backward 

coefficients equal in magnitude, and its operation is 

relatively simple; however, its optimality does not exactly 

hold, so, this algorithm is not suitable for the 

stagger-period sequence. The staggered Arithmetic Mean 

algorithm is 

R�� (t�)=
�/{1	234

5 (�6)	1	234
7∗ (�634)}

(��R)/{91	234
5 (�6)9

:
}�R/{91	234

7 (�634)9
:
}	
, m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},         (25) 

R�	 (t�)=
�/{1	234

5∗ (�6)	1	234
7 (�634)}

R/{91	234
5 (�6)9

:
}�(��R)/{91	234

7 (�634)9
:
}	
,   m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}.        (26) 

where α is balance factor and its value is taken within 0.5 to 1. 

For the Arithmetic Mean algorithm, the denominators put 

different weights on the forward and backward error powers, 

and two unequal reflection coefficients are given. When α=1, 

(25) and (26) turn into the staggered Forward and Backward 

Error Minimum algorithm; when α=0.5, (25) and (26) into the 

staggered Harmonic Mean algorithm. Thus, the Arithmetic 

Mean algorithm is relatively flexible and maintains optimality. 

For a stagger-period lattice, its forward prediction periods are 

inversion of its backward prediction periods, generally, 

E{9e	���� (t�)9	�} and E{9e	���	 (t���)9	�} are unequal, so are 

R�� (t�) and R�	 (t�). Only the Forward and Backward Error 

Minimum algorithm is exactly optimal to individual forward or 

backward prediction. Similarly to the Burg algorithm’s proof [1], 

the staggered Arithmetic Mean algorithm with α=0.5 guarantees 

the minimum sum of forward and backward MSEs. 

All the reflection coefficient algorithms above are to 

involve the ensemble mean processing. In a practical 

application, they are unfeasible due to limited time series. 

We have to seek an applicable method to estimate the 

reflection coefficients, whose convergence is fast and 

stable in a specific application. The staggered Arithmetic 

Mean algorithm behaves with optimality and flexibility 

relative to the other algorithms, so, we focus on it for 

applicable coefficient estimation. Assuming that an input 

sequence is stationary and ergodic, denoted by z(t�), n	∈{0, 

1, ⋯}, we may use least square error (LSE) time averages 

to substitute for the ensemble mean operation. Based on 

the Arithmetic Mean algorithm, we present a method to 

estimate the reflection coefficients of the staggered lattice 

predictor, called the staggered Arithmetic Mean method, 

as 

	RU�� (t�)=
�∑ 1	234

5 (�6;	W)	1	234
7∗ (�634;	W)

XY
Z[4

∑ [(��R)91	234
5 (�6;	W)9

:
�R91	234

7 (�634;	W)9
:
]XY

Z[4 	
, m∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},          (27) 

	RU�	 (t�)=
�∑ 1	234

5∗ (�6;	W)	1	234
7 (�634;	W)

X\
Z[4

∑ [R91	234
5 (�6;	W)9

:
�(��R)91	234

7 (�634;	W)9
:
]XY

Z[4 	
, m∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},          (28) 

where M is order of the staggered lattice predictor, α is the 

balance factor, L� is the length of averaging window, and l 

is the batch number. (data z(t�), n∈{0, 1, ⋯, M} is a batch; 

L� batches form a window.) Equations (27) and (28) are a 

type of LSE estimation of the reflection coefficients in the 

LSE sense. The M +1 data of {z( t�: l )} along t�  are 

correlated while the L�  batches of {z(t�: l)} along l are 

required to be independent and have the same statistics; so, 

selection	of the input sequence blocks {z(t�; l)} is crucial. If 

the averaging batches are not independent, the estimation 

efficiency is very low [16]. When α=1, (27) and (28) turn 

into the staggered Forward and Backward Error Minimum 

method; when α=0.5, (27) and (28) into the staggered 

Harmonic Mean method. 

4.2. Convergence Performance of a Staggered Lattice 

In the case of a stagger-period stationary sequence, 

convergence performance of a lattice predictor is its behavior 

of estimation approaching to the optimum goal, e.g., the 

reflection coefficient, prediction error, etc., called the 

observation goal. This can be evaluated from three aspects: 

the estimated results’ deviation, expended time, and stability. 

Some references presented their researches on convergence 

performances of uniform-period lattices, they adopted 

analytic derivations or computer simulations [16, 17]. When 

the deriving result or simulating estimate reaches an assigned 

value, number of the used samples or the expended time is 

referred to as the convergence rate of the estimation method. 
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Generally, the computer simulation is more practicable. The 

smaller the number of the run off samples is, the faster the 

convergence rate of the method is. 

4.2.1. Reflection Coefficients as the Goal 

Consider at first that the observation goal is the reflection 

coefficients. For a stationary sequence, the Arithmetic Mean 

method computes the prediction errors with multi-batch data 

and averages them on a window length L� , then 

computes 	RU�� (t�)  and RU�	 (t�)  in terms of (27) and (28). 

Usually, the estimates approximate to the ensemble means 

R�� (t�)  and R�	 (t�)  with L�  increase. To examine the 

convergence performance, we conducted computer simulation 

rather than a analytic derivation. Referring to radar 

environmental clutters [9, 12], we generated the stagger-period 

complex sequences featuring mountain and weather returns, 

whose spectra are the double-Gaussian: mountain Pg 60 dB, Fg 

0 Hz, Dg 3.6 Hz, and weather P� 30 dB, F� 72 Hz, D� 

14.4 Hz. The stagger-period parameters are the same as 

assigned in Figure 6. The order 4 staggered lattice predictor 

has 20 complex reflection coefficients totally. If we present 

convergence curves of all the reflection coefficients, they will 

occupy a lot space in this paper. Therefore, we select the 

reflection coefficient estimates of the last stage as the 

observation goal. The convergence behavior of the Arithmetic 

Mean method with α=0.8 is shown in Figure 7. The four thin 

curves represent estimated (E) complex 

coefficients	RUd� (td),	RUd	(td), respectively and the four thick 

straight lines represent optimal (O) (minimum MSE) complex 

coefficients Rd� (td) , Rd	(td) , respectively. The optimal 

coefficients result from solutions of (5) and (6) for the 

transversal coefficients and the L-D relations (14) and (15) for 

the lattice coefficients. The four colors, black, green, red, and 

blue, denote real, imaginary (Imag) of the forward (F) 

coefficients, and real, Imag of the backward (B) coefficients, 

respectively. For example, the curve real E F denotes real of 

the estimated forward coefficient; the curve real O F denotes 

real of the optimal forward coefficient. We observe that these 

reflection coefficient estimates tend towards stability after 

length of the averaging window L� is larger than 20, but the 

deviations from the optimal coefficients are still large, e.g., 

Imag E F is 0.276 at L�=74, far away from the optimal 0.553. 

In the initial estimation L�<10, these curves may swing 

strongly, e.g., the real E F max reaches 1.086 (unseen) at L� 2 

but the real O F is −0.601. Thus, the test curves deviate from the 

optimal curves much and the convergence behavior shows 

instability. 

We take another try with larger α. All the test conditions 

are the same as those assigned in Figure 7 except e=0.99. 

Figure 8 shows the tested convergence behavior. We observe 

that deviations from the optimal coefficients are much less 

than those in Figure 7 after L�  is larger than 10. For 

example, Imag E F max is 0.723 at L� 37, not big deviation 

from the optimal 0.553; real E F max is −0.765 at L�16, not 

big deviation from the optimal −0.601 either. In initial 

estimation, the convergence still behaves with very big 

swings from 1.83 (unseen) to −0.99. This indicates that the 

larger the α is, the less the estimate variance is but the 

worse the initial estimation stability is. 

 
Figure 7. Convergence behavior of reflection coefficients of an order 4 

staggered lattice predictor with α=0.8. 

 
Figure 8. Convergence behavior of reflection coefficients of an order 4 

staggered lattice predictor with α=0.99. 

In summary, the two-test results verify that 1) the Arithmetic 

Mean method is effective to estimate the staggered reflection 

coefficients; 2) when α is large, the convergence behaves 

with fast rate and small deviation from the optimal coefficients; 

3) no matter α is small or large, the convergence behaves 

with the strong swings of reflection coefficients in the initial 

estimation; the swings result from the small-sample prediction 

error estimates in the denominators of (27) and (28), the 

problem can be efficiently solved by increasing the window 

length L�, e.g., larger than 10. 

4.2.2. Prediction Errors as the Goal 

The above observation goal focuses on two reflection 

coefficients of the last stage and these results do not represent 

convergence behaviors of the coefficients of the other stages. 

It is a huge work to evaluate the 20 reflection coefficient 

convergences. Alternatively, we select prediction errors of the 

last stage as the observation goal; the two prediction errors 
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represent the contributions of all the stages, so, give a global 

examination. The forward and backward error power 

estimates of the last stage of an order M lattice predictor are, 

respectively, 

P?�=∑ |e�
� (t�: l)|�

LY
WC� /P&,            (29) 

P?	=∑ |e�
	 (t�: l)|�

LY
WC� /P&,            (30) 

where P) is average power of the input sequence {z(t�: l)} 

on LM batches. e	�
� (t�: l) and e	�

	 (t�: l) are computed in 

terms of (7) to (9), with the estimated reflection coefficients 

in section 4.2.1. Under the same test conditions as those 

assigned in Figure 7, Figure 9 shows the convergence 

behavior of the forward and backward error powers of the 

lattice predictor with α  0.8. The thick straight lines 

represent the optimal prediction error powers and thin curves 

represent the estimated error powers; the red and black 

denote backward and forward prediction, respectively. We 

observe that the two estimated curves behave with very deep 

notches in initial estimation, unseen depth max −84.9 dB. 

After entering stable state with L� increase, e.g., >21, the 

two thin curves are about 2 dB higher than the thick lines 

individually. Note that although the initial prediction errors 

are lower than the minimum MSE, there exists a big risk of 

instability. 

 
Figure 9. Convergence behaviors of prediction errors of an order 4 lattice 

predictor with α 0.8. 

In order to improve the convergence performance, we take 

another try on different α and still select the prediction error 

as the goal. Under the same test conditions as those assigned 

in Figure 9 except α=0.99, Figure 10 shows the convergence 

behavior of the lattice predictor. The thick straight lines 

represent the optimal prediction errors and the thin curves 

represent the estimated errors; the red and black represent 

backward and forward prediction, respectively. We observe 

that the two estimated error powers behave with deeper 

notches in initial estimation, the unseen notch max −198 dB; 

two thin curves asymptotically enter the stable state when 

L� >10 and approach close to the optimal error lines 

individually when L�>70. So, this convergence performance 

is better than that with α 0.8. 

In summary, these test results verify that 1) the Arithmetic 

Mean method is effective to work with the staggered lattice 

predictor; 2) the error estimates always enters the stable state 

with L�  increase and even approach close to the optimal 

values with enough large L�; 3) in the initial estimation, the 

prediction error curves always behave with very deep notches 

when α ≥0.8, so, there exists a big risk of instability. The 

notches are caused by the small-sample error powers in the 

denominators of (27) and (28), it can be efficiently solved with 

large-sample average, e.g., LM>10. 

No matter the observation goal is the reflection 

coefficients or prediction errors, the convergence 

performances of the staggered lattice predictor are acceptable, 

depending on the balance factor, window length, and order of 

the lattice predictor. In practice, for a specific application, 

one needs to conduct the computer simulation to accurately 

know the best values of the parameters. When simulating, 

independence of the averaging batches can not be 

inconsiderable and bad independence will result in low 

convergence rate or large predictor order. 

 
Figure 10. Convergence behaviors of prediction errors of an order 4 lattice 

predictor with α 0.99. 

5. Learning Characteristic of a Staggered 

Lattice Predictor 

Learning characteristic of a lattice predictor is its ability to 

track statistics of a nonstationary sequence. In a stationary 

sequence, the more the averaging batches to estimate R�� (t�) 
and R�	 (t�) are, the smaller the coefficient estimate variances 

are. Obviously, in a nonstationary sequence, this rule does not 

hold due to varying statistics of the segmental batches. When 

an aircraft signal intrudes into a stationary clutter, the 

disturbed clutter turns into a nonstationary clutter. In study of 

this topic, we prefer to use prediction errors as the observation 

goal to take more exact evaluation. Later, we also add 

frequency responses of a lattice predictor as the third 

observation goal. 
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5.1. Learning Characteristic in Nonstationary Clutter 

In the case of a nonstationary clutter, due to the varying 

statistics, it is inaccurate to evaluate learning characteristic 

with the same method in section 4. Specifically, the average 

prediction errors over large samples in range bins can not 

efficiently reduce the variance. We select the same staggered 

lattice predictor as that in section 4. Considering a clutter with 

quasi- or short-term stationarity, its reflection coefficients are 

still estimated in terms of (27) and (28), with small L� , 

despite the ergodicity; then prediction error estimates from the 

lattice outputs are averaged over the L� independent batches. 

The assigned nonstationary clutter is returns from a mountain 

(stationary) and weather (nonstationary) around it, of 

double-Gaussian spectra: P�  60 dB, F�  0 Hz, D�  3.6 Hz, 

and P� from 10 to 40 dB along range bins l to 150, F� 72 

Hz, D� 14.4 Hz. The stagger-period parameters are the same 

as assigned in Figure 6. The best window length depends on 

the extent of the clutter non-stationarity [18] and L�  is 

selected as 5, 10, and 15 for comparing. Figure 11 shows the 

prediction error powers of the staggered lattice predictor with 

Arithmetic Mean method, α 0.99 and L�10. The thick and 

thin curves represent the optimal and estimated error powers, 

respectively; the black and red denote the forward and 

backward predictions, respectively. We observe that the two 

thick curves are stably going up along the range bins; the two 

fluctuant thin curves are following the thick curves, going up, 

of a few dB positive bias, and the deviations from the optimal 

curves are within +10/−6 dB. The smaller the L�  is, the 

smaller the bias is but the bigger the curves’ fluctuation is; the 

learning curves with L�  5 and 15 are omitted. Thus, the 

staggered lattice predictor is really learning the input clutter 

statistics; however, it is impossible to close track the optimal 

curves as in the stationary clutter. The learning curves show no 

thing in the first 4 bins and in the last 4 bins, which are called 

initiation and termination bins, respectively, because 

Arithmetic Mean method averages the errors over L� bins 

and the estimate represents the error in the median bin only, 

unlike the situation in stationary clutter. 

 
Figure 11. Learning characteristic of a staggered lattice predictor in 

nonstationary clutter. 

From Figure 11, we know one side of the learning ability of 

the staggered lattice predictor, prediction error track. To 

evaluate another side of the ability, we select frequency 

response estimate as the observation goal. For comparing 

effects of the two-type goals, the test conditions are the same 

as those in Figure 11. We select three pairs of the reflection 

coefficient estimates, which locate in three range bins, 5, 75 

and 145, where the returns have different weather clutter 

powers, 10.8, 24.9, and 39 dB, respectively. Three frequency 

responses of the 4th stage of the corresponding lattice 

predictors, HL
� (f,td ), are computed. Figure 12 shows the 

frequency responses in the three bins, denoted by the black, 

red, and green, respectively. We observe that the three curves 

show a deep notch at 0 Hz, about −55 dB, and different depth 

notches in the frequency range of 20 to 110 Hz, which adapt 

the different powers of weather clutter. The response in bin 5 

has no notch due to a mild weather return; the response in bin 

75 has about −15 dB notch relative to the black due medium 

weather; the response in bin 145 about −30 dB notch due to 

heavy weather. The frequency responses indicate the great 

learning ability of the predictor in the stable mountain clutter 

plus varying weather clutter. Additionally, we also see that 

the blind speed problem of a Doppler radar is solved well by 

the stagger-period emission, i.e., the notches with the 

uniform-period emission disappear at the multiple of pulse 

repeat frequency, e.g., around 360, 720 Hz. 

 
Figure 12. Frequency responses of a staggered lattice predictor in 

nonstationary clutter. 

5.2. Learning Characteristic in Clutter Plus Target Signal 

We have known from the above section 5.1 that the 

staggered lattice predictor behaves with great learning ability 

in the nonstationary clutter. In a radar environment, we also 

concern with the target signal embedded in a background 

clutter. Typically, radar returns result from a mountain and 

weather echoes plus an aircraft echo. It is not clear to 

evaluate the learning ability by observing the prediction 

errors in such a situation. Specifically, the radar returns, for 

example, are composed of mountain Pg 60 dB, Fg 0 Hz, Dg 

3.6 Hz, and weather P� 10 dB, F� 72 Hz, D� 14.4 Hz, 

plus two aircrafts different P� 5 and 20 dB, the same F� 432 

Hz. The lattice predictor and stagger-period parameters are 

the same as assigned in Figure 11. Figure 13 shows the 

resulting frequency responses. The black and green thin 

curves represent the responses of forward prediction with the 
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clutter plus aircrafts Ph 5 and 20 dB, respectively, and the 

red thick curve the response with the clutter only. We observe 

that the three curves have deep, narrow notches about −60 dB 

to adapt the strong mountain clutter; the two thin curves do 

not drops in the frequency range of 20 to 110 Hz for the 

weather clutter, but they show about 10 dB notch relative to 

the red curve at 432 Hz for the 5 dB aircraft and about 16 dB 

notch for the 20 dB aircraft; in contrast, the red thick curve 

has a shallow drop in the range of 20 to 110 Hz for the 

weather clutter, but does not form any drop around 432 Hz 

due to no aircraft. These shapes accurately adapt the features 

of the input clutters and aircraft signal. Thus, the staggered 

lattice predictor behaves with great learning ability no matter 

in the undesired clutters or in the undesired clutter plus 

desired target signal. On the other hand, this effect alerts us a 

fact that a single lattice predictor will reject both the clutter 

and target if we simply apply it in a signal detection field. 

 
Figure 13. Frequency responses of a staggered lattice predictor in stationary 

clutter and clutter plus aircraft. 

6. A Knowledge-Based Block Lattice 

Predictor for MTI 

In order to adaptively detect an aircraft signal submerged 

in multiple clutters, the lattice prediction filter is a great 

selection. The stagger-period emission is an efficient 

technology to solve ambiguity of range and velocity 

resolutions of a Doppler radar. Pulse-coded compression 

waveform is an essential emission waveform to detect weak 

aircraft returns. The staggered lattice predictor presented 

above is compatible with the two technologies. 

Two-dimensional radar returns represent an area returns of 

range echoes (independent) versus azimuth echoes (coherent). 

The lattice reflection coefficients are estimated with a batch 

of contiguous, stagger-period azimuth returns; then, the 

coefficient estimates are averaged over the adjacent range 

bins to reduce variance. The operation is based on a data 

block and the resulting lattice predictor is called the 

staggered block lattice predictor (SBLP). When the SBLP 

was tested to detect an aircraft signal submerged in the 

multiple clutters, we found some issues. A typical one is that 

the reflection coefficient estimates feature both the clutters 

and aircraft signal as shown in Figure 13. To ensure that the 

coefficients feature the clutters only, artificial intelligence 

(AI) activity needs to be incorporated, then, we developed a 

knowledge-based SBLP. The so-called knowledge means 

radar professionals’ knowledge. The more complete the 

knowledge is, the more accurate the SBLP’s judgment is.  

Object echoes of consecutive pulses emitted by an MTI 

radar, in the same range’s bins, are correlated and have a 

Doppler frequency; generally, an aircraft Doppler frequency 

is different from a terrain or weather Doppler frequency. The 

clutter returns exist within a big area of range vs. azimuth 

and are weakly correlated, of low Doppler frequencies. The 

aircraft return exists in batches of multi-range vs. 

multi-azimuth bins and is strongly correlated, of relatively 

high Doppler frequency. These are basic knowledge of the 

MTI radar returns. Thus, before estimating the reflection 

coefficients, the SBLP needs to learn, to analyze and to judge 

the coming return block to roughly judge its identification. 

For example, the SBLP can estimate the reflection 

coefficients only when the current input is judged as a clutter; 

otherwise, the SBLP throws away the clutter and aircraft both 

from the filter output. In a nonstationary clutter area, A 

strong clutter block has a higher lever than a weak clutter 

block, then, the strong clutter block may be judged as 

existing an aircraft and a false alarm is caused. Thus, in the 

realistic application, it is essential to exploit the priori 

knowledge for the SBLP to intelligently reject background 

clutters and to extract the intermittent aircraft signal. 

After generating the return data of radar environments, we 

tested the SBLP’s behaviors and found some rules. Based on 

the coming return’s region and the output’s feature, the SBLP 

can analyze if an aircraft signal exists in the current block. To 

raise the target detection rate, the SBLP filters the current data 

block by the lattice coefficients estimated on the last input data 

block which is judged there exists no aircraft. To reduce the 

false alarm rate, the SBLP needs to judges if the current input 

data block is 1) in a region from non-clutter to clutter or in the 

reverse region or 2) in a transition region from single model to 

dual-model clutter or in the reverse region. If so, the SBLP 

rejects the judged “aircraft”. An AI SBLP filter which achieve 

the above two tasks needs to execute five essential heuristic 

strategies. The prerequisites for these strategies are: 1) the 

MTI radar emission with stagger-period repeat pulse and 

phase-coded pulse compression, 2) two-dimensional returns 

of azimuth batch vs range bins, 3) clutter backgrounds of a 

mountain, forested terrain, and changing weather, and 4) the 

SBLP filter as described in this paper. The five strategies are: 

1) Estimating Block and Filtering Block. An coming data 

block judged to be of clutter only is called the estimating block. 

Its data are used to estimate the current lattice coefficients; 

then, the coefficients are used to filter the next data block, 

which is called the filtering block. 2) Terrace Indication and 

Target Detection. The lattice filter output always delivers a 

terrace-like waveform of phase-code length when an aircraft 

return exists in the coming data, then the segmental output 

waveform is called the terrace, always higher than the clutter 

around it. The SBLP utilizes P�/Pp ≥2 as a preliminary 

criterion to judge target existence in the filtering block, Pp is 
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the power mean of estimating block output and P�  is the 

power mean of filtering block output. When a terrace data 

length is larger than the compression code length, the filtering 

block is rejudged to be in a clutter transition region and turns 

into an estimating block to eliminate the false alarm. 3) Lattice 

Coefficient Map. When an target detection is done, its 

reflection coefficients are recorded in a database with the 

range bin number and azimuth bin number and a reference 

block is set up; the database recording all the reference blocks 

is called lattice coefficient map (LCM), and updated if 

necessary. 4) Space Delay. We use the estimated reflection 

coefficient of an estimating block or a reference block to filter 

data of the next adjacent block, the operation is called space 

delay. It is a key technique of target preservation. 5) 

Initialization. For the return data in range bins near the 

surveillance radar site, e.g., within a few km, the data are 

always non-aircraft returns, so, the initial data block all are the 

estimating blocks and the reflection coefficient estimates are 

used to filter in initial short-range search. 

In order to examine the SBLP filter for MTI and to verify 

the five strategies, several clutter models were assigned to 

represent stationary and nonstationary returns representing 

realistic radar environments possible [19, 20]. One of our tests 

is to examine detection performance of the SBLP MTI in a 

high mountain plus mild weather environment, whose clutter 

spectra are Pg 60 dB, Dg 3.6 Hz, Fg 0 Hz and P� 10 dB, D� 

14.4 Hz, F�  72 Hz individually. Two weak aircrafts are 

located in range bins 31 and 101, their spectral parameters are 

P�  5 and 10 dB, respectively, meaning very low 

signal-clutter-ratios (SCRs) −55, −50 dB, e.g., stealth, and F� 
175 Hz, meaning low radial speed. The operation parameters 

of SBLP MTI are: lattice order 4, a batch length Np 5; pulse 

stagger-period scale 2.415:2.919:2.617:2.818:3.12 ms, and 

average PRF 360 Hz. The runs of m-sequence phase-code for 

pulse compression are 2211214111131235. The reflection 

coefficients are estimated with the Arithmetic Mean method, 

the balance factor α 0.99, and window length L�  15. The 

target detection criterion is P� /Pp ≥2. The detection 

performance of the SBLP MTI is shown in Figure 14. The 

three power curves represent the SBLP input, the SBLP output, 

and the pulse compressor output, denoted by the blue, black 

and red, respectively. We observe that the input power curve 

looks stationary, around 60 dB, and two aircraft signals are 

completely submerged in the clutters; the SBLP output power 

curve has two terraces located over bins 31 to 61 and bins 101 

to 131, respectively, the former looks rugged due to SCR −55 

dB and the latter looks relatively even due to SCR −50 dB. 

The pulse compression output power curve has two obvious 

peaks, locating in bins 31 and 101 individually; the latter is 

about 5 dB higher than the former, indicating that the two 

aircrafts are detected correctly. Thus, the detection 

performance of the SBLP MTI is satisfactory and the heuristic 

strategies are efficient in the strong dual-model stationary 

clutter plus weak aircraft returns. 

The second test is to examine detection performance of the 

SBLP MTI in a nonstationary double-model clutter arising 

from forested terrain and changing storm environment. The 

terrain spectrum is Pg 55 dB, Dg 10.8 Hz, and Fg 0 Hz, 

meaning a strong stationary return, and the storm spectrum is 

P� 10 to 40 dB along range bins 1 to 150, D� 14.4 Hz, and 

F� 72 Hz, meaning an intensity-varying nonstationary return. 

Two weak targets have the same features as those assigned in 

Figure 14 test. The other test conditions, such as the 

stagger-period emission, pulse compression, and SBLP filter, 

are also the same as those assigned in Figure 14. Figure 15 

shows the detection performance of the SBLP MTI in the 

nonstationary clutter. The three power curves represent input 

of the MTI, output of the SBLP, and output of the pulse 

compressor, denoted by the blue, black, and red, respectively. 

We observe that the input power curve looks nonstationary, 

about 50 to 53 dB along the full range bins, due to the 

intensity-increasing storm return; the two aircraft signals are 

completely submerged in the clutters. The SBLP output curve 

has two rugged terraces due to the low SCR and clutter 

instability, located within the bins 31 to 61 and 101 to 131, 

respectively. The compressor output curve still has two 

obvious peaks, locating in bins 31 and 101 individually; the 

latter is about 5 dB higher than the former, indicating that the 

two aircrafts are correctly detected although the lattice 

coefficient estimation is more rough in the nonstationary 

clutter. Thus, the target detection and false alarm control of 

the SBLP MTI are still great and the heuristic strategies are 

efficient in the nonstationary clutter. 

 
Figure 14. Detection performance of a knowledge-based SBLP MTI in 

stationary clutter. 

 
Figure 15. Detection performance of a knowledge-based SBLP MTI in 

nonstationary clutter. 
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7. Conclusions 

In the case of the stagger-period sequence, the staggered 

lattice predictor is an efficient adaptive processor for 

predicting or filtering. In the previous five sections, we 

proposed some new concepts, theories, and algorithms related 

to the staggered lattice predictor; and conducted many 

computer simulations to verify validity of the theoretical 

analyses and mathematic derivations. In order to apply them in 

an MTI radar, several heuristic strategies are incorporated and 

the knowledge-based SBLP MTI is illustrated in the stationary 

and nonstationary clutters plus weak aircraft signals. The 

research results are summarized as follows. 

i). In stagger-period sequence processing, the staggered 

lattice predictor is an essential topic, especially for 

adaptive filtering. The staggered lattice predictor has a 

modularized structure, low sensitivity of coefficient 

word-length, and less computation load. The staggered 

lattice predictor has a linear, time-variant property and 

has ∑M forward and backward reflection coefficients 

with order M, but the uniformed predictor has M 

forward and backward reflection coefficients. The 

complex structure is due to necessary match between 

the predictor’s delay units and the stagger periods of 

input sequence. 

ii). The reflection coefficient algorithm of a staggered lattice 

predictor, the staggered Forward and Backward Error 

Minimum, is presented and its local optimality in the 

minimum MSE sense is proven by means of the Wirtinger 

calculus. The staggered L-D recursion relations are 

proposed and proved in the Appendix. They indicate that 

given the ∑M staggered forward and backward transversal 

coefficients, the uniquely equivalent ∑M staggered 

forward and backward reflection coefficients are 

determined; conversely, given the staggered reflection 

coefficients, the equivalent transversal coefficients are 

recursively determined from low order to high order. The 

complexity also arises from the time-variant property of 

the two-type predictors. Global optimality of a staggered 

lattice predictor in the minimum MSE sense is deduced 

with the staggered L-D relations. 

iii).The staggered Arithmetic Mean algorithm is presented 

and its optimality and flexibility are indicated. When 

balance factor α =1, this algorithm turns into the 

staggered Forward and Backward Error Minimum 

algorithm; when α =0.5, it turns into the staggered 

Harmonic Mean algorithm. For applying this algorithm 

to a realistic field, the Arithmetic Mean method is 

produced so that the staggered reflection coefficients of 

ensemble mean are substituted with time-average 

coefficient estimates. Its effectiveness depends on two 

items: the balance factor α  and averaging window 

length L�. α is taken between 0.5 and 1, and the larger 

the α  is, the less the variance of the coefficient 

estimates is, but the higher the instability risk of the 

initial estimates is. In a stationary sequence, when the 

L�  is larger than 20, the curves of the reflection 

coefficient and prediction error estimates get into stable 

state, even the estimate curves approach close to the 

optimal values. The staggered lattice predictor behaves 

with great convergence performance.  

iv). In the test with the nonstationary clutter, the staggered 

lattice predictor has to track the short-term statistics to 

estimate the prediction errors. The large window length 

covers wide-range statistics, the resulting learning curve 

causes a bias and can not exactly represent the statistics in 

each segment of the full range bins. In addition, the 

instability risks in the initial estimation are observed, this 

problem can be solved through increasing the window 

length. No matter we observe the convergence behavior or 

learning characteristic, the larger the balance factor is, the 

faster the convergence rate of the staggered predictor is. 

Examples of the great learning characteristic are illustrated 

with L�=10 and α=0.99. Thus, in considering a specific 

application, selecting the proper balance factor and 

averaging window length can achieve the best lattice 

predictor possible. 

v). A knowledge-based lattice MTI with stagger-period 

emission incorporates radar professionals’ knowledge 

to logically analyze coming data block when it 

suppresses clutters and detects aircraft signals. Based on 

many computer simulations, five heuristic strategies are 

presented: the Estimating Block and Filtering Block, 

Terrace Indication and Target Detection, Lattice 

Coefficient Map, Space Delay, and Initialization. In the 

test of stationary environment, we assign the high 

mountain and mild weather plus weak aircraft returns; 

in the test of nonstationary environment, the forested 

terrain and changing storm plus weak aircraft returns. 

The test results, outputs of the SBLP filter and pulse 

compressor, verify that the knowledge-based MTI can 

detect aircrafts well under SCR −50, −55 dB, and the 

heuristic strategies is effective to eliminate false alarms 

under the nonstationary condition.

Appendix Proof of Staggered Levinson-Durbin Relations (14) to (19) 

Proof: Assuming that a stagger-period sequence z (t�), n 

∈{0, 1, ⋯}, is stationary, forward and backward transversal 

predictors and a lattice predictor, of order m (1 to M), at t�, 

all operate with up to m+1 data of {(z (t�)} from low order to 

high order. When making one-step forward prediction of z 

(t�) with the last m data z (t���), z (t���), ⋯, z (t���), the 

order m forward transversal predictor {h�� (t�, τ(
�)}, j	∈{0, 1, 

⋯, m}, m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}, as shown in 

Figure 4, produces the prediction error 

e�� (t�) = ∑ h�� jt�, τ(
�kz	(t��()�

(C� , τ(
�=t� − t��(,   (A1) 

where h�� jt�, τ�� k=1. When making one-step backward 

prediction of z (t���) with the first m data z (t�����), z 
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(t����� ), ⋯ , z (t� ), the order m backward transversal 

predictor {h�	∗(t�, τ	(
	)}, j	∈{0, 1, ⋯, m}, m	∈{1, 2, ⋯, n}, 

n 	∈{1, 2, ⋯ , M}, as shown in Figure 5, produces the 

prediction error 

e�	 (t�) = ∑ h�	∗jt�, τ(
	kz	(t��(��)�

(C� , τ(
	=t��(�� − t���, (A2) 

where h�	 jt�, τ�	k=1. From the formulas of staggered lattice 

predictor operation, (7) to (9) or Figure 3, we know that the 

forward and backward prediction errors of the stage m at the 

time t�  are a linear combination of the data z (t��� ), 

z(t�����), ⋯, z (t�). When substituting (A1) and (A2) into 

(7) to (9), we obtain that 

∑ h�� jt�, τ(
�kz	(t��()�

(C� =∑ h���� jt�, τ(
�kz	(t��()���

(C� +R�� (t�) ∑ h���	∗ jt���, τ(
	kz	(t��(��)���

(C� ,        (A3) 

and 

∑ h�	∗jt�, τ(
	kz	(t��(��)�

(C� =∑ h���	∗ jt���, τ(
	kz	(t��(��)���

(C� +R�	 (t�) ∑ h���� jt�, τ(
�kz	(t��()���

(C� .     (A4) 

Comparing the coefficients of two sides of (A3), containing z (t�), we have 

h�� jt�, τ�� k=h���� jt�, τ�� k=1, m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},                    (A5) 

and comparing the coefficients of two sides of (A4), containing z (t���), we have 

h�	∗jt�, τ�	k=h���	∗ jt���, τ�	k=1, m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}.                      (A6) 

Comparing the coefficients of two sides of (A3), containing z (t���), and in terms of (A6), we have 

h�� jt�, τ�� k=R�� (t�), m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M},                         (A7) 

and comparing the coefficients of two sides of (A4), containing z (t�), and in terms of (A5), we have 

h�	∗jt�, τ�	 k=R�	 (t�), m	∈{1, 2, ⋯, n}, n	∈{1, 2, ⋯, M}.                         (A8) 

Comparing the coefficients of two sides of (A3), containing z (t��>), k	∈{1, 2, ⋯, m−1}, we have 

h�� jt�, τ>
� k=h���� jt�, τ>

� k+R�� (t�)	h���	∗ jt���, τ��>
	 k, m	∈{2, 3, ⋯, n}, n	∈{2, 3, ⋯, M},           (A9) 

and comparing the coefficients of two sides of (A4), containing z (t��>��), k	∈{1, 2, ⋯, m−1}, we have 

h�	∗jt�, τ>
	k=h���	∗ jt���, τ>

	k+R�	 (t�)	h���� jt�, τ��>
� k, m	∈{2, 3, ⋯, n}, n	∈{2, 3, ⋯, M}          (A10) 

(A7) and (A8) are (14) and (15), respectively, they are also 

(16) and (17); (A9) and (A10) are (18) and (19), respectively, 

i.e., the staggered L-D recursion relations hold. 
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