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Abstract: This study was conducted to clarify the potential role of AGE against damages induced in rats due to exposure to 
gamma radiation. Adult male albino rats (214-230g). Eight groups, five healthy male rats each were used (20 irradiated and 20 
Sham Irradiated), among which some were receiving via gavages distilled water, the others AGE at different doses (25 mg/kg 
and 50 mg/kg) and the rest vitamin E+Alpha Lipoïc Acid. Blood samples were collected at day 8 post irradiation for 
biochemical assay. Exposure of rats to gamma radiation caused a significant increase in the level of total cholesterol (TC), 
triglycerides (TG), LDL-Cholesterol, Malondialdehyde (MDA), Nitrite (NO2-), Creatinine and AST, ALT, ALP and Bilirubin 
(Total Serum Bilirubin, Direct Bilirubin and Unconjugated Bilirubin)while a significant decrease was recorded in HDL-
Cholesterol, serum total proteins, glutathione content (GSH), superoxide dismutase (SOD), catalase (CAT) activities and total 
protein level in organs tissues. In rats treated with AGE then exposed to radiation, the results showed an improvement in all 
previous parameters. It could be concluded that AGE might reduce the biological hazards in rats induced by gamma irradiation. 
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1. Introduction 

All types of ionizing radiations generate ions which can 
lead to the formation of free radicals and reactive oxygen 
species (ROS). Excess production of free radicals or decrease 
in antioxidants level leads to oxidative stress. It is a harmful 
process that induces damage to cell structures, lipids, 
proteins, RNA and DNA which leads to a number of diseases 
[1-2]. Phytoconstituents and herbal medicine are important in 
the management of pathological conditions of those diseases 

caused by free radicals [3]. 
AGE contains many important water-soluble organosulfur 

compounds with potent antioxidant and free radical 
scavenging activities. So far, AGE has been demonstrated to 
possess several physiological activities in experimental 
animals [2-3]. Recently, AGE has received particular 
attention because of studies that have reported that it is a 
highly efficient antioxidant and has free radical scavenging 
capacity [4-5]. 

ALA and Vitamin E have been reported to have highly 
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protective effect on lipid peroxidation and their positive 
effect includes protection against radiation damage [6-7]. 

In view of these considerations, the main objective of this 
study was to assess the role of AGE against radiation induced 
oxidative stress associated with some biochemical disorders 
in male albino rats using Vitamin E and Lipoïc Acid as 
positive control group. 

2. Material and Methods 

2.1. Animals 

Eighty healthy Albino male rats (Rattus norvegicus) of 
Wistar strain (3 to 4 months old) ranging from 214-230g 
body weight were obtained according to the ICH guidelines 
from animal lab Université des Montagnes, Bangangté and 
Douala University in Cameroon. Their acclimatization to 
laboratory conditions took place at room temperature, 
relative humidity and natural light-dark cycle (12 hours light 
and 12 hours dark). The rats were given ad libitum tap water 
and food of a commercial balanced diet. Five animals were 
housed per plastic cage containing paddy husk (procured 
locally) as bedding and fasted night before sacrifice. The 
experimental protocol and the maintenance of the 
experimental animals was done in accordance with the 
regulations of the Organization for Economic Cooperation 
and Development (OECD) guide since in Cameroon the 
ethics committee focuses only on clinical studies. 

2.2. Chemical 

Aged Garlic Extract (KYOLIC® Aged Garlic Extract™ 
Liquid) is prepared by soaking sliced raw garlic (Allium 

sativum Linn) with a quality plan program (QPP-003) in 15-
20% aqueous ethanol for 20 months at room temperature. 
The extract is then filtered and concentrated under reduced 
pressure according to the guidelines of Good Manufacturing 
practices established by the World Health Organization. The 
garlic is grown under strictly controlled organic conditions 
(without herbicides or pesticides of any kind), harvested at 
full maturity, cleaned, sliced and stored in stainless steel 
tanks under carefully controlled conditions without the use of 
a heating process [8-10]. The content of water-soluble 
compounds is relatively high whereas that of oil-soluble 
compounds is relatively low [10]. The AGE used in this 
study is standardized with S-Allyl Cysteine and contained 
30% extracted solids (300 mg/ml), and S-allyl cysteine 
present at 1.47 mg/ml. 

2.3. Experimental Design 

Two weeks after acclimatization and conditioning, the 
animals were randomly divided into four equal and double 
male rat groups in separate plastic cages, five rats each. Two 
negative control groups receiving 10 mL/kg of distilled water 
(I and II), two AGE-treated groups at dose of 25 mg/kg AGE 
(IIII and IV), two AGE-treated groups at dose of 50 mg/kg 
AGE (V and VI) and two positive control groups (receiving 
50 mg/kg Vitamin+25 mg/kg of Lipoïc Acid) (VII and VIII) 

were used. Among the double groups, 20 were irradiated 
(rats of groups II, IV, VI and VIII) and 20 sham irradiated 
(rats of groups I, III, V and VII). The rats of each group were 
fed via gavagesfor 12 days (5 consecutive days prior to acute 
irradiationand one hour after irradiation on day 6 and for 7 
consecutive days) and weighed daily during the experiment. 
The experimental protocol and the maintenance of the 
experimental animals was done in accordance with the 
standard ethical guidelines for laboratory animal use and care 
as described in the European Community guidelines; EEC 
Directive 86/609/EEC, of the 24th November 1986 [11]. 

2.4. Irradiation 

The Albino Wistar rats were placed in collective cages 
made of plastic for whole-body exposure after at least two 
weeks of acclimatization and conditioning. Rats were 
exposed using the facilities provided by the Oncology and 
Radiotherapy department of the Douala General Hospital. 
Irradiation was delivered by an ALCYON-II model cobalt-60 
teletherapy unit (General Electric/GE Healthcare). The rats in 
an area of 36 x 36 cm were exposed to a single dose of 4.5 
Gy applied as single shot dose at a dose rate of 0.55 Gy/min. 
Five animals were irradiated at once and sham-irradiated 
animals were treated in the same manner but were not 
exposed to the source. After irradiation, the rats were brought 
back to the animal Lab of Douala University for the follow 
up and the tests. 

2.5. Sample Collection 

2.5.1. Blood Samples 

The animals were put to fast during the night before their 
blood test (7th day post irradiation). The day of sacrifice (8th 
day post irradiation), arterio-venous blood was collected in 
dry tubes and allowed to clot (stand for 30 min) and 
centrifuged at 3 000 rpm for 15 min. The supernatant (serum) 
obtained was gathered in Eppendorf tubes and stored at -
20°C for biochemical analysis of lipid profile (Cholesterol 
total, HDL Cholesterol and Triglyceride), alkaline 
phosphatase, transaminase enzymes (Aspartate transaminase 
and Alanine transaminase), Bilirubin (Total Serum Bilirubin 
and Direct Bilirubin) and Total proteins. 

2.5.2. Tissue Samples 

A vertical midline thoracic and abdominal incision was 
done to explore the rat’s viscera. Because of administration 
of distilled water, AGE, Lipoïc acid+vitamin E for 
consecutive days and whole body irradiation at 4.5 Gy, brain, 
lungs, aorta, heart, liver, spleen, kidneys, testis, thymus, 
vertebrum, femur, skin and sterna manubrium of each rat was 
excised, cleaned from their surrounding fat and connective 
tissue, washed with normal saline, blotted with filter paper, 
examined macroscopically (form modification, size, 
consistency and color) and weighed. 

2.6. Biochemical Assay 

Liver biomarkers assessment: the levels of aspartate 
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transaminase (AST) and alanine transaminase (ALT) 
enzymes were estimated in the sera of the blood samples 
using commercial kits (Inmesco GmbH-Wiedtalstrasse 11 & 
18-D-53577 Neustadt/Wied–Germany) according to Kaplan 
[12] and alkaline phosphatase level estimated in accordance 
with Prahlad and Conaway method [13]. Also, serum total 
protein was determined using Biuret reaction [14] and 
Bilirubinwas assayed according to calculation (Unconjugated 
Bilirubin) and the method of Balistreri and Shaw (Total 
Serum Bilirubin and Direct Bilirubin) [15] as well. 

Lipid profile and creatinine: the second part of blood was 
allowed to clot and centrifuged to obtain serum for the 
determination of Total Cholesterol, HDL Cholesterol and 
Triglyceride according to the method used by Atsang A Kiki 
[16] and LDL Cholesterol according to the method of Nauck 
et al. [17] and the formula of Friedewald et al. [18]. The 
creatinine assay was done in accordance with Bartels and 
Bohmer method [19]. 

Lipid peroxidation, total Protein and antioxidants 
assessment in tissue homogenates: Homogenate 20% was 
prepared by adding 2 mL of 50 mM, Tris-HCl buffer to 0.40 
g of each organs (brain, lungs, liver, spleen, left kidney, left 
testis and vertebrum) and homogenate 10% by adding 1 mL 
of 50 mM Tris-HCl to 0.1g of aorta. Homogenate obtained 
was centrifuged at 3500 rpm for 25 minutes at 4°C after 
grinding in a mortar on ice tray. The supernatants were 
collected for the measurement of catalase (CAT), superoxide 
dismutase (SOD), Nitrite (N02-), the levels of reduced 
glutathione (GSH), and malondialdehyde (MDA). GSH was 
determined in accordance with the method of Ellman [20] 
and SOD activity according to the method of Misra and 
Fridovish [21]. CAT activity was estimated by measuring the 
decomposition of hydrogen peroxide, according to the 
method of Sinha [22] and Nitrite (N02-) assay according to 
Slack [23]. The marker of lipid peroxidation 
(malondialdehyde: MDA), was determined according to the 
method of Wilbur et al. [24]. 

2.7. Statistical Analyses 

Results were expressed as Mean±Standard Error of the 
Mean (SEM). Comparison of means was done by Dunnett 
test as post hoc test. P values less than 0.05 were considered 
statistically significant. Statistical evaluation was conducted 
using one way analysis of variance (ANOVA) software 
Graph Pad Prism 5.03. With the α risk of 5%, statistically 
significant differences are reported in the tables and figures 
with an asterisk (*), the highly statistically significant 
differences are marked with two stars (**) and statistically 
highly significant differences are indicated by three stars 
(***). 

3. Results 

3.1. Liver Biomarkers Assessment 

3.1.1. Alanine Transaminase (ALT) 

After γ-radiation, the level of alanine transaminase 

increased significantly (p<0.001) in order of 60% 
(115.2±2.24 Vs 72±2.24 U/L) in the group 
"Irradiation+Distilled Water". This rate decreased 
significantly (p<0.001) in the range of 50.69% (56.8±2.24 Vs 
115.2±2.24 U/L) and 42.36% (66.4±2.24 Vs 115.2±2.24 U/L) 
in the groups "Irradiation 25 mg / kg AGE" and 
"Irradiation+50 mg / kg AGE "compared to the group 
"Irradiation+Distilled Water". The decrease in this rate is also 
significant (p<0.01) in the range of 34.86% (56.8±2.24 Vs 
87±2.24 U/L) by comparing the group "Irradiation+25 mg / 
kg AGE" to the positive control group "Irradiation+Vitamin 
E and Lipoïc Acid" (Figure 1). 

 

Figure 1. Effects of γ-radiation and AGE on Alanine transaminase rate. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.1.2. Aspartate Transaminase (AST) 

The irradiation resulted in a significant increase of 
aspartate transaminase (p<0.01) in the group 
"Irradiation+Distilled Water" in order of 18.28% 
(159.2±3.56 Vs 134.6±5.38 U/L) and a significant 
decrease in the groups "Irradiation+25 mg / kg AGE" 
(p<0.001) and "Irradiation+50 mg / kg AGE" (p<0.05) 
respectively in order of 35.36(87±4.68 Vs 134.6±5.38 
U/L) and 13.22% (116.8±1.69 Vs 134.6±5.38 U/L). 
Animals receiving AGE at doses of 25 and 50 mg / kg, 
showed a significant decrease (P<0.01 and P<0.05) in 
aspartate transaminase levels compared to the group 
"irradiation+Distilled Water" (Figure 2). This decrease 
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was respectively in order of 45.35% (87±4.68 Vs 
159.2±3.56 U/L) and 26.63% (116.8±1.69 Vs 
159.2±3.56U/L). Similarly, compared to the group 
"Irradiation+Vitamin E and Lipoïc Acid" a significant 
decrease (p<0.01) was observed in the groups 
"Irradiation+25 mg / kg AGE" and "Irradiation+50 mg / 
kg AGE" in the range of 42.15% (87±4.68 Vs 150.4±4.17 
U/L) and 22.34% (116.8±1.69 Vs 150.4±4.17 U/L). 

 

Figure 2. Effects of γ-radiation and AGE on Aspartate transaminase rate. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group» (c). 

3.1.3. Alkaline Phosphatase (ALP) 

The effects of γ-radiation and AGE intake are shown in 
Figure 3. This figure reveals that alkaline phosphatase 
increased significantly (p<0.001) in the group 
"Irradiation+Distilled Water" in order of40.96% (70.2±0.8 
Vs 49.8±0.66 U/L) and significantly decreased (p<0.001) in 
the groups "Irradiation+25 mg / kg AGE", "Irradiation+50 
mg / kg AGE" and "Irradiation+Vitamin E and Lipoïc Acid" 
respectively in order of 36.55% (31.6±0.68 Vs 49.8±0.66 
U/L), 22.89% (38.4±0.93 Vs 49.8±0.66 U/L) and 18.07% 
(40.8±1.11 Vs 49.8±0.66 U/L). Compared to 
"Irradiation+Distilled Water" group, figure 3 shows a 
significant decrease (p<0.001) in the rate of alkaline 
phosphatase in order of 54.99% (31.6±0.68 Vs 70.2±0.8 
U/L) and 45.30% (38.4±0.93 Vs 70.2±0.8 U/L) in the 
groups receiving AGE at doses of 25 and 50 mg / kg. 
Compared to the positive control group 

"Irradiation+Vitamin E and Lipoïc Acid", the decline was 
not significant (P> 0.05) in the group "Irradiation+50 mg / 
kg AGE" and significant (p<0.001) in order of 22.55% 
(31.6±0.68 Vs 40.8±1.11 U/L) in the group "Irradiation+25 
mg / kg AGE". 

 

Figure 3. Effects of γ-radiation and AGE on Alkaline Phosphatase level. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.1.4. Serum Total Protein 

It is clear from Figure 4 that the irradiation caused a 
significant increase (P<0.001) in total serum protein in 
order of 46.40% (9.57±0.28 Vs 6.53±0.65mg/dL) in the 
group "Irradiation+25 mg / kg AGE "and a significant 
decrease (P<0.01) in the range of 43.86% (3.67±0.58 Vs 
6.53±0.65 mg/dL) in the "Irradiation+Distilled Water" 
group compared with the negative control group ("Sham 
Irradiation+Distilled Water"). Among the irradiated groups, 
a significant increase (P<0.001) in serum protein was 
observed in the groups "Irradiation+25 mg / kg AGE" and 
"Irradiation+50 mg / kg AGE" respectively, in order of 
160.80% (9.57±0.28 Vs 3.67±0.58 mg/dL) and 115.05% 
(7.89±0.59 Vs 3.67±0.58 mg/dL). In addition, compared to 
the positive control group ("Irradiation+Vitamin E and 
Lipoïc Acid"), a significant increase (P<0.001) in serum 
proteins was observed in animals of the group 
"Irradiation+25 mg / kg AGE" in order of 98.55% 
(9.57±0.28 Vs 4.82±0.36 mg/dL) and in order of 63.72% 
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(7.89±0.59 Vs 4.82±0.36 mg/dL) in those of the group 
"Irradiation+50 mg / kg AGE". 

 

Figure 4. Effects of γ-radiation and AGE on total serum protein. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.1.5. Total Serum Bilirubin 

After irradiation, Figure 5 shows significant increase 
(P<0.001) in the rate of total bilirubin in animals of 
"Irradiation+Distilled Water" group in order of 50% 
(2.64±0.25 Vs 1.76±0.11 mg/dL), similarly, a significant 
decrease (P<0.001) in the range of 57.84% (0.74±0.08 Vs 
1.76±0.11mg/dL) in groups treated with AGE at a dose of 
25 mg / kg. Moreover, this rate decreased significantly 
(P<0.001) in order of 71.89% (0.74±0.08 Vs 2.64±0.25 
mg/dL) and 47.65% (1.38±0.15 Vs 2.64±0.25 mg/dL) in 
groups "Irradiation+25 mg / kg AGE" and "Irradiation+50 
mg / kg AGE" compared to the group "Irradiation+Distilled 
Water". The rate of total bilirubin has also declined 
significantly (P<0.001 and P<0.01) in the groups 
"Irradiation 25 mg / kg AGE" and "Irradiation 50 mg / kg 
AGE" respectively in order of 66.15% (0.74±0.08 Vs 
2.19±0.09 mg/dL) and 36.95% (1.38±0.15 Vs 2.19±0.09 
mg/dL) compared to the positive control group 
"Irradiation+Vitamin E and Lipoïc Acid". 

 

Figure 5. Effects of γ-radiation and AGE on total Bilirubin rate. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.1.6. Direct Bilirubin 

Figure 6 shows the effect of irradiation and AGE 
administration on direct bilirubin. Compared to the 
negative control group, irradiation resulted in a significant 
increase of direct bilirubin levels (P<0.01) in the range of 
35.43% (0.60±0.04 Vs 0.45±0.03 mg/dL) in 
"Irradiation+Distilled Water" group and a significant 
decline (P<0.001) in the range of 68.16% (0.14±0.04 Vs 
0.45±0.03 mg/dL) and 45.29% (0.24±0.14 Vs 0.45±0.03 
mg/dL) in the groups "irradiation+25 mg / kg AGE" and 
"irradiation+50 mg / kg AGE". A significant decrease 
(P<0.001) in the range of 76.49% (0.14±0.04 Vs 
0.60±0.04 mg/dL) and 59.60% (0.24±0.14 Vs 0.60±0.04 
mg/dL) was noticed comparing groups "Irradiation+25 mg 
/ kg AGE" and "Irradiation+50 mg / kg AGE" to the group 
"Irradiation+Distilled Water". The decrease in direct 
bilirubin rate was significant (P<0.001) in the group 
"Irradiation+25 mg / kg AGE" in order of 58.72% 
(0.14±0.04 Vs 0.34±0.02 mg/dL) and non-significant (P > 
0.05) in the group "Irradiation+50 mg / kg AGE" in order 
of 29.07% (0.24±0.14 Vs 0.34±0.02 mg/dL) compared to 
the positive control "Irradiation+Vitamin E and Lipoïc 
Acid." 
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Figure 6. Effects of γ-radiation and AGE on Direct Bilirubin. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.1.7. Unconjugated Bilirubin 

Figure 7 shows the effect of irradiation and AGE intake on 
direct bilirubin. Indeed, compared to the negative control 
"Sham Irradiation+Distilled Water" a significant increase 
(P<0.01) was observed in the group "Irradiation+Distilled 
Water" in order of 54.95% (2.04±0.23 Vs 1.31±0.13 mg/dL); 
and a significant decrease (P<0.01) in the range of 54.34% 
(0.6±0.09 Vs 1.31±0.13 mg/dL) in the irradiated group AGE 
at a dose of 25mg / kg. The comparison of groups 
"Irradiation+25 mg / kg AGE" and "Irradiation+50 mg / kg 
AGE" with the "Irradiation+Distilled Water" group showed a 
significant decrease (P<0.001) in the range of 70.53% 
(0.6±0.09 Vs 2.04±0.23 mg/dL) and 44.11% (1.14±0.13 Vs 
2.04±0.23 mg/dL) in these groups. This reduction remained 
significant (P<0.001et P<0.01) comparing the groups 
"Irradiation+25 mg / kg AGE" and "Irradiation+50 mg / kg 
AGE" with the group "Irradiation+Vitamin E and Lipoïc 
Acid" respectively in order of 67.53% (0.6±0.09 Vs 
1.85±0.09 mg/dL) and 38.42% (1.14±0.13 Vs 1.85±0.09 
mg/dL). 

 

Figure 7. Effects of γ-radiation and AGE on Unconjugated Bilirubin rate. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.2. Lipid Profile 

3.2.1. Total Cholesterol 

Figure 8 shows the effects of irradiation and AGE on 
total cholesterol over time. It is clear from this figure that 
irradiation resulted in a significant increase compared to the 
negative control ("Sham Irradiation+Distilled Water") of 
total cholesterol in groups "Irradiation+Distilled Water" 
(p<0.01) in order of 24.05% (104.2±1.39 Vs 84.00±4.39 
mg/dL) and "Irradiation+25 mg / kg AGE" (p<0.05) in 
order of 8.33% (91.0±5.5 Vs 84.00±4.39 mg/dL). AGE 
intake caused a significant decrease (p<0.001) in total 
cholesterol respectively of about 35.12%, (67.6±1.08 Vs 
104.2±1.39 mg/dL) and 28.21% (74.8±1.93 Vs 104.2±1.39 
mg/dL) in the groups "Irradiation+25 mg / kg AGE" and 
"Irradiation+50 mg / kg AGE". Comparing these two 
groups to positive control "Irradiation+Vitamin E and 
Lipoïc Acid", a significant decline in order of 25.71% 
(67.6±1.08 Vs 91.0±5.5 mg/dL) and 17.8% (74.8±1.93 Vs 
91.0±5.5 mg/dL) was noticed in the groups "Irradiation+25 
mg / kg AGE" (p<0.001) and "Irradiation+50 mg / kg AGE" 
(p<0.05). 
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Figure 8. Effects of γ-radiation and AGE on Total Cholesterol. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.2.2. HDL Cholesterol 

The effects of γ-radiation and AGE intake on HDL 
cholesterol are shown in Figure 9. This figure shows that, 
HDL cholesterol significantly decreased (p<0.05) in order of 
33.33% (18.8±1.93 Vs 28.2±2.85 mg/dL) in the 
"Irradiation+Distilled Water" group compared to the negative 
control (“Sham Irradiation+Distilled Water"). After 
irradiation, the administration of AGE lead to the increase of 
total cholesterol in the range of 92.55% (36.2±0.86 Vs 
18.8±1.93 mg/dL) in the group "Irradiation+25 mg / kg AGE 
"(p<0.001) and to 64.89% (31±2.72 Vs 18.8±1.93 mg/dL) in 
the group" Irradiation+50 mg / kg AGE "(p<0.01) compared 
to the group" Irradiation+Distilled Water ". This increase is 
significant compared to the positive control 
"Irradiation+Vitamin E and Lipoïc Acid" in order of 77.45% 
(36.2±0.86 Vs 20.4±2.25 mg/dL) in the group 
"Irradiation+25 mg / kg AGE" (p<0.001) and 51.96% 
(31±2.72 Vs 20.4±2.25 mg/dL) in the group "Irradiation+50 
mg / kg AGE" (p<0.05). 

 

Figure 9. Effects of γ-radiation and AGE on HDL Cholesterol. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.2.3. Triglyceride 

The effects of γ-radiation and AGE administration on 
triglycerides have been shown in the following figure. 

 

Figure 10. Effects of γ-radiation and AGE on HDL Cholesterol. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 
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� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

The irradiation caused a significant increase (p<0.001) of 
triglycerides in order of 25.63% (129.4±2.73 Vs 103±4.28 
mg/dL) in the group "Irradiation+Distilled Water" and a 
significant decrease in order of 24.27% (78±2.41 Vs 
103±4.28 mg/dL) in the group "Irradiation+25 mg / kg AGE" 
(p<0.01) and in the range of 18.06% (84.4±2.3 Vs 103±4.28 
mg/dL) in the group "Irradiation+50 mg / kg AGE" (p<0.05). 
Compared to the group "Irradiation+Distilled Water", AGE 
intake after γ-radiation resulted in a significant decrease 
(p<0.001) in the groups "Irradiation+25 mg / kg AGE" and 
"Irradiation 50 mg / kg AGE" respectively in order of 
39.72%, (78±2.41 Vs 129.4±2.73 mg/dL) and 34.78% 
(84.4±2.3 Vs 129.4±2.73 mg/dL). This decrease was also 
significant (p<0.001) in comparing these two groups with 
positive control group "Irradiation+Vitamin E and Lipoïc 
Acid" in order of 29.6% (78±2.41 Vs 110.8±6.58 mg/dL) and 
23.83% (84.4±2.3 Vs 110.8±6.58 mg/dL) (Figure 10). 

3.2.4. LDL Cholesterol 

Figure 11 shows a significant change in LDL cholesterol 
after γ-radiation through an increase (p<0.01) in the range of 
69.32% (59.6±2.11 Vs 35.2±5.63 mg/dL) in the 
"Irradiation+Distilled Water" group and a decrease (p<0.05) 
in the range of 54.55% (16±1.58 Vs 35.2±5.63 mg/dL) in the 
group "Irradiation+25 mg / kg AGE". In irradiated groups, a 
significant decrease was observed (p<0.001) in the groups 
receiving AGE at doses of 25 and 50 mg / kg; respectively in 
order of 73.15% (16±1.58 Vs 59.6±2.11 mg/dL) and 55.37% 
(26.6±3.41 Vs 59.6±2.11 mg/dL) compared to the group 
"Irradiation+Distilled Water". Comparing these two groups to 
irradiated positive control group receiving vitamin E and 
Lipoïc acid shows a significant decline in order of 67.08% 
(16±1.58 Vs 48.6±5.6 mg/dL) in animals of the group " 
irradiation+25 mg / kg AGE "(P<0.001) and in the range of 
45.27% (26.6±3.41 Vs 48.6±5.6 mg/dL) in animals of the 
group" irradiation+50 mg / kg AGE "(P<0.01). 

 

Figure 11. Effects of γ-radiation and AGE on HDL Cholesterol. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.3. Creatinine 

The effects of radiation and AGE on creatinine levels are 
shown in Figure 12. Comparison of the groups with the 
negative control "Sham Irradiation+Distilled Water" revealed 
a significant increase of creatinine level (P<0.01) in order of 
51.65% (1.84±0.14 Vs 1.21±0.05 mg/dL) in the group 
"Irradiation+Distilled Water" while a significant decrease of 
the range of 53.30% (0.57±0.07 Vs 1.21±0.05mg/dL) 
occurred in the group "Irradiation+25 mg / kg AGE". 
Furthermore, a significant decrease (P<0.001) in the 
creatinine level was observed in the animals irradiated and 
receiving AGE at doses of 25 mg / kg and 50 mg / kg 
compared to those of group "Irradiation+Distilled Water". 
This decrease was respectively in the range of 69.21% 
(0.57±0.07 Vs 1.84±0.14 mg/dL) and 55.82% (0.81±0.16 Vs 
1.84±0.14 mg/dL). Similarly, compared to positive control 
irradiated receiving Vitamin E and Lipoïc Acid, a significant 
decline of creatinine level (P<0.001) was also observed in the 
group "Irradiation+25 mg / kg AGE" respectively in order of 
39.66 % (0.57±0.07 Vs 0.94±0.14 mg/dL) and a non-
significant reduction (P> 0.05) in the range of 13.43% 
(0.81±0.16 Vs 0.94±0.14 mg/dL) observed in the group 
"Irradiation+50 mg / kg AGE". 

 

Figure 12. Effects of γ-radiation and AGE on creatininerate. 

Each bar represents the Mean±ESM, n=5. Significant 
differences are: 

� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 
groups to control (Sham Irradiation+Distilled Water) (a) or 
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� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.4. Oxidative Stress Assessment in Tissue Homogenates 

3.4.1. Reduced Glutathione (GSH) 

Irradiation and AGE intake have led to a significant 

decrease in glutathione reduced levels in the groups 
“Irradiation+Distilled Water” and “Irradiation+Vitamin E and 
Lipoïc Acid” and a significant increase in groups 
“Irradiation+25 mg/kg AGE” and “Irradiation+50 mg/kg 
AGE”. The decline was most significant in the group 
"Irradiation+Distilled Water" than in the group 
“Irradiation+Vitamin E and Lipoïc Acid” and the increase 
more important in the group “Irradiation+25 mg/kg AGE”than 
in the group “Irradiation+50 mg/kg AGE” (Table 1). 

Table 1. Effects of γ-radiation and AGE on glutathione reduced rate (µmol/mg of tissue). 

Organs Sham Irradiation+Distilled Water Irradiation+Distilled Water Sham Irradiation+25 mg/kg AGE Irradiation+25 mg/kg AGE 

Lungs 126,9±2,20 58.46±5.74 a***, b***, c*** 143.65±5.40 205.27±2.97 a***, b***, c*** 
Testis 29.12±2.4 11.99±1.46 a***, c*** 32.35±2.02 42.14±1.38 a**, b***, c*** 
Brain 25.09±0.62 12.13±1.43 a**, c* 25.77±1.49 37.21±4.09 a**, b***, c*** 
Vertebrum 22.16±2.7 13.82±1.38 23.65±3.81 31.24±2.28 b***, c* 
Liver 151.96±2.54 108.85±3.46 a***, 156.78±5.36 251.12±5.18 a***, b***, c*** 
kidney 145.22±1.46 62.15±2.94 a***, c*** 126,15±1.33 175.19±2.38 a***, b***, c*** 
Spleen 143.5±3.7 82.78±4.7 a***, c*** 143,85±2.38 209,87±2.03 a***, b***, c*** 
Heart 141.22±2.26 58.96±3.89 a***, c*** 141.65±2,23 290.06±2.27 a***, b***, c*** 
Aorta 84.96±5.95 38.96±3.28 a***, c** 80.53±4.85 119.71±5.12 a***, b***, c*** 

Table 1. Continue. 

Sham Irradiation+50 mg/kg AGE Irradiation+50 mg/kg AGE 
Sham Irradiation+Vitamin E and Lipoïc 

Acid 

Irradiation+Vitamin E and Lipoïc 

Acid 

146.26±2.93 164.61±4.85 a***, b***, c*** 141.44±5.36 117.26±4.31 b***, 

30.56±2.47 35.55±3.40 b***, 31.32±2.31 27.84±2.41 b***, 

25.62±1.3 30.6±1.01 b***, c* 25.49±1.02 20.93±3.87 b* 

21.5±2.98 26.46±2.01 b** 21.15±3.13 19.57±1.53 

166.29±5.27 192.43±5.36 a***, b***, c*** 133.81±5.39 120.62±4.94 a***, 

119.28±2.56 146.06±3.89 b***, c*** 118.93±3.27 91.28±4.97 a***, b***, 

142.24±1.91 167.42±4.22 a***, b***, c*** 142.30±4.05 107.81±4.62 a***, b*** 

142.75±3.51 210.62±3.68 a***, b***, c*** 148.19±2.8 84.94±3.79 a***, b***, c*** 

81.76±3.46 96.06±6.39 b***, c*** 80.21±2.66 64.91±6.51 a*, b**, 

 
Each bar represents the Mean±ESM, n=5. Significant 

differences are: 
� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 

groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group» (c). 
 

3.4.2. Superoxide Dismutase (SOD) 

Irradiation and AGE administration induced a significant 
decrease in superoxide dismutase levels in groups 
“Irradiation+Distilled Water” and “Irradiation+Vitamin E and 
Lipoïc Acid” and a significant increase in groups 
“Irradiation+25 mg/kg AGE” and “Irradiation+50 mg/kg 
AGE”. The decline was most significant in the group 
"Irradiation+Distilled Water" than in the group 
“Irradiation+Vitamin E and Lipoïc Acid”and the increase more 
important in the group“Irradiation+25 mg/kg AGE”than in the 
group “Irradiation+50 mg/kg AGE” (Table 2). 

Table 2. Effects of γ-radiation and AGE on Superoxide Dismutase rate (µmol/mg of proteins). 

Organs Sham Irradiation+Distilled Water Irradiation+Distilled Water Sham Irradiation+25 mg/kg AGE Irradiation+25 mg/kg AGE 

Lungs 24.4±0.41 18.38±0.15 a***, b***, c*** 24.45±0.42 34.43±0.32 a***, b***, c*** 
Testis 49.6±0.51 40.2±0.37 a***, c*** 50.73±0.21 81.88±0.53 a***, b***, c*** 
Brain 76.83±0.70 55.15±0.16 a***, c* 75.7±0.53 112.65±0.25 a***, b***, c*** 
Vertebrum 14.9±0.62 8.1±0.42 a***, c*** 14.1±0.50 25.2±0.57 a***, b***, c*** 
Liver 17.18±0.67 13.38±0.69 a***, 17.53±0.46 26.63±0.48 a***, b***, c*** 
kidney 17.63±0.54 12.5±0.67 a*** 17.55±0.61 23.23±0.61 a***, b***, c*** 
Spleen 45.93±0.55 32.68±0.98 a***, c*** 52.8±0.41 96.13±0.49 a***, b***, c*** 
Heart 50.39±0.39 34.3±0.75 a***, c*** 57.63±0.39 90.65±0.32 a***, b***, c*** 
Aorta 30.09±0.49 22.03±0.50 a***, c*** 33.71±0.62 49.45±0.43 a***, b***, c*** 
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Table 2. Continue. 

Sham Irradiation+50 mg/kg AGE Irradiation+50 mg/kg AGE 
Sham Irradiation+Vitamin E and 

Lipoïc Acid 

Irradiation+Vitamin E and Lipoïc 

Acid 

24.35±0.19 29.08±0.12 a***, b***, c*** 24.4±0.58 20.78±0.48 a***, b***, c*** 
52.43±0.39 a***, 60.5±0.14 a***, b***, c*** 49.75±0.14 42.95±0.54 a***, b***, c*** 
74.8±0.60 a*, 89.03±0.59 a***, b***, c*** 70.93±0.13 a***, 53.15±0.53 a***, b*, 
14.16±0.53 19.35±0.23 a***, b***, c*** 14.45±0.33 11.05±0.23 a***, b*** 
17.48±0.48 21.7±0.39 a***, b***, c*** 17.43±0.24 15.28±0.38 
17.3±0.71 19.85±0.51 b***, c*** 16.93±0.63 14.23±0.62 a**, 
56.23±0.63 78.28±0.54 a***, b***, c*** 57.25±0.45 43.05±0.38 a**, b***, c*** 
57,6.±0.52 70.68±0.25 a***, b***, c*** 54.13±0.48 43.35±0.67 a***, b*** 
34.12±0.35 40.34±0.57 a***, b***, c*** 32.05±0.28 26.8±0.33 a***, b***, 

 
Each bar represents the Mean±ESM, n=5. Significant 

differences are: 
� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 

groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

 

3.4.3. Catalase (CAT) 

Irradiation and AGE administration have led to a 
significant decrease in catalase levels in groups 
“Irradiation+Distilled Water” and “Irradiation+Vitamin E and 
Lipoïc Acid” and a significant increase in groups 
“Irradiation+25 mg/kg AGE” and “Irradiation+50 mg/kg 
AGE”. The decline was most significant in the group 
"Irradiation+Distilled Water" than in the group 
“Irradiation+Vitamin E and Lipoïc Acid”and the increase 
more important in the group“Irradiation+25 mg/kg AGE” 
than in the group “Irradiation+50 mg/kg AGE” (Table 3). 

Table 3. Effects of γ-radiation and AGE on Catalase rate (µmoles H2O2/minute/mg of protein). 

Organs Sham Irradiation+Distilled Water Irradiation+Distilled Water Sham Irradiation+25 mg/kg AGE Irradiation+25 mg/kg AGE 

Lungs 3.50±0.32 2.13±0.18 a*, 3.52±0.27 4.74±0.41 a*, b***, c*** 

Testis 6.84±0.63 5.36±0.18 a**, 6.82±0.37 9.13±0.57 b***, c*** 

Brain 12.48±0.78 9.02±0.92 a*, 12.49±0.84 20.17±0.77 a***, b***, c*** 

Vertebrum 9.65±0.34 5.56±0.67 a**, 9.69±0.86 14.19±0.95 a**, b***, c*** 

Liver 5.59±0.48 2.93±0.74 a*, 5.58±0.69 9.66±0.36 a***, b***, c*** 

kidney 3.79±0.28 1.99±0.15 a***, c** 3.88±0.32 5.53±0.14 a***, b***, c*** 

Spleen 3.23±0.34 1.85±0.24 a*, 3.28±0.53 4.42±0.26 b***, c** 

Heart 7.18±0.40 4.00±0.36 a**, c* 7. 26±0.39 9.42±0.67 a*, b***, c** 

Aorta 3.15±0.39 2.41±0.10 3.18±0.37 5.13±0.15 a***, b***, c*** 

Table 3. Continue. 

Sham Irradiation+50 mg/kg AGE Irradiation+50 mg/kg AGE Sham Irradiation+Vitamin E and Lipoïc Acid Irradiation+Vitamin E and Lipoïc Acid 

3.51±0.29 4.04±0.26 b***, c** 3.51±0.43 2.45±0.15 
6.82±0.49 7.93±0.30 b**, c* 6.81±0.25 5.88±0.56 
12.49±0.91 16.01±0.79 a*, b***, c*** 12.67±0.55 9.91±0.57 
9.67±0.64 11.79±0.97 b***, c*** 9.65±0.82 6.03±0.69 a*, 
5.65±0.15 7.15±0.97 b***, c* 5.53±0.14 4.75±0.50 
3.85±0.20 4.47±0.41 b***, 3.73±0.43 3.41±0.09 b**, 
3.26±0.09 3.65±0.40 b**, 3.23±0.21 2.79±0.24 
7.73±0.77 8.24±0.20 b***, 7.08±0.46 6.37±0.86 b*, 
3.16±0.37 4.13±0.39 b**, c** 3.13±0.14 2.65±0.34 

 
Each bar represents the Mean±ESM, n=5. Significant 

differences are: 
� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 

groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

3.4.4. Nitrite (NO
2-

) 

Irradiation and AGE administration induced a significant 
increase in nitrite levels in groups “Irradiation+Distilled Water” 
and “Irradiation+Vitamin E and Lipoïc Acid” and a significant 
decrease in groups “Irradiation+25 mg/kg AGE” and 
“Irradiation+50 mg/kg AGE”. The increase was most significant 
in the group "Irradiation+Distilled Water" than in the group 
“Irradiation+Vitamin E and Lipoïc Acid” and the decline more 
important in the group“Irradiation+25 mg/kg AGE” than in the 
group “Irradiation+50 mg/kg AGE” (Table 4). 
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Table 4. Effects of γ-radiation and AGE on Nitrite rate (µmol/mL). 

Organs Sham Irradiation+Distilled Water Irradiation+Distilled Water Sham Irradiation+25 mg/kg AGE Irradiation+25 mg/kg AGE 

Lungs 0.115±0.015 0.163±0.006 0.108±0.018 0.038±0.007 a**, b***, c*** 
Testis 0.035±0.004 0.054±0.006 0.034±0.006 0.014±0.002 a*, b***, c** 
Brain 0.025±0.002 0.034±0.004 0.025±0.002 0.014±0.001 a*, b***, c*** 
Vertebrum 0.058±0.007 0.096±0.006 a*, 0.051±0.013 0.031±0.001 b***, c* 
Liver 0.135±0.008 0.175±0.008 a* 0.133±0.002 0.054±0.014 a***, b***, c*** 
kidney 0.158±0.022 0.247±0.004 a**, c* 0.15±0.009 0.065±0.012 a**, b***, c*** 
Spleen 0.068±0.008 0.109±0.002 a***, b***, c** 0.069±0.004 0.032±0.002 a***, b***, c*** 
Heart 0.76±0.03 1.18±0.13 a*, 0.74±0.12 0.38±0.02 a*, b***, c** 
Aorta 0.119±0.025 0.197±0.025 a*, 0.113±0.026 0.055±0.003 b***, c** 

Table 4. Continue. 

Sham Irradiation+50 mg/kg AGE Irradiation+50 mg/kg AGE 
Sham Irradiation+Vitamin E and Lipoïc 

Acid 

Irradiation+Vitamin E and Lipoïc 

Acid 

0.112±0.016 0.079±0.013 b***, 0.115±0.012 0.127±0.015 
0.034±0.009 0.030±0.003 b*, 0.037±0.003 0.041±0.004 
0.025±0.004 0.020±0.003 b**, 0.026±0.001 0.029±0.001 
0.053±0.011 0.041±0.008 b***, 0.058±0.003 0.067±0.007 
0.134±0.003 0.097±0.012 a*, b***, c*** 0.137±0.01 0.152±0.005 
0.152±0.022 0.098±0.025 b***, c** 0.157±0.006 0.182±0.005 b*, 
0.069±0.005 0.055±0.006 b***, c** 0.068±0.004 0.081±0.005 b**, 
0.72±0.12 0.5±0.05 b***, c* 0.72±0.12 0.91±0.09 
0.114±0.003 0.078±0.008 b***, 0.117±0.002 0.144±0.014 

 
Each bar represents the Mean±ESM, n=5. Significant 

differences are: 
� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 

groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

 

3.4.5. Malondialdehyde (MDA) 

Irradiation and AGE administration have led to a 
significant increase in Malondialdehyde levels in groups 
“Irradiation+Distilled Water” and “Irradiation+Vitamin E and 
Lipoïc Acid” and a significant decrease in groups 
“Irradiation+25 mg/kg AGE” and “Irradiation+50 mg/kg 
AGE”. The increase was most significant in the group 
"Irradiation+Distilled Water" than in the group 
“Irradiation+Vitamin E and Lipoïc Acid” and the decrease 
more significant in the group“Irradiation+25 mg/kg AGE” 
than in the group “Irradiation+50 mg/kg AGE” (Table 5). 

Table 5. Effects of γ-radiation and AGE on Malondialdehyde rate (µmol/mg of tissue). 

Organs Sham Irradiation+Distilled Water Irradiation+Distilled Water Sham Irradiation+25 mg/kg AGE Irradiation+25 mg/kg AGE 

Lungs 1.34±0.19 1.81±0.05a*, c** 1.33±0.14 0.84±0.11 a*, b***, 
Testis 1.09±0.17 1.46±0.05 1.09±0.15 0.36±0.15 a*, b***, c** 
Brain 1.72±0.15 2.09±0.23 1.71±0.10 1.12±0.05 a**, b***, c*** 
Vertebrum 4.54±0.84 6.46±0.59 4.29±0.84 1.71±0.26 a**, b***, c *** 
Liver 1.09±0.17 1.46±0.05 1.09±0.15 0.36±0.15 a*, b***, c** 
kidney 2.89±0.23 3.63±0.39 2.79±0.23 1.83±0.27 b***, c** 
Spleen 2.20±0.10 3.25±0.12 a***, c** 2.18±0.07 1.15±0.05 a***, b***, c*** 
Heart 5.68±0.12 8.37±0.70 a***, 5.63±0.19 2.45±0.18 a***, b***, c*** 
Aorta 2.15±0.05 3.34±0.25 a*** 2.14±0.07 0.93±0.17 a***, b***, c*** 

Table 5. Continue. 

Sham Irradiation+50 mg/kg AGE Irradiation+50 mg/kg AGE 
Sham Irradiation+Vitamin E and 

Lipoïc Acid 

Irradiation+Vitamin E and Lipoïc 

Acid 

1.33±0.12 1.11±0.13b**, 1.34±0.09 1.19±0.03 b**, 
1.09±0.11 0.80±0.19 b*, 1.08±0.20 1.20±0.18 
1.72±0.06 1.51±0.08 b**, 1.71±0.05 1.89±0.07 
4.25±0.36 3.47±0.18 b**, 4.38±0.18 5.31±0.20 
1.09±0.11 0.80±0.19 b*, 1.08±0.20 1.20±0.18 
2.76±0.26 2.32±0.14 b*, 2.82±0.45 3.40±0.19 
2.19±0.14 1.89±0.22 b***, c** 2.20±0.15 2.54±0.12 b**, 
5.57±0.21 4.74±0.40 b***, c*** 5.56±0.24 7.01±0.51 
2.12±0.08 1.81±0.32 b***, c** 2.12±0.09 2.75±0.26 
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Each bar represents the Mean±ESM, n=5. Significant 

differences are: 
� a*P<0.05; a**P<0.01; a***P<0.001: when comparing 

groups to control (Sham Irradiation+Distilled Water) (a) 
or 

� b*P<0.05; b**P<0.01; b***P<0.001: when comparing 
groups to “Irradiation+Distilled Water Group” (b) or 

� c*P<0.05; c**P<0.01; c***P<0.001: when comparing 
groups to “Irradiation+Vitamin E and Lipoïc Acid 
Group” (c). 

4. Discussion 

In this study, male rats were used to investigate the 
possible effect of AGE administration against the deleterious 
consequences produced by γ-radiation. The present study 
indicated that exposure of rats to 4.5Gy γ-radiation induced 
an increase in ALP activity in liver tissue. The same results 
were obtained by Sanaa et al. on the first and seventh day 
post-exposure day using a dose of 6.5Gy [25]. The increase 
observed can be due to the release of ALP from different 
tissues associated with the obstruction of the blood stream to 
the liver [26]. The change in the tissue permeability due to 
irradiation could enhance the release of the most sensitive 
biomarker enzymes from their subcellular sites of production 
to extracellular process and consequently to blood circulation 
[27-28]. Radiation exposure induced changes in the amino 
acid residue and catalytic activity of ALP explaining the 
changes noticed [29-30]. Furthermore, the liver always react 
to an injury by synthetizing more enzymes which enter the 
circulation, raising the enzyme level in serum [31]. 

The male rats irradiated showed elevation of serum levels 
of ALT, AST, ALP and Bilirubin (Total Serum Bilirubin, 
Direct Bilirubin and Unconjugated Bilirubin) as compared 
with saline control group. In agreement with our results, El-
Kafif et al. explained that this increase may be ascribed to the 
radiation-induced damage to hepatic parenchymal cells as 
well as extra hepatic tissues with a subsequent release of the 
enzymes into the blood stream [32]. It may also be attributed 
to the structural damage in spleen, lymphnodes and mature 
lymphocytes [33]. Moreover, the destruction of erythrocytes 
due to ionizing radiation and the release of their enzymes 
cannot be excluded as a causative factor for the rise in these 
enzymes [34]. The increased activity of serum ALP by 
gamma-irradiation agrees with Tabachnick et al. who 
attributed it to the enzyme release from the tissues to the 
blood stream or to liver disturbances [35], particularly due to 
defects in cell membrane permeability [36]. The variation in 
transaminases activities may be due to certain damage in 
some tissue like heart, liver, kidney and skeletal muscles. 
Fahim et al. mentioned that whole body gamma-irradiation 
of rats showed significant changes in the activities of 
transaminases which are dependent on the time lapses after 
irradiation and the type of tissue containing the enzyme [37]. 
These results may be attributed to the state of hypoxia of 
parenchyma for contracting fibrous tissue and the increased 

permeability of hepatic cell membrane due to radiation 
exposure with release of ALT enzyme to circulation. The 
elevation in the serum activity of ALT, a liver cytoplasmic 
enzyme indicates anecrotic lesions in the liver cells [38]. It is 
also a sign of liver parenchymal cell destruction induced by 
whole body gamma irradiation [39]. 

The clinical and diagnostic values associated with changes 
in blood enzymes concentrations such as AST, ALT, ALP 
and bilirubin have long been recognized [40]. Increased 
levels of these diagnostic markers of hepatic function in 
irradiated rats are implicative of the degree of hepatocellular 
dysfunction caused by the radiation [39]. The increase in the 
levels of serum bilirubin reflected the depth of jaundice and 
the increase in transaminases was the clear indication of 
cellular leakage and loss of functional integrity of the cell 
membrane [41]. Omran et al. revealed that significant 
elevation in AST, ALT, ALP and bilirubin were recorded post 
exposure to gamma-radiation which reflects detectable 
changes in liver functions [42]. Such elevation was in 
agreement with [43]. They reported that this elevation is 
directly due to the interaction of cellular membranes with 
gamma-rays or through an action of free radicals produced 
by this radiation. 

Oral administration of AGE one hour after irradiation on 
day 6 after acclimatization significantly reduced radiation 
toxic effect on serum levels of AST, ALT, ALP and Bilirubin 
(Total Serum Bilirubin, Direct Bilirubin and Unconjugated 
Bilirubin) compared to untreated rats. The reduction was 
significant in groups receiving AGE at a dosage of 25 mg/kg 
compare to those receiving it at a dosage of 50 mg/kg or to 
those receiving Vitamin E and Lipoïc Acid after irradiation. 
In agreement with results of the present study, some authors 
revealed that administration of AGE caused a significant 
reduction in the serum levels of AST and ALT in rats treated 
with cadmium [44]; lead [45] and doxorubicin [46]. The 
reduction of the liver enzymes in AGE pre-treated rats may 
be due to its antioxidant effect that reduces the free radical-
induced oxidative damage in the liver, there by stabilizing the 
membrane permeability and reducing the leakage of enzymes 
into the blood [47]. Similarly, reduction in serum levels of 
AST and ALT enzymes was reported with administration of 
other herbal plants [48]. Garlic also exhibits a wide range of 
properties including hepatoprotective effects [49-50]. Earlier 
studies revealed that AGE protects against liver injuries with 
SAC and SAMC [51-53]. 

An important function of serum protein synthesized and 
secreted by several cell types is the maintenance of the 
normal distribution of body water by controlling the osmotic 
balance between the circulating blood and the membrane of 
tissues, and the transport of lipids, hormones and inorganic 
materials [54-55]. Blood serum protein is a fairly labile 
biochemical system, precisely reflecting the condition of the 
organism and the changes happening to it under influence of 
internal and external factors [56]. 

The present study revealed that, there was significant 
decrease in serum total proteins post irradiation probably due 
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to the damage of vital biological processes or to changes in 
the permeability of liver, kidney and other tissues resulting in 
leakage of protein via the kidney [57-60]. The slow rate in 
synthesis of all protein fractions after irradiation can explain 
the decrease in blood total protein [61-62]. This decrease 
coincides with the decrease in serum t-protein reported by 
other workers in irradiated rats, which may be due to 
radiation damage to the liver [63]. The decrease in protein in 
irradiated rats might be the result of either damage of 
biological membranes or to changes in the permeability of 
the liver [32, 64-65]. Several investigations indicated that 
exposure to radiation increases free radical activity. The 
generation of free radicals is considered to be the primary 
cause of damaging effects. Radiation induced lipid 
peroxidation reduce protein synthesis and cause disturbances 
in the enzyme activity of the liver [66]. 

In the present study, there was a decrease in contents of 
total proteins in serum of rats irradiated with gamma 
radiation, indicating liver injury [67-68]. These results are in 
accordance with other studies using high-energy radiation 
from cobalt source [69]. Therefore, it is suggested that 
oxidative stress as a result of gamma-irradiation is linked to 
the organ damage following exposure to ionizing radiation. 
Kempner explained that this decrease in proteins level may 
be due to gamma-irradiation can damage or inactivate 
proteins by two different mechanisms. First, it can rupture 
the covalent bonds in target protein molecules as a direct 
result of a photon depositing energy into the molecule. 
Second, it can act indirectly, link with a water molecule, 
producing free radicals and other non-radical reactive oxygen 
species that are in turn responsible for most (99.9%) of the 
protein damage [55, 70]. 

Oral administration of AGE one hour after irradiation on 
day 6 after acclimatization has caused a significant increase in 
serum total proteins in AGE groups. The increase was more 
important in “Irradiation+25 mg/kg AGE” group than in 
“Irradiation+50 mg/kg AGE” group or “Irradiation+Vitamin E 
and Lipoïc Acid”. AGE and SAC were shown to scavenge 
ROS [71] and to inhibit lipid peroxide formation in several 
studies [10, 72]. These antioxidant effects can be due to allixin, 
SAC, SMAC and diallylpolysulfides, whose radical-
scavenging action increased with the number of sulfur atoms 
[73]. Or, due to to N-fructosyl arginine and N-fructosyl 
glutamate which showed antioxidant effects by spin resonance 
spectroscopy [9]. 

The deleterious effects of ionizing radiation on biological 
system are mainly mediated through the generation of 
reactive oxygen species (ROS) in cells as a result of water 
radiolysis [74]. ROS and oxidative stress may contribute to 
metabolic and morphologic changes in human and animals 
[75]. The uncontrolled ROS production could induce 
modification of lipids [74, 76]. Lipid profile includes total 
lipids as cholesterol, triglycerides and lipoproteins as HDL-
C, LDL-C [77]. Most lipids circulate through the 
bloodstream as lipoproteins. Lipoproteins are lipid–protein 
complexes that contain large insoluble glycerides and 
cholesterol with a superficial coating of phospholipids and 

proteins synthesized in the liver [78]. All lipoproteins carry 
all types of lipid, but in different proportions, so that the 
density is directly proportional to the protein content and 
inversely proportional to the lipid content [79]. 

In the present study, γ-radiation induced decrease in HDL 
Cholesterol level and significant increase in total cholesterol, 
triglycerides and LDL cholesterol level. These results are in 
agreement with those of Markevich and Kolomiitseva, 
Zahran et al., Abbady et al., Kafafy et al., Said and Azab and 
Nada who reported an increase of lipids in plasma level of 
rats post irradiation [80-84]. They also attributed the 
hypercholesterolemia conditions to the stimulation of 
cholesterol synthesis in the liver after gamma-irradiation. 
Roushdy et al. found that the elevation in cholesterol level 
might be due to disturbance in the metabolism of bile 
pigments and lipid due to liver damage resulting from 
radiation exposure [85]. Bok, et al. attributed this 
hypercholesterolemia to the increase of activation of β-
hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase 
enzyme, the key regulatory enzyme in the reduction of the 
overall process of cholesterol synthesis [86-87]. Sedlakova et 

al. explained that the increase in serum triglyceride level 
after irradiation might result from inhibition of lipoprotein 
lipase activity, leading to reduction in uptake of 
triacylglycerols [88]. Mahmoud attributed the hyperlipidemic 
state under the effect of gamma-irradiation, to the stimulation 
of liver enzymes responsible for the biosynthesis of fatty 
acids by gamma radiation and mobilization of fats from 
adipose tissue to blood stream [89]. While Chaialo et al and 
Feurgard et al suggested that the degeneration effect on 
hepatic cell and biomembranes led to acceleration in lipid 
metabolism after irradiation resulting in releasing of 
structural phospholipids [90-91]. Also the increase in serum 
triglycerides level after irradiation might result from 
inhibition of lipoprotein lipase activity, leading to reduction 
in the uptake of triacylglycerols [88] in addition to decreased 
fatty acid oxidation [92]. 

The increase in cholesterol and triglycerides levels 
observed in this study after exposure to gamma radiation 
compared to control confirms previous reports which 
revealed that whole body exposure to gamma radiation 
induces hyperlipidemia [93-94]. They reported that increased 
level of serum cholesterol fractions was probably due to its 
release from tissues, destruction of cell membranes and 
increase rate of cholesterol biosynthesis in the liver and other 
tissues. The hyperlipidemic state observed after irradiation 
could be attributed to the mobilization of fats from the 
adipose tissues to the blood stream [95] in addition to 
mitochondrial dysfunction [96]. Chrysohoou et al. observed 
that total serum phospholipids, their fractions and cholesterol 
were significantly changed after radiation exposure [97]. 
Furthermore, some serum lipid polyunsaturated fatty acids 
were significantly altered, since these alterations are a sign of 
lipid peroxidation [93]. The elevation of serum triglycerides 
after exposure of rats to gamma irradiation comes in 
accordance with Ahmed and Abdel-Magied, [98-99]. The 
elevation in serum triglycerides may be related to destruction 
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of lipoprotein lipase activity in adipose tissue post- 
irradiation [100]. 

Oral administration of AGE one hour after irradiation on 
day 6 after acclimatization has caused a significant reduction 
in plasma TC, TG, LDL-Cholesterol and significantly 
increased plasma HDL-Cholesterol. These results were more 
important with AGE than with Vitamin E and Lipoïc Acid 
and the effects observed have been more pronounced with the 
lower dose of AGE (25 mg/kg) than with the higher dose (50 
mg/kg). Suggesting in accordance with Khalid S. Al-Numair 
that garlic extracts may have a beneficial effect on the blood 
lipid profile by improving lipid metabolic indices in rats’ 
plasma [101]. The results of this study confirm the earlier 
hypolipidemic effects reported for garlic [102-111]. 
Moreover, previous studies have shown that ingestion of 
garlic appears to inhibit hepatic fatty acid synthesis by 
lowering key enzymes activities in supplying substrates, thus 
reducing lipid accumulation in the liver and TG level in 
plasma [112]. With respect to the cholesterol lowering 
property of garlic, it has been suggested that some 
constituents of garlic may act as inhibitors for some enzymes 
such as hydroxyl methyl glutaryl CoA reductase, which 
participates in cholesterol synthesis [113-114]. 

The increase in blood creatinine has been reported after 
exposure to irradiation and secondary to renal damage [91, 
115-118]. Serum creatinine elevation by irradiation was 
attributed by El-Kashef and Saadato its interaction with the 
creatinine sites of biosynthesis [119]. The current study 
revealed an elevation in creatinine levels in response to 
whole body γ-radiation. According to Konnova et al [120] 
and Yildiz et al [121], the elevation of creatinine post 
irradiation might be due to the back leakage of the filtered 
creatinine, which may occur through the damaged tubular 
epithelium along the concentration gradient established by 
salt and water reabsorption [122]. 

The oral administration of AGE to rats one hour after 
irradiation on day 6 after acclimatization clarified that serum 
concentration of creatinine were significantly decreased. 
These effects have been more pronounced with AGE than 
with Vitamin E and Lipoïc Acid administration. The 
reduction was significant in groups receiving AGE at a 
dosage of 25 mg/kg compare to those receiving it at a dosage 
of 50 mg/kg. Stipulating, garlic has ameliorative activity on 
creatinine. This amelioration is attributed to allicin [123]. 
The decrease in creatinine might cause a decrease in urinary 
protein extraction, attenuation of lipid derangements, 
decreased oxygen consumption and the hypertrophy of the 
kidney [124]. According to the decrease in creatinine, it can 
be assumed that, AGE retains the balance between 
lipogenesis and lipolysis in the kidney to counteract the 
hyperlipidemia associated renal damage in addition to 
maintaining cellular hydration leading to improvement of 
kidney function. Data suggest that the renoprotective effects 
of SAC and AGE are associated with their antioxidant 
properties [125]. Hence, they may be used to delay the 
progression of renal damage. This proves the AGE 
supplementation is helpful in preventing the progression of 

radiation injuries and can thus be consider as 
nephroprotective [126]. Nevertheless, further studies are 
warranted to investigate the active principles responsible for 
the nephroprotective effect in AGE. 

Ionizing radiations produced peroxidation of lipids leading 
to structural and functional damage to cellular membranous 
molecules directly by transferring energy or indirectly by 
generation of oxygen derived free radical (OH), superoxide 
(O2

-) and nitric oxide (NO) which are the predominant 
cellular free radicals [127-128]. Oxidative stress leads to over 
production of NO, which readily reacts with superoxide to 
form peroxynitrite (ONOO-) and peroxynitrous acid which 
they can initiate lipid peroxidation [129]. Under normal 
conditions, the inherent defense system, including the 
enzymes superoxide dismutase, which dismutates 
superoxide; catalase and glutathione peroxidase, which 
destroy toxic peroxides, and small molecules including 
glutathione, protects against oxidative damage. Excessive 
liver damage and oxidative stress caused by γ-radiation might 
be responsible for the depletion of GSH [130-132]. 
Irradiation has been reported to cause renal GSH depletion 
and lipid peroxides accumulation in different organs [133-
135]. It was found that the level of elevation in lipid 
peroxidation after irradiation is in proportion to radiation 
dose and elapsed time [136]. Moreover, the formation of lipid 
peroxidation ultimately would alter the composition of the 
glomerular basement membrane [137]. Evidence of radiation 
induced organs injury via a mechanism of oxidative stress 
caused by increased MDA (a potential lipid peroxidation 
biomarker) and nitrite, reduced GSH levels and decreased 
activity of CAT, SOD were demonstrated by various studies 
[138-142]. Such oxidative stress was mediated through the 
generation of ROS that induced disturbance of membrane 
permeability and severe cell damage [143-144]. 

In the present study, radiation induced higher MDA level 
and nitrite, while decreasing SOD, CAT activities and GSH 
level in the homogenate of rat lungs, testis, brain, vertebrum, 
liver, kidney, spleen, heart and aorta tissue. Increase MDA 
level enhanced the lipid peroxidation and increased ROS 
production with subsequent disturbance of membrane 
function and integrity [145]. These results are in accordance 
with those of Halliwell, and Gutterige, [146] who observed a 
significant decrease in SOD and catalase activity after 
exposure to irradiation due to the excess production of 
hydroxyl radicals (the most potent oxidant stimulate the lipid 
peroxidation process) and other reactive oxygen species. 
SOD is an important endogenous antioxidant enzyme which 
acts as the first line defense system against ROS and converts 
the superoxide radicals to H2O2. Glutathione peroxidase 
present in the cytoplasm of the cells removes H2O2 by 
coupling its reduction to H2O with oxidation of GSH. 
Glutathione reductase regenerates GSH from oxidized 
glutathione in the presence of NADPH. GSH is a tripeptide 
and a powerful antioxidant present within the cytosol of cells 
and is the major intracellular non protein thiol compound. SH 
groups present in GSH react with H2O2 and the OH• radical 
and prevent tissue damage and GSH is also capable of 
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scavenging ROS directly or enzymatically via glutathione 
peroxidase [147]. The decrement of GSH level would be 
attributed to the decreased activity of Glucose-6- phosphate 
dehydrogenase that generates reduced NADPH which 
generates GSH from oxidized glutathione (GSSG) under the 
effect glutathione reductase [148]. Moreover, Dahm et al. 
attributed the decrease in liver GSH content to the inhibition 
of GSH efflux across hepatocytes membranes [149]. The 
presence of adequate amount of GSH, SOD and catalase 
minimize lipids peroxidation [143]. 

The natural products-derived antioxidants were previously 
used to protect against radiation induced oxidative stress in 
several studies [150-152]. The water-soluble organosulfur 
compounds of AGE exhibited potent antioxidant and free 
radical scavenging activities [153-154]. 

In the present study, administration of AGE, one hour after 
irradiation on day 6 after acclimatization induced significant 
increase in CAT, SOD and GSH activities accompanied with 
significant decrease in MDA level and nitrite in radiation-
treated rat’s organs: lungs, testis, brain, vertebrum, liver, 
kidney, spleen, heart and aorta. These effects have been more 
pronounced with the lower dose of AGE (25 mg/kg) than 
with the higher (50 mg/kg) or the administration of Vitamin 
E and Lipoïc Acid. Suggesting in accordance with Khalid S. 
Al-Numair that garlic extracts may have a beneficial effect 
on antioxidant status by improving antioxidant metabolic 
indices in rat’s plasma [101]. The protective effect of AGE 
might be mediated by its highly bioavailable and significant 
antioxidant compounds including S-allyl cysteine, S-allyl 
mercaptocyteine, allicin, and selenium that exhibited potent 
antioxidant activity [154]. The water-soluble S-allyl cysteine 
reduced the extent of lipid peroxidation and significantly 
enhanced antioxidant activities in vitro and in vivo [155]. 
Thus, AGE acts as a protective mechanism against oxidative 
stress [156-157] and could ameliorate the lipid peroxidation 
and oxidative damages of rat liver tissues induced by acute 
radiation through its antioxidant compounds; supporting the 
hypothesis that plant products are effective chemopreventive 
agents [158]. 

In accordance with present study, significant increase in 
CAT, SOD and GSH activities accompanied with significant 
decrease in MDA and nitrite level were reported in animals 
treated with AGE [46, 155, 159]. Garlic has been reported to 
modulate lipid peroxidation levels and enhance the status of 
antioxidant [158, 165-166]. Furthermore, Garlic pretreatment 
increased the activity of SOD and CAT and it scavenges 
superoxide radicals and reduced damage caused by free 
radicals [162]. Allium components have been reported to 
elevate the levels of SOD, GSH-Px and Catalase [163-164]. 
Other beneficial effects of garlic can be attributed to the 
presence of non-enzymatic antioxidants such as selenium and 
copper metals, vitamin C and other phytochemicals such as 
organosulphur compounds [165]. AGE increases cellular 
glutathione and other ROS scavenging enzymes in a variety 
of cells, including those in normal liver and mammary tissue 
[163, 166]. The radioprotective effects of AGE [167] are 
mediated via the ability of the extract, its organosulfur 

components and phenolic compounds to scavenge free 
radicals [163] and enhance scavenging systems in the cell, 
including glutathione, SOD, catalase and glutathione 
peroxidase [163, 168]. 

5. Conclusion 

On the basis of the data obtained, the present study 
revealed that AGE exerted a significant protection against 
oxidative stress induced by exposure of rats to γ-radiation 
through scavenging or neutralizing free radicals, and 
enhancement of antioxidant in addition to hepatoprotective 
and renal protective properties 
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