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Abstract: This paper mainly explores the precise asymptotic behavior near zero of positive weak solutions to the quasilinear
elliptic equation involving Hardy potential and Sobolev critical exponent, which is expressed as
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p , a ≤ b < a + 1, 0 ≤ γ < (N−(a+1)p
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research shows that if u ∈ D1,p(RN , µap) is a positive radial weak solution of this equation, then there exists γ1 ∈ [0, N−(a+1)p
p ]

such that lim|x|→0 u(x)|x|γ1 = C (0 < C <∞), where γ1 is the smallest root of the equation Γγ(`) := `p−2[(p− 1)`2 − (N −
(a+ 1)p)`] + γ = 0. This result accurately depicts the asymptotic characteristics of positive weak solutions of the equation near
zero. Compared with previous relevant studies which only indicate that the solutions are bounded near zero, this study further
clarifies the limiting situation of the solutions.
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1. Introduction and Main Results
In this paper, we establish the asymptotic behavior of

positive radial weak to the following weighted quasilinear
elliptic problem with Hardy potential and critical Sobolev
exponent


−div

(
|∇u|p−2∇u
|x|ap

)
− γ up−1

|x|(a+1)p = u
p∗a,b−1

|x|bp
∗
a,b
, x ∈ RN \ {0},

u > 0, x ∈ RN ,
u ∈ D1,p

(
RN , µap

)
,

(1)

where 1 < p < N , 0 6 a < N−p
p , a 6 b < a+ 1,

0 6 γ < γ̄ :=

(
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p

)p
, p∗a,b =
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and

D1,p
a,b

(
RN
)

:=
{
u ∈ Lp

∗
a,b(RN , µbp∗a,b

) : |∇u| ∈ Lp(RN , µap)
}
. (3)

Quasilinear elliptic equations are a class of partial
differential equations that arise in various fields of
mathematics and physics, including fluid dynamics, elasticity,
and differential geometry. These equations often involve
the p-Laplacian operator and may include singular terms
such as Hardy potentials or critical Sobolev exponents. In
the study of quasilinear elliptic equations with weights,
such as the Caffarelli-Kohn-Nirenberg inequality, gradient
estimates play a pivotal role in understanding the asymptotic
behavior of solutions. Shakerian and Vétois [1] investigated
the asymptotic behavior of solutions to a class of weighted
quasilinear elliptic equations. They obtained sharp pointwise
estimates, extending previous results in the unweighted case.
The authors used a Kelvin-type transformation to reduce the
problem at infinity to another elliptic-type problem near the
origin. This approach allowed them to refine the asymptotic
expansion and obtain Holder-type estimates. Their results
are significant for understanding the behavior of solutions
in the presence of weights and for developing methods to
handle non-radial solutions. Li and Zhao [2] studied the
exponential decay properties of ground states for quasilinear
elliptic equations. They provided an explicit formula for
the decay properties of ground states in the whole space.
The authors focused on the quasilinear elliptic equation
involving the degenerate m-Laplace operator and derived
asymptotic estimates for radial ground states. Their results
are particularly useful for applications in nonlinear scalar
field equations and for understanding the long-term behavior
of solutions. He and Xiang [3] explored the asymptotic
behaviors of solutions to quasilinear elliptic equations with
Hardy potential. They obtained optimal estimates for both

positive radial and general weak solutions at the origin and
at infinity. The authors used a combination of comparison
principles, Harnack inequalities, and weak Lebesgue space
embeddings to derive their results. Their work provides a
comprehensive understanding of how the Hardy potential
affects the asymptotic behavior of solutions and extends
previous results to a broader class of equations. Dutta [4]
established sharp decay estimates for solutions to the Euler-
Lagrange equation corresponding to the Hardy-Sobolev-
Maz’ya inequality. The author used a combination of rescaling
techniques, weak Harnack inequalities, and Poincaré-Sobolev
inequalities to derive the decay estimates. The results
are significant for understanding the behavior of solutions
near the origin and at infinity and have applications in
the study of Brézis-Nirenberg problems involving lower-
order perturbations of Hardy-Sobolev equations. Pu et
al. [5] investigated the asymptotic behaviors of positive
weak solutions to quasilinear elliptic equations with Hardy
potential and critical Sobolev exponent. They obtained optimal
estimates for the asymptotic behavior of solutions at the origin
and at infinity. The authors used comparison principles and
auxiliary results to derive their estimates. Their work extends
previous results and provides a deeper understanding of the
interplay between the Hardy potential and the critical Sobolev
exponent in determining the asymptotic behavior of solutions.
For other relevant results on the gradient estimates of solutions
to quasilinear elliptic equations, please refer to Reference [6–
9] and its cited literature.

Based on the above research achievements, this paper
mainly focuses on the precise asymptotic behavior of the
solutions to equations (1). The main results of this paper is

Theorem 1.1. Assume that 0 6 γ <
(
N−(a+1)p

p

)p
. Let u ∈ D1,p

(
RN , µap

)
be a positive radial weak solution of equation

(1). Then there exists γ1 ∈ [0, N−(a+1)p
p ] such that

lim
|x|→0

u(x)|x|γ1 = C (4)

for a constant 0 < C <∞, where γ1 is smallest roots of

Γγ(`) := `p−2
[
(p− 1)`2 − (N − (a+ 1)p)`

]
+ γ = 0. (5)

Remark 1.1. Pu et al. [5, Theorem 1.1] show that there exist
positive constants C, c depending on N, p, γ and the solution
u such that

c|x|−γ1 6 u(x) 6 C|x|−γ1 for |x| < r0. (6)

It is well know that (6) only shows that u(x)|x|γ1 is bounded
near zero. (4) shows that it is not only bounded but also has a
limit.

2. Proof of Theorem 1.1
Assuming u(x) = u(r), where r = |x|. Then u(r) satisfiles
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Lemma 2.1. Suppose that u(r) is the solution to problem (7).
Then for sufficiently small r,

u′(r) < 0. (8)

Proof According to (6), we know that
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which shows that {rN−1−ap|u′(r)|p−2u′(r)} is a monotonic
decreasing convergent series. Without loss of generality, we
assume that
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since a < N−p
p . While the fact contradict to u ∈
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. Thus m = 0. This fact combined with (9)

shows that (8) holds.
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This fact together with (11), leads to
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where

Γγ(`) = `p−2
[
(p− 1)`2 − (N − (a+ 1)p)`

]
+ γ.

In order to show that (10) holds, we firstly show limr→0 w(r) exists. We prove this by contradiction that

β ≡ lim sup
r→0

w > lim inf
r→0

w ≡ α.

Then there exist a local maximum {ξi} and a local minimum {ηi} such that ξi → 0, ηi → 0 and ηi > ξi > ηi+1 for all
i = 1, 2, · · ·. That is

lim
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This fact together with (12) implies that
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Therefore
β = γp−12 , α = γp−11 .

Note that γ1 < (N − (a+ 1)p)/p < γ2. So there exists ζi ∈ (ηi+1, ξi) ) such that

w (ηi+1) < w (ζi) =

(
N − (a+ 1)p
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< w (ξi)

for i enough. Then by (12), we obtain that

ζiw
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for i large enough. Hence w′(ζi) < 0 for i large enough. Therefore w strictly decreasing in a neighborhood of ζi. Since ζi < ξi
and w(ζi) < w(ξi) , there exists ζi < ζ ′i < ξi such that w(r) ≥ w(ζi) for ζi < r < ζ ′i and w(ζ ′i) = w(ζi). Thus w′(ζ ′i) ≥ 0.
However, w′(ζ ′i) < 0. We reach a contradiction. Therefore limr→0 w(r) exists.

Without loss of generality, we may assume kp−1 = limr→0 w(r), We prove that k = γ1 . By (12), we have that

lim
r→0

rw′(r) = Γµ(k).

We claim that Γµ(k) = 0. Otherwise, suppose that Γµ(k) 6= 0. Note that for any 0 < s < s0 , we have

w (s0) = w(s) +
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s

w′.
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Then Γµ(k) 6= 0 implies that lims→0 |
∫ s0
s
w′| = ∞ if s0 is small enough. This contradicts to the existence of limr→0 w(r).

Hence Γµ(k) = 0. Recall that Γµ(γ) = 0 if and only if γ = γ1 or γ = γ2. Thus we have either k = γ1 or k = γ2. Then we can
deduce that k = γ1 . This proves (10) .

Proof of Theorem 1.1 (4) is a direct conclusion of (10).
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