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Abstract: In this study, we examine the behavior of an anisotropic fluid—one where pressures differ in radial and tangential
directions—under the influence of gravity and electromagnetic charge in a four-dimensional, spherically symmetric spacetime.
We consider both collapsing and expanding scenarios governed by Einsteins field equations, which describe how matter and
energy affect the curvature of spacetime. To model a realistic astrophysical setting, we assume the interior of the spacetime is
filled with the charged anisotropic fluid, while the exterior is described by the Reissner–Nordström metric, which represents the
spacetime outside a charged, non-rotating mass. The two regions are smoothly joined using the Darmois matching conditions,
ensuring that the geometry and physical quantities remain continuous at the boundary. Our analysis focuses on how the presence
of electric charge and pressure anisotropy affects the dynamics of the fluid. Specifically, we investigate the profiles of energy
density and pressure during both collapse and expansion. The results show that charge plays a significant role in influencing
the fluids behavior, potentially resisting or enhancing the collapse depending on its magnitude. We also explore the evolution of
anisotropy and demonstrate its impact through graphical analysis. The energy density, pressure, and anisotropy factor are plotted
to visualize how they evolve in the presence of charge. These findings contribute to a deeper understanding of how anisotropic
and charged fluids behave in dynamic gravitational settings, and they may have implications for astrophysical objects like charged
compact stars or models of early-universe expansion.
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1. Introduction
Gravitational collapse is the contraction of an astronomical

object due to its inherent gravitational pull, which drives
stuff toward the center of gravity [1]. One of the primary
mechanisms for the creation of structures in the universe. After
enough time, an initial, cocosmos an initial, comparatively
smooth dispersion of matter throughout time, following
adequate accretion such as stars or black holes, may collapse
to a pocket of higher density. The inclination of matter to
gravitate toward a single center of mass as in the creation in
particular: the sudden collapse of a star near the conclusion of
its life cycle. An object in space such as a star or gas cloud,

can undergo gravitational collapse due to its own extremely
powerful gravity, contracts.

Hawking and Penrose [2, 3] were drawn to spacetime
singularities and they discussed the existence and formation
of singularities in detail. They presented their theorems and
pointed out that singularities in spacetime are formed due to
gravitational collapse of giant objects when a trapped surface
is created. Two model conjectures were stated by Penrose,
weak and strong censorship conjectures. Weak version of the
conjecture claims that a singularity can be seen only by an
observer living nearby and this singularity could be hidden
behind an event horizon. Strong version of the conjecture
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claims that a singularity after the formation of a gravitational
process cannot be seen by a nearby or distant observer. At
that time, no mathematical or physical. There was evidence to
support or refute Penrose’s hypotheses. Penrose’s work was
contested by some authors [4–6] when they presented counter
examples to the Penrose conjectures.

Later, Virbhadra [7] employed gravitational lensing
to enhance the articulation of the Penrose conjectures.
Oppenheimer and Snyder [8] studied gravitational collapse
for dust model. The result of their study was a black hole.
Plenty of researchers inspected gravitational collapse with
cosmological constant. Sharif and Ahmad [9] used junction
conditions to analyze perfect fluid collapse with non zero
cosmological constant. Subsequently, the authors expanded
it to five dimensions [10]. On the other hand Dabnath et al.
[11] examined dust collapse in quasi-spherical geometry with
cosmological constant. Further, Sharif and Abbas [12, 13]
evaluated perfect fluid collapse with electromagnetic field in
four and five dimensions with cosmological constant. Sharif
and Abbas [14] also used matching conditions and studied
perfect fluid collapse in Friedmans model with charge. Sharif
and Yousaf [15] explored charged perfect fluid collapse. They
deduced that electromagnetic field reduces the collapsing
process. Guha and Banerji [16] applied Darmois junction
condition using charged anisotropic fluid for cylindrical
collapse. Ahmad and Malik [17] investigated the anisotropic
fluid collapse with cosmological constant. This work was
further discussed by Khan et al. [18] in five dimensional
anisotropic fluid in the presence of cosmological constant.
Further Ahmad et al. [19] explored the collapsing process of
anisotropic fluid along with heat flux. Prisco et al. [20] studied
cylindrical shearfree model with anisotropic fluid.

A primary area of interest for researchers continues to
be the study of collapsing objects in the presence of an
electromagnetic field in the background. For spherical collapse
in the electromagnetic background, Sharif and Bhatti [21]
applied their findings. The findings of their investigation
indicate that the electromagnetic field causes a star’s internal
pressure to decrease, hence expediting the process of stellar
collapse. Friedmann model with electromagnetic charge and

complete fluid collapse were researched by Sharif and Abbas
[22]. Darmois junction conditions were used by Guha and
Banerji [23] to study cylindrical collapse of charge with
anisotropic fluid. Charged cylindrical collapse of anisotropic
fluid model was the focus of Sharif and Fatima’s [24] work.
General relativity was used by Maurya and Gupta [25] to
study charged fluid to anisotropic fluid distribution. Khan
and colleagues [26] have studied the ultimate fate of charged
anisotropic fluid collapse.

Abbas [27] recently investigated how an electromagnetic
field affected the expansion and collapse of an anisotropic
gravitational source in a four-dimensional spacetime.
Numerous scholars examined the collapsing situation in
general relativity and certain modified theories concerning
higher dimensional spacetimes. Nyonyi and colleagues
[28] investigated shear-free relativistic models in higher-
dimensions when charge is present and heat flux is present.
Collapsing solution in higher dimensions was studied by Shah
et al [29]. In f(R) gravity, Sharif and Atiq [30] studied higher
dimensional charged collapse. Collapsing and expanding
solution with cosmological constant in higher dimensions was
studied by Khan et al. [31].

The explanation above makes it clear that the gravitational
collapse of huge objects is a phenomenon that warrants more
investigation. Furthermore, we observe that this process is
aided by the charge in field equations. In a similar vein, both
the fluid’s form and the presence of charge have a significant
influence on the gravitational collapse summons. Researching
spherical gravitational collapse with charge and anisotropic
fluid will thus be beneficial. It will assist us in ascertaining
the collaborate impacts of charge and anisotropic fluid on the
collapsing phase.

2. Field Equations
We investigates the solutions of the Einstein Field Equation

for an anisotropic fluid in a four-dimensional, spherically
symmetric spacetime with an electromagnetic charge, focusing
on both collapsing and expanding scenarios. We analyze the
spherically symmetric spacetime represented by

ds2 = A2(t, r)dt2 −H2(t, r)dr2 − L2(t, r)dθ2 − L2 sin2 θ(t, r)dφ2 (1)

The Einstein Field Equation for the spacetime (1) are determined as

Gab = Rab −
1

2
Rgab (2)

we get,

G12 =
2L̇A′

LA
+

2L′Ḣ

LH
− 2L̇′

L

G11 =
2ḢL̇

HL
+
H ′L′A2

LH3
+
L̇2

L2
− 2L

′′
A2

LH2
− L̇2A2

L2H2
+
A2

L2
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G22 =
L′H ′

LH
− 2L̈H2

LA2
+

2L̇ȦH2

LA3
+

2A′L′

LA
− L̇2H2

A2L2
+
L′

2

L2
− H2

L2

G33 =
A′L′L

AH
+
ȦȦL

A3
+
LL′′
H2
− ḢL̇L

HA2
+
A′′L2

AH2
− A′H ′L2

AH3
− ḦL2

HA2
− 2LL̈

A2
+
ȦḢL2

HA3

G44 = sin2(θ)G33

(3)

The Energy momentum Tensor for Anisotropic fluid in the
presence of Electromagnetic field with Einstein filed Equation
is defined as:

Gab = Rab −
1

2
Rgab = k(Tab + T eab). (4)

Where k = 8π and Tab is anisotropic fluid determined as

Tab = (ρ+ p>)ωaωb − prgab + (pr − p>)xaxb (5)

and also T eab is Electromagnetic Tensor determined as

T eab =
1

H
(−F γδ Fbγ +

1

4
F γλFγλgab) (6)

Where H = 3π
3
2

Γ 5
2

ρ , pr and p> signify, in that order, the
radial, tangential, and energy density. The equation for the
Maxwell field is [34]

Fcd = φd,c − φc,d, F cdc = HJc (7)

The Potential and Current in 4 dimensions are given by
Φc and Jc, respectively. For the within-metric (3.1), the
constituents wα, wα, xα, and xα supplied by

ωa = [
1

A
, 0, 0, 0], ωa = [A, 0, 0, 0],

Xa = [0,
1

H
, 0, 0], Xa = [0,−H, 0, 0]

As of right now, the electromagnetic field’s non-zero
components of the energy-momentum tensor are:

Tab = (Tab+ T ea b)k

we get

T11 = 8π(A2ρ+
A2E2

2H
)

T22 = 8π(H2Pr −
H2E2

2H
)

T33 = 8π(L2PT +
L2E2

2H
)

T44 = 8π(L2Pt +
L2E2

2H
) sin2 θ (8)

where E = q
L2 and k = 8π The expansion scalar Θ for the

spherically symmetric spacetime (1) is given by:

Θ = ωαα = ωαα + ΓeeαX
e =

1

H
(
Ḣ

H
+

2L̇

L
) (9)

The dimensionless measure of anisotropy is defined as [35]

∆a = 1− Pt
pr

(10)

The EFEs defined as (4) for the spacetime (1) becomes

G11 =
1

A2
(−2B′′

B
− B′2

B2
+

2A′B′

AB
) +

1

H2
(
Ḃ2

B2
+

2 ˙AḂ

AB
) +

1

B2
= 8π(ρ+

q2Γ 5
2

6B4π
3
2

)

G12 = −2Ḃ′

B
+

2H ′Ḃ

HB
+

2 ˙AB′

AB
= 0

G22 =
1

H2
(−2B̈

B
+

2 ˙HḂ

HB
− Ḃ2

B2
) +

1

A2
(
B′2

B2
+

2H ′B′

BH
)− 1

B2
= 8π(ρr +

q2Γ 5
2

6B4π
3
2

)

G33 =
1

H2
(− Ä
A
− B̈

B
+

˙HȦ

AH
−

˙AḂ

AB
+

˙HḂ

BH
)

+
1

A2
(
H ′′

H
+
B′′

B
− H ′M ′

HA
+
H ′B′

HB
− A′H ′

AH
) = 8π(ρt +

q2Γ 5
2

6B4π
3
2

)

G44 = G22 = 8π(ρt +
q2Γ 5

2

6B4π
3
2

) (11)

It is determined that the 4-dimensional Misner-Sharp mass [5] and the shape it takes for the spacetime (1) is as follows
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m(t, r) =
L

2
[1 + gabLaLb +

q2

L2
] =

L

2
(1 +

L̇2

A2
− L′

2

H2
+
q2

L2
) (12)

The solution to the field equations with the G12 component is as follows.

A =
L̇

Lα
, H = Lα (13)

Upon replacing (13) in (9), the scalar expansion now becomes

Θ = (α+ 2)Lα−1 (14)

In this study, we examine the Einstein field equations’ collapsing solution. A collapsed resolution for the Einstein field
equations will be shown, Θ < 0, for α < −2 Regions are crumbling. Equation (13) combined with the field equations produces

8πρ = − 1

B2α
[
2B′′

B
+ (1− 2α)

B2′

B2
] + (1 + 2α)B2α−2 +

1

B2
−

4q2Γ 5
2

3B4
√
π

8πPr =
1

B2α
[(1− 2α)

B′2

B2
+

˙̇
B2

B

B′

B
]− (1 + 2α)B2α−2 − 1

B2
+

4q2Γ 5
2

3B4
√
π

8πPt =
1

B2α
[
Ḃ′′

Ḃ
+ (1− 3α)

Ḃ′

Ḃ

B′

B
+ (1− α)

B′′

B
+ (2α2

+ 3α− 4α)
B′2

B2
]− (2α2 − 3α+ 4α)B2α−2 −

4q2Γ 5
2

3B4
√
π

(15)

Substituting (13) in (12), the Misner-Sharp mass becomes

2m

B
− 1− q2

B2
= B2α − B′2

B2α
(16)

From (16) it can be develop that B′ = B2α there exist
trapped surfaces atB = 2m ThusB′ = B2α is in this instance
the trapped surface state. Following Glass[35] two trapping
scalars provided by are obtained.

κ1 =
Bα

B
+

B′

Bα+1
, κ2 =

Bα

B
− B′

Bα+1
(17)

A trapped surface will arise if κ1 and κ2 have the same
signs. The trapped scalars now take on the following shape
when the trapped surface condition is applied.

κ1 = 2B2α−1, κ2 = 0 (18)

AtB = 2m, a trapped surface forms during the gravitational
collapse because κ1 and κ2 are neither negative. The
imprisoned surface’s state possesses the integral

B1−2α
trap = (1− 2α)r + L(t), (19)

where an arbitrary function on integration is represented by
L(t). Applying the trapped surface condition to (15) now, we
get

8πρ = B−2
trap −

4q2Γ 5
2

3B4
√
π

8πPr = −B2
trap +

4q2Γ 5
2

3B4
√
π

8πPt = −
4q2Γ 5

2

3B4
√
π
. (20)

3. Collapseing and Eapansion Solution

3.1. Gravitational Collapse for α = −5
2

A collapsing system requires a negative rate of growth.
Hence, α needs to be smaller than −2. We therefore choose
α = − 5

2 , With α = − 5
2 the trapping condition B′ = B2α

becomes B′ = B−5, which further yields

B = [6r + f(t)]
1
6 (21)

where a function of integration that is arbitrary is represented by f(t). The density and pressures equations (15) for α =
− 5

2 becomes
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8πρ =
1

B2
− 4B−7 −B5[

2B′′

B
+ 6

B′2

B2
]−

4q2Γ 5
2

3B4
√
π

8πPr = 4B−7 +B5[6
B′2

B2
+

2B ′̇B′

ḂB
]− 1

B2
+

4q2Γ 5
2

3B4
√
π

8πPt = −10B−7 +B5[
Ḃ′′

Ḃ
+

(17

2
)
Ḃ′B′

ḂB
+

(7

2
)
B′′

B
+ 15

B′2

B2
]−

4q2Γ 5
2

3B4
√
π

(22)

Substitute (21) in (22), The density and pressures in this case yields

8πρ = k54[6r + f(t)]−
7
6 (1− k−12) + k−2[6r + f(t)]−

1
3 −

4q2Γ 5
2 [6r + f(t)]−

2
3

3k4
√
π

8πPr = −4k5(1− k12)[6r + f(t)]−
7
6 − k−2[6r + f(t)]−

1
3 +

4q2Γ 5
2 [6r + f(t)]−

2
3

3k4
√
π

8πPt = 10k5(1− k−12)[6r + f(t)]−
7
6 −

4q2Γ 5
2 [6r + f(t)]−

2
3

3k4
√
π

(23)

The Misner-sharp mass function given by (16), becomes

m =
B

2
(1 + (1− k2)B−5 +

q2

b2
) (24)

Equation (10) provides the dimensionless measure of anisotropy, which has the following form.

∆a = 1 +
80 3π

3
2

Γ( 5
2 )
k7(1− k−12)[X]−

3
2 − 32πq2k−2[X]−1

32 3π
3
2

Γ( 5
2 )
k7(1− k−12)[X]−

3
2 + 8 3π

3
2

Γ( 5
2 )
− 32πq2k−2[X]−1

. (25)

Where X = 6r + f(t)

3.2. Gravitational Expansion for σ = 3
2

For expansion ,the rate of expansion must be positive from (14), when α = 3
2 then expansion scalar become Θ = 7

2

√
B. For

expansion Θ > 0 when α > 0, also we choose

B = (r2 − r2
0)−1 + g1(t) (26)

For α = 3
2 , where g1(t) and r0 are arbitrary functions and constants, respectively, the density and pressure equations (15)

become

8πρ = 4B − 1

B3
[
2B′′

B
− 2

B′2

B2
] +

1

B2
−

4q2Γ 5
2

3B4
√
π

8πρr =
1

B3
[−2

B′2

B2
+

2Ḃ′

Ḃ

B′

B
]− 4B − 1

B2
+

4q2Γ 5
2

3B4
√
π

8πPt =
1

B3
[
Ḃ′′

Ḃ
− 7 ˙B′B′

2 ˙BB
− 1B′′

2B
+ 3

B′2

B2
]− 4B −

4q2Γ 5
2

3B4
√
π

(27)

with F (t, r) = 1 + (r2 − r2
0)g1(t)and B = F

(r2−r20)
,In this instance the pressures and densities are

8πρ =
4F

(r2 − r2
0)

+
4(r2

0 − 3r3)(r2 − r2
0)

F 4
− 8r2(r2 − r2

0)

F 5
+

[
r2 − r2

0

F

]2

−
4q2Γ( 5

2 )(r2 − r2
0)4

3F 4
√
π
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8πpr =
−8r2(r2 − r2

0)

F 5
− 4F

(r2 − r2
0)
−

[
r2 − r2

0

F

]2

+
4q2Γ( 5

2 )(r2 − r2
0)4

3F 4
√
π

8πpt =
12r2(r2 − r2

0)

F 5
+

(r2
0 − 3r3)(r2 − r2

0)

F 4
− 6F

(r2 − r2
0)
−

4q2Γ( 5
2 )(r2 − r2

0)4

3F 4
√
π

(28)

Now making use of (28) into (10) we arrive at the following expression

∆a = 1 +

[ 12r2(Y )
F 5 +

(r20−3r3)(r2−r20)
F 4 − 6F

(Y ) −
4q2Γ( 5

2 )(Y )4

3F 4
√
π

−8r2(Y )
F 5 − 4F

(Y ) −
(
Y
F

)2
+

4q2Γ( 5
2 )(Y )4

3F 4
√
π

]
. (29)

where Y = r2 − r2
0

4. Matching Conditions
The smooth matching of the inner and exterior components

is the focus of this section. (−) and (+), respectively, denote
the quantities in the inner and outer sections. We examine a 4-
dimensional Schwarzschild line element in the outer part and a
general line element given in Eq. (1) in the inner part. [36, 37],

ds2
+ =

(
1− 2M

R

)
dT 2 − 1

(1− 2M
R )
−R2dΩ2

2, (30)

Here, M stands for a star’s outermost mass. We use the
formulation created by Darmois [38] for the smooth matching
of inner and outer sections. The definition of the first
fundamental form’s continuity over hypersurface Σ is

ds2 = ds2
− = ds2

+, (31)

The following relations are obtained by applying this
requirement.

N(rΣ, t) = RΣ, (32)

dt

dτ
=

1

A
, (33)

dT

dτ
=

[
F (R)− 1

F (R)

dRΣ

dT

]− 1
2

, (34)

where τ is the appropriate time and F (R) = 1 − 2M
R . The

definition of the second fundamental form’s continuity over
hypersurface Σ is

[Kαβ ] = K+
αβ −K

−
αβ = 0, (α, β) = 0, 2, 3. (35)

The non-vanishing components of the extrinsic curvature for
metric (1) are as follows:

K−00 = −
(
AA′

H

)
Σ

, (36)

K−22 = csc2 ϕ1K
−
33 =

(
LL′

H

)
Σ

. (37)

For metric (30), the non-vanishing components of the
extrinsic curvature now have the following shape.

K+
00 =

[
dR

dτ

d2T

dτ2
− d2R

dτ2

dT

dτ
+

3M

(R− 2M)R

dT

dτ
(
dR

dT
)2 − (R− 2M)M

R2R
(
dT

dτ
)3

]
Σ

, (38)

K+
22 = csc2 ϕ1K

+
33 = −RdT

dτ

(
−R+ 2M

R

)
Σ

. (39)

Form Eqs. (35)-(39), We obtain the following relationships:

−
(
AA′

H

)
Σ

=

[
dR

dτ

d2T

dτ2
− d2R

dτ2

dT

dτ
+

3M

(R− 2M)R

dT

dτ
(
dR

dT
)2 − (R− 2M)M

R2R
(
dT

dτ
)3

]
Σ

, (40)(
LL′

H

)
Σ

= −RdT
dτ

(
−R+ 2M

R

)
Σ

. (41)

Using the above relations along with Eqs. (32), (33) and
(34), we obtain

M =Σ m(t, r). (42)

The entire prerequisite for the smooth matching of inner
and outer spacetimes is the relation mentioned above, which
is found in Eq. (42).



20 Liaqat Ali et al.: Gravitational Implications of Electromagnetic Charge 4D Spherically Anisotropic Spactime

Figure 1. Density “ρ” w.r.t “r” and “q” when k = 1.75, f(t) = 2.

Figure 2. Radial Pressure “Pr” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

Figure 3. Tangential Pressure “Pt” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

Figure 4. Anisoptopy “∆a” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

Figure 5. Misner Sharp mass “mr” w.r.t “r” and “q” when k = 1.75, f(t) = 2.

Figure 6. Density “ρ” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

Figure 7. Radial Pressure “Pr” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

Figure 8. Tangential Pressure “Pt” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.
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Figure 9. Anisoptopy “∆a” w.r.t “”r” and “q” when k = 1.75, f(t) = 2.

5. Conclusion

In this study, we have shown that, for an anisotropic
fluid with spherical symmetry, the electromagnetic field has
a considerable effect on the collapsing solution of the Einstein
Field Equation in four-dimensional spacetime. Furthermore,
we have taken into account the spherically symmetric metric in
the four-dimensional interior area of the anisotropic fluid with
an electromagnetic charge. By analyzing the four-dimensional
anisotropic fluid throughout the collapse process, we were
able to provide an analytical explanation for the physical
features, such as the profiles of charge, density, and pressure.
It was discovered that the energy density is a function of
electromagnetic charge E and radius r, and that it is always
positive in both lower and higher dimensions. We went over
each of these physical attributes’ graphical findings one by one
for validation. A detailed discussion of the interior solution
for anisotropic fluids has been given, which is relevant to the
modeling of charged anisotropic stars in the process of collapse
and expansion. We calculated the trapping requirements for a
fluid sphere collapsing and expanding with charge by utilizing
an auxiliary version of the metric functions. Depending
on the kind of scalar expansion, the resultant solutions are
categorized as collapsing or expanding. The mass function,
anisotropic parameter, radial and transverse pressures, and
matter density were all computed. As q rises, the density falls
for the collapse solution where α = − 5

2 , as Fig. 1 illustrates.
From the center to the star’s surface, the radial pressure Pr and
matter density ρ fall from their greatest values in the center.
It was observed that the anisotropy is directed outward when
Pr > Pt, indicating ∆a > 0, as shown graphically in Figs. 2
and 3. Fig. 4 shows that anisotropy decreases with increasing
r and q. The Misner-Sharp mass is positive and increases with
increasing r and q, as shown in Fig. 5. Additionally, when
α = 3

2 and the expansion scalar Θ is positive, the gravitating
source expands. In this instance, as Fig. 6 illustrates, the
matter density falls. As illustrated in Figs. 7, 8, and 9, the
anisotropic parameter and the radial and transverse pressures
behave in the opposite way from that of the gravitational
collapse scenario. The main assumption is that pr = −ρ is
evident from the density and radial pressure equation. This
demonstrates unequivocally that the ratio of density to radial
pressure is −1, which is equivalent to dark energy. According
to Herrera et al. [40], there might be a singularity for negative

radial pressure. Additionally, the singularity will be covered
if the ratio pr

ρ > − 1
3 , and it will be naked if the pr

ρ ≤ −
1
3 .

The ratio pr
ρ < − 1

3 in our situation suggests the possibility of
a naked singularity.
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