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Abstract 

The proliferation of panel data studies has been greatly motivated by the availability of data and capacity for modelling the 

complexity of human behaviour than a single cross-section or time series data and these led to the rise of challenging 

methodologies for estimating the data set. It is pertinent that, in practice, panel data are bound to exhibit autocorrelation or 

heteroscedasticity or both. In view of the fact that the presence of heteroscedasticity and autocorrelated errors in panel data models 

biases the standard errors and leads to less efficient results. This study deemed it fit to search for estimator that can handle the 

presence of these twin problems when they co- exists in panel data. Therefore, robust inference in the presence of these problems 

needs to be simultaneously addressed. The Monte-Carlo simulation method was designed to investigate the finite sample 

properties of five estimation methods: Between Estimator (BE), Feasible Generalized Least Square (FGLS), Maximum Estimator 

(ME) and Modified Maximum Estimator (MME), including a new Proposed Estimator (PE) in the simulated data infected with 

heteroscedasticity and autocorrelated errors. The results of the root mean square error and absolute bias criteria, revealed that 

Proposed Estimator in the presence of these problems is asymptotically more efficient and consistent than other estimators in the 

class of the estimators in the study. This is experienced in all combinatorial level of autocorrelated errors in remainder error and 

fixed heteroscedastic individual effects. For this reason, PE has better performance among other estimators. 
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1. Introduction 

Panel data model have become increasingly popular in the 

past decades with the increased availability of cross country 

data sets. [15], were the first set of scholars to work on panel 

data. Panel data describes the number of individuals across a 

sequence of time periods. There are several key advantages 

of using panel data over a single time series or cross-section 

data set. This combination of time series with cross-section 

can enhance the quality and quantity of data in ways that 

would be possible using only one of these two dimensions. 

To realize the potential value of the information contained in 

a panel data, see [3, 4, 6, 9, 11, 27, 28]. 

Panel data typically contains some form of heteroscedas-
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ticity, serial correlation and /or spatial correlation. Therefore, 

robust inference in the presence of heteroscedasticity and 

serial correlation is an important problem in spatial data 

analysis, [14]. 

The essence of these two problems is that, in many econ-

ometrics studies, including panel study, the assumption of 

constant variance for the disturbance term is unrealistic. This, 

then calls for a restrictive assumptions for panel, where, in 

practice, the cross-sectional units may be of varying size and 

as a result exhibit different variation. 

It was observed that some scholars, consider cases where 

one accounts for heteroscedasticity and ignores the possibil-

ity of serial correlation problems in the model and vice-versa 

[10, 12, 13, 16, 17-20, 22-26]. Few authors that consider 

both problems include [1-3, 7, 8, 21]. Of these authors, 

Baltagi et al, as well as both derived test for joint occurrence 

of heteroscedasticity and autocorrelation in one way and 

two-way error components respectively [3, 21]. The differ-

ence between this work and that of [3] is that it focuses on 

the development of a new estimator and estimation of the 

parameters not testing for the presence of autocorrelation and 

heteroscedasticity in the context of a panel data regression 

model. 

Furthermore, this study explicitly decomposes error term 

as the sum of two elements; capturing individual heterogene-

ity and autocorrelation in the remainder error term. By so 

doing, the data is then generated from the error component 

model with serial correlation and heteroscedasticity with the 

help of Monte-Carlo Simulation method. 

The study was mainly targeted at investigating finite sam-

ple properties of five estimation methods of panel data mod-

els in the presence of autocorrelation and heteroscedasticity 

in one-way error component model. The estimation methods 

are BE, FGLS, M, MM and PE. 

The inclusion of M and MM estimators in this study is due 

to their performance in the various work [29]. 

2. Methodology 

2.1. Model Specification 

Consider the following panel data model: 

𝑦𝑖𝑡 = 𝑋𝑖𝑡
1𝛽 + 𝑢𝑖𝑡,    𝑖 = 1,⋯ ,𝑁;    𝑡 = 1,⋯ , 𝑇.     (1) 

where: β is K × 1 vector of regression coefficient. 

𝑦𝑖𝑡 represent the response variable; 

 𝑖𝑡  represent the regressors; 

𝑢𝑖𝑡 represent disturbance term 

The disturbance follow one-way error component model 

𝑢𝑖𝑡 = 𝜇𝑖 + 𝑣𝑖𝑡                               (2) 

𝜇𝑖~𝐼𝐼𝐷(0, 𝜍𝜇𝑖
2 ) and 𝑣𝑖𝑡  follows AR(1) i.e. 

𝑣𝑖𝑡 = 𝜌𝑣𝑖,𝑡−1 + 𝜀𝑖𝑡                      (3) 

Where  2,0~  IIDit . 

2.2. Monte-Carlo Experiment 

This work present a Monte-Carlo experiment that studied 

the finite sample properties of the five estimation methods; 

Between estimator (BE), Feasible Generalized Least Square 

(FGLS), Maximum estimator (M), Modified Maximum esti-

mator (MM) and Proposed estimator (PE) applied to panel 

data model. 

The Root Mean Square Error (RMSE) were used as crite-

rion to assess the performances of these estimators. 

The set- up in the experiment in this study was based on 

both individual- specific effect and remainder disturbance 

simultaneously with joint assumptions of heteroscedasticity 

and AR(1); generating contaminated data. 

2.3. Data Generating Scheme 

The design of Monte- Carlo experiments in this study uses 

the following information to generate infected data. 

Consider the following panel model: 

itiitit VXy   10                         (4) 

where  .2.0~~,5.0 1,   ittiititX   The parameters were 

assigned as.   1,, 210    

The cross- sections and time periods was chosen as N= 

25,100,200 and T= 5, 10. For each combinations of N and T; 

5000 replications were considered. 

The autocorrelation coefficient values and heteroscedastic-

ity used are specified as 𝜌 varies as 0.3, 0.5, 0.8 and 𝜍𝜇
2(1 +

𝜆 ̅𝑖). 𝜆 = 1. 

The variance of individual effects, remainder error and er-

ror term is one. i.e. 1222    v  

2.4. Derivation of a New Proposed Panel Data 

Estimator 

Consider the likelihood function of the normal distribution 

as follows; 

L=
1

(2𝜋)
𝑛
2 |𝑉|1/2

𝑒
−1

2
𝑈`𝑉−1𝑈

                       (5) 

where  =   𝑋𝛽 

Therefore 

L = 
1

(2𝜋)
𝑛
2 |𝑉|1/2

𝑒
−1

2
(𝑌−𝑋𝛽)`𝑉−1(𝑌−𝑋𝛽)

         (6) 

Assume that there exist, linear restriction  binding ,R
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the regression coefficients vector of , where R is a row 

vector of ones defined as 
1

𝐾
(1,1⋯1) 

(6) is transformed, subject to constraint Rβ, as follows: 

𝑙 = (2π)
−n

2⁄  |v|−
1

2 𝑒
−1

2
(𝑌−𝑋𝛽)`𝑉−1(𝑌−𝑋𝛽)−𝑅𝛽       (7) 

Taking natural logarithm of (7), we have, 

𝑙𝑜𝑔𝑒 𝑙 =   
𝑛
2⁄ 𝑙𝑜𝑔𝑒 (2𝜋)  

1
2⁄ 𝑙𝑜𝑔𝑒 |𝑉|  

1

2
(  𝑋𝛽)1𝑉−1(  𝑋𝛽)  Rβ.                                     (8) 

𝑙𝑜𝑔𝑒 𝑙 =   
𝑛
2⁄ 𝑙𝑜𝑔𝑒 (2𝜋)  

1
2⁄ 𝑙𝑜𝑔𝑒 |𝑉|  

1

2
[ 1 𝑉−1 - 1𝑉−1𝑋𝛽  𝛽1𝑋1 𝑉−1 + 𝛽1𝑋1𝑉−1𝑋 𝛽]  𝑅𝛽 

𝑙𝑜𝑔𝑒 𝑙 =   
𝑛
2⁄ 𝑙𝑜𝑔𝑒 (2𝜋)  

1
2⁄ 𝑙𝑜𝑔𝑒 |𝑉|  

1

2
[ 1 𝑉−1 -2𝑋1𝑉−1 𝛽 + 𝛽1𝑋1𝑉−1𝑋𝛽]  𝑅𝛽 

𝑙𝑜𝑔𝑒 𝑙 =   
𝑛
2⁄ 𝑙𝑜𝑔𝑒 (2𝜋)  

1
2⁄ 𝑙𝑜𝑔𝑒 |𝑉|  

1

2
[ 1 𝑉−1 -2𝑋1𝑉−1 𝛽 + 𝛽1𝑋1𝑉−1𝑋𝛽 + 2𝑅𝛽] 

By maximizing the log- likelihood function, therefore, 

Let 𝑙𝑜𝑔𝑒𝑙 =   

𝜕𝐴

𝜕𝛽
=  1 2⁄ [ 2𝑋1𝑉−1 + 2(𝑋1𝑉−1𝑋)𝛽 + 2𝑅]  

𝜕𝐴

𝜕𝛽
= 𝑋1𝑉−1  (𝑋1𝑉−1𝑋)𝛽  𝑅  

Setting 
𝜕𝐴

𝜕𝛽
= 0 

It implies that: 

0 = 𝑋1𝑉−1  (𝑋1𝑉−1𝑋)𝛽  𝑅 

Therefore,  

(𝑋1𝑉−1𝑋)𝛽 = 𝑋1𝑉−1  𝑅 

Pre-multiply by (𝑋1𝑉−1𝑋)−1, it results into: 

𝛽𝑃 = (𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1  𝑅(𝑋1𝑉−1𝑋)−1                                                            (9) 

Var(𝛽𝑝) = 𝐸[(𝛽𝑃  𝛽)(𝛽𝑃  𝛽)
1] 

From (9), 

𝛽𝑃 = (𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1(𝑋𝛽 +  )  𝑅(𝑋1𝑉−1𝑋)−1                                                      (10) 

𝛽𝑃 = (𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1X𝛽 + (𝑋1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1 

𝛽𝑃 = 𝛽 + (𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1                                                        (11) 

𝛽𝑃  𝛽 = (𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1                                                        (12) 

Therefore, 

Var(𝛽𝑃)=E[(𝑋1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1][(𝑋1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1]1 

Var(𝛽𝑃)= (𝑋1𝑉−1𝑋)−1𝑋1𝑉−1𝐸(  1)𝑋(𝑋1𝑉−1𝑋)−1 + 𝑅(𝑋1𝑉−1𝑋)−1(𝑋1𝑉−1𝑋)−1𝑅1 

Var(𝛽𝑃)=𝜍2(𝑋1𝑉−1𝑋)−1 + 𝑅(𝑋1𝑉−1𝑋)−1(𝑋1𝑉−1𝑋)−1𝑅1                                                (13) 



http://www.sciencepg.com/journal/mma


Mathematical Modelling and Applications http://www.sciencepg.com/journal/mma 

 

26 

𝐵𝑖𝑎𝑠⌊𝛽̂⌋ = 𝐸⌊𝛽̂⌋  𝛽 = 𝐸⌊𝛽̂  𝛽⌋                                                             (14) 

𝐸(𝛽𝑃  𝛽) = 𝐸[(𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1   𝑅(𝑋1𝑉−1𝑋)−1] 

𝐸(𝛽𝑃  𝛽) = [(𝑋
1𝑉−1𝑋)−1𝑋1𝑉−1𝐸( )   𝑅(𝑋1𝑉−1𝑋)−1] 

Recall: 𝐸( ) = 0 

𝐸(𝛽𝑃  𝛽) =   𝑅(𝑋
1𝑉−1𝑋)−1                                                                       (15) 

ABias (𝛽) = |𝐸(𝛽𝑃  𝛽)| =  𝑅(𝑋
1𝑉−1𝑋)−1.                                                             (16) 

3. Results 

In this analysis, attention is focused on the asymptotic be-

haviour of five estimators in panel data infected with auto-

correlated error terms of low, moderate and high levels and 

heteroscedastic structure. Monte-Carlo experiment is used to 

generate infectious data. 5000 replications are performed on 

combination of cross section, N=25,100 and 200 and time 

periods, T=5 and 10 for different degrees of autocorrelation 

and heteroscedastic structure (0.3, 0.5, and 0.8). R- Package 

is used for the analysis. 

Table 1. Root Mean Square Error in the Presence of Heteroscedasticity and Low Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.00436 0.13246 0.11342 0.17371 0.03544 0.22084 

 
FGLS 0.04683 0.22915 0.61354 0.11077 0.77631 0.01124 

 
ME 0.00437 0.13246 0.11343 0.17371 0.03544 0.22084 

 
MME 0.06349 0.0681 0.24825 0.0499 0.03942 0.22238 

 
PE 0.00021 0.00031 0.00078 0.00399 0.00011 0.00356 

100 BE 3.72E-06 3.82E-08 0.03066 0.00037 0.00011 0.01132 

 
FGLS 0.00075 0.00662 0.04158 0.0002 0.00785 0.05017 

 
ME 3.70E-06 0.00394 0.03066 0.00037 0.00011 0.01132 

Ugkl; MME 0.01193 0.00961 0.05442 0.00866 0.00712 0.03283 

 
PE 5.29E-06 0.00019 0.00047 0.000017 1.02E-04 0.00039 

200 BE 0.00018 5.37E-05 0.00566 0.00031 0.00244 0.00098 

 
FGLS 0.0001 0.00393 0.02509 0.00422 0.01802 0.00233 

 
ME 0.00018 5.37E-05 0.00566 0.00031 0.00244 0.00098 

 
MME 0.00569 0.00457 0.02635 0.00604 0.00592 0.02736 

 

PE 0.000002 6.1E-07 0.00019 5.15E-06 0.000042 0.000027 

Proposed estimator outperforms other estimators. 
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Table 2. Root Mean Squared Error in the Presence of Heteroscedasticity and Moderate Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.0013093 0.0397366 0.0340263 0.0521136 0.0106306 0.066251 

 
FGLS 0.0140494 0.0687456 0.1840608 0.0332317 0.2328942 0.003373 

 
ME 0.0013095 0.0397381 0.03403 0.0521136 0.0106306 0.066251 

 
MME 0.0190483 0.0204296 0.0744744 0.0149688 0.0118272 0.066713 

 
PE 0.000064 0.0000936 0.000235 0.0119883 0.0000358 0.001069 

100 BE 1.11E-06 1.14E-08 0.0091979 0.0001101 3.22E-05 0.003396 

 
FGLS 0.0002264 0.0019866 0.012474 6.11E-05 0.0023553 0.015052 

 
ME 1.11E-06 0.0011827 0.0091981 0.0001101 3.22E-05 0.003396 

 
MME 0.0035777 0.0028833 0.0163271 0.0025988 0.0021363 0.009848 

 
PE 3.29E-06 0.0000084 0.0002032 5.32E-06 3.37E-05 0.000117 

200 BE 5.51E-05 1.61E-05 0.0016978 9.25E-05 0.0007306 0.000294 

 
FGLS 3.05E-05 0.0011776 0.007526 0.001265 0.0054075 0.000699 

 
ME 5.51E-05 1.61E-05 0.0016978 9.25E-05 0.0007306 0.000294 

 
MME 0.0017085 0.0013696 0.007906 0.0018133 0.0017767 0.008208 

 

PE 2.66E-06 1.8E-07 0.0000086 1.55E-06 0.0000028 0.000008 

Proposed estimator outperforms other estimators. 

Table 3. Root Mean Squared Error in the Presence of Heteroscedasticity and High Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.0034915 0.10596432 0.0907368 0.1389696 0.0283483 0.176669 

 
FGLS 0.0374651 0.1833216 0.4908288 0.0886178 0.6210512 0.008994 

 
ME 0.0034921 0.10596821 0.0907466 0.1389696 0.0283483 0.176669 

 
MME 0.0507954 0.05447904 0.1985984 0.0399168 0.0315392 0.177901 

 
PE 0.000234 0.00196221 0.0001235 0.0000068 0.0007244 0.000015 

100 BE 2.97E-06 3.05E-08 0.0245277 0.0002937 8.59E-05 0.009055 

 
FGLS 0.0006037 0.0052976 0.033264 0.0001629 0.0062807 0.040139 

 
ME 2.96E-06 0.00315392 0.0245281 0.0002937 8.59E-05 0.009055 

 
MME 0.0095406 0.00768891 0.0435389 0.00693 0.0056968 0.026261 

 
PE 1.55E-04 0.00070211 0.0000962 0.0000029 3.12E-04 0.000055 

200 BE 0.0001468 4.29E-05 0.0045276 0.0002466 0.0019482 0.000785 

 
FGLS 8.147E-05 0.00314034 0.0200694 0.0033732 0.0144199 0.001863 

 
ME 0.0001469 4.29E-05 0.0045274 0.0002466 0.0019484 0.000785 

 
MME 0.0045559 0.00365226 0.0210826 0.0048356 0.0047378 0.021888 
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N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

 

PE 4.9E-07 1.56E-04 0.00000412 3.8E-07 0.0000022 0.0000004 

Proposed estimator outperforms other estimators. 

Table 4. Absolute Bias in the Presence of Heteroscedasticity and Low Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.052136 0.287336 0.265776 0.329084 0.148666 0.371028 

 
FGLS 0.170912 0.378084 0.618576 0.262836 0.6958 0.084084 

 
ME 0.0521752 0.2874144 0.265972 0.329182 0.1486856 0.371224 

 
MME 0.235396 0.216188 0.415912 0.178752 0.161504 0.378672 

 
PE 0.003269 0.003945 0.006256 0.014119 0.002439 0.013334 

100 BE 0.0304388 0.308504 0.2765364 0.0302604 0.0163621 0.168033 

 
FGLS 0.043708 0.129164 0.325556 0.02254 0.139944 0.35378 

 
ME 0.003038 0.0003136 0.276556 0.0302624 0.016366 0.168031 

 
MME 0.17248 0.15484 0.36848 0.147 0.13328 0.28616 

 
PE 0.0002320 0.000061 0.013233 0.005950 0.001557 0.008829 

200 BE 0.0302428 0.01636208 0.1680308 0.0392134 0.1102108 0.069952 

 
FGLS 0.02254 0.139944 0.35378 0.14504 0.29988 0.1078 

 
ME 0.0302624 0.016366 0.1680308 0.0392196 0.1102304 0.069972 

 
MME 0.16856 0.15092 0.3626 0.173656 0.171892 0.36946 

 

PE 0.000595 0.0003038 0.008829 0.001433 0.007553 0.00333 

Proposed Estimator is asymptotically consistent. 

Table 5. Absolute Bias in the Presence of Heteroscedasticity and Moderate Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.0156408 0.0862008 0.0797328 0.0987252 0.0445998 0.111308 

 
FGLS 0.0512736 0.1134252 0.1855728 0.0788508 0.20874 0.025225 

 
ME 0.0156526 0.08622432 0.0797916 0.0987546 0.0446057 0.111367 

 
MME 0.0706188 0.0648564 0.1247736 0.0536256 0.0484512 0.113602 

 
PE 0.0009807 0.0011835 0.0068769 0.0042359 0.0007319 0.004000 

100 BE 0.0091316 0.0925512 0.0829609 0.0090781 0.0049086 0.05041 

 
FGLS 0.0131124 0.0387492 0.0976668 0.006762 0.0419832 0.106134 
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N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

 
ME 0.0009114 0.00009408 0.0829668 0.0090787 0.0049098 0.050409 

 
MME 0.051744 0.046452 0.110544 0.0441 0.039984 0.085848 

 
PE 0.0000696 0.00001835 0.003970 0.001785 0.000467 0.002648 

200 BE 0.0090728 0.00490862 0.0504092 0.011764 0.0330632 0.020986 

 
FGLS 0.006762 0.0419832 0.106134 0.043512 0.089964 0.03234 

 
ME 0.0090787 0.0049098 0.0504092 0.0117659 0.0330691 0.020992 

 
MME 0.050568 0.045276 0.10878 0.0520968 0.0515676 0.110838 

 

PE 0.000038 0.000091 0.002648 0.000430 0.0002659 0.000999 

Proposed estimator is more asymptotically consistent than Modified Maximum Estimators. 

Table 6. Absolute Bias in the Presence of Heteroscedasticity and High Autocorrelation. 

N 

 

 

T=5 

  

T=10 

 

β0 β1 β2 β0 β1 β2 

25 BE 0.0417088 0.2298688 0.2126208 0.2632672 0.1189328 0.296822 

 
FGLS 0.1367296 0.3024672 0.4948608 0.2102688 0.55664 0.067267 

 
ME 0.0417402 0.22993152 0.2127776 0.2633456 0.1189485 0.296979 

 
MME 0.1883168 0.1729504 0.3327296 0.1430016 0.1292032 0.302938 

 
PE 0.0026154 0.00315607 0.005005 0.0112958 0.0019518 0.010667 

100 BE 0.024351 0.2468032 0.2212291 0.0242084 0.0130897 0.134426 

 
FGLS 0.0349664 0.1033312 0.2604448 0.018032 0.1119552 0.283024 

 
ME 0.0024304 0.00025088 0.2212448 0.0242099 0.0130928 0.134425 

 
MME 0.137984 0.123872 0.294784 0.1176 0.106624 0.228928 

 
PE 0.000185 0.00004892 0.0048714 0.0476045 0.0012456 0.007063 

200 BE 0.0241942 0.01308966 0.1344246 0.0313707 0.0881686 0.055962 

 
FGLS 0.018032 0.1119552 0.283024 0.116032 0.239904 0.08624 

 
ME 0.0242099 0.0130928 0.1344246 0.0313757 0.0881843 0.055978 

 
MME 0.134848 0.120736 0.29008 0.1389248 0.1375136 0.295568 

 

PE 0.000076 0.0002431 0.0020635 0.001146 0.0060424 0.002664 

Proposed estimator is more asymptotically consistent than Modified Maximum Estimator. 

4. Discussion 

The following results are obtained when there exists combi-

nation of different level of autocorrelation and heteroscedastic-

ity irrespective of cross-section and time period. 

1) The study came up with a proposed estimator; 

2) Proposed estimator (PE) is asymptotically efficient and 

consistent; 

3) PE is a more suitable technique for both small and large 

sample size than other existing estimators in this study. 
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5. Implication to Research and Practice 

The implication of this work is that it will assist the firms, 

government, social and behavioral scientists in their decision 

making in order to minimize the effect of one-way error 

component on the parameter estimates. 

6. Conclusion 

This study considers a case of heteroscedastic individual 

random when first order serial correlation is present in the 

context of a panel data regression model. This is in contrary 

to the usual econometrics literature that deals with hetero-

scedasticity ignoring serial correlation or vice versa. The 

results of the Monte-Carlo experiment showed that PE out-

performs other methods of estimation for it is asymptotically 

efficient and consistent in the presence of autocorrelation and 

heteroscedasticity. Therefore, it is more robust than the exist-

ing estimators in this study. 

Future Research 

The study can further be extended to non-linear panel data 

of balanced and unbalanced type. Bayesian inference can 

also be looked into for possible robust estimation. 
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