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Abstract 

The number of spanning trees in graphs (networks) is a crucial invariant, and it is also an important measure of the reliability 

of a network. Spanning trees are special subgraphs of a graph that have several important properties. First, T must span G, 

which means it must contain every vertex in graph G, if T is a spanning tree of graph G. T needs to be a subgraph of G, second. 

Stated differently, any edge present in T needs to be present in G as well. Third, G is the same as T if each edge in T is likewise 

present in G. In path-finding algorithms like Dijkstra's shortest path algorithm and A* search algorithm, spanning trees play an 

essential part. In those approaches, spanning trees are computed as component components. Protocols for network routing also 

take advantage of it. In numerous techniques and applications, minimum spanning trees are highly beneficial. Computer 

networks, electrical grids, and water networks all frequently use them. They are also utilized in significant algorithms like the 

min-cut max-flow algorithm and in graph issues like the travelling salesperson problem. In this paper, we use matrix analysis 

and linear algebra techniques to obtain simple formulas for the number of spanning trees of certain kinds of cyclic snake 

graphs. 
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1. Introduction 

In this paper, we give some basic definitions. We deal with 

simple and finite undirected graphs G = (V, E), where V is 

the vertex set and E is the edge set. For a graph G, a span-

ning tree in G is a tree that has the same vertex set as G. The 

number of spanning trees in G, also called the complexity of 

the graph, denoted by τ (G), is a well-studied quantity (for a 

long time) and appears in a number of applications. The most 

notable application fields are network reliability [1–3], enu-

merating certain chemical isomers [4], and counting the 

number of Eulerian circuits in a graph [5]. A classical result 

of Kirchhoff [6] can be used to determine the number of 

spanning trees for G = (V, E). Let 1 2{ , ,..........., }nV v v v , 

then the Kirchhoff matrix H defined as n ×n characteristic 

matrix H = D −A, where D is the diagonal matrix of the de-

grees of G and A is the adjacency matrix of G, H = [aij] de-

fined as follows: (i) aij = −1, vi and vj are adjacent and i   j, 

(ii) aij equals the degree of vertex vi if i = j, and (iii) aij = 0 

otherwise. All of the co-factors of H are equal to τ(G). There 

are other methods for calculating τ(G). Let 

1 2 ........... p      denote the eigenvalues of H matrix of 

p point graph. Then it is easily shown that p  = 0. Further-

more, Kelmans and Chelnokov [7] have shown that, 
1

1
( ) 1/

p

k
k

G p 



  . The formula for the number of span-
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ning trees in a d-regular graph G can be expressed as 
1

1
( ) 1/ ( )

p

k
k

G p d 



   where 0 1 2 1, , ,.............., pd      

are the eigenvalues of the corresponding adjacency matrix of 

the graph. However, for a few special families of graphs, 

there exist simple formulas that make it much easier to calcu-

late and determine the number of corresponding spanning 

trees, especially when these numbers are very large. 

One of the first such results is due to Cayley [8], who 

showed that for a complete graph with n vertices, Kn has 

2nn   spanning trees that he showed 
2( ) , 2.n

nK n n  

1 1
,( ) q p

p qK p q   , 1p q   where Kp,q is the complete bipar-

tite graph with bipartite sets containing p and q vertices, re-

spectively. It is well known, as in e.g., [9, 10]. Another result 

is due to Sedlacek [11], who derived a formula for the wheel 

on n + 1 vertices, Wn+1, which is formed from a cycle Cn on 

n vertices by adding a vertex adjacent to every vertex of Cn. 

In particular, he showed that 

1( ) (3 5 / 2) (3 5 / 2) 2n n
nW       , for 3n  . Sed-

lacek [12] also derived a formula for the number of spanning 

trees in a Mobius ladder. The Mobius ladder nM  is formed 

from cycle 2nC  on 2n vertices labelled 1 2 2v , v , ....., v n  by 

adding an edge iv vi n  for every vertex i v where i n.  

The number of spanning trees in nM  is given by 

( ) / 2[(2 3) (2 3) 2)]n n
nM n      for 2n  . Another 

class of graphs for which an explicit formula has been de-

rived is based on a prism [13, 14]. Let the vertices of two 

disjoint length cycles be labelled 1 1 nv , v , . . . , v  in one cycle 

1 1 nand w , w , . . . , w  in the other.  The prism nR  is defined 

as the graph obtained by adding to these two cycles all the 

edges of the form i i.v w . The number of spanning trees in 

nR  is given by the following formula 

n/2[(2+ 3) (2 3) 2]n n   . For more results, it is sug-

gested to see these articles [15-28]. 

Chio’s condensation is a method for evaluating an n×n de-

terminant in terms of (n − 1) × (n − 1) determinants; see 

[29]: 

1111311 12 11

23 221 22 21 21

111 12

13 111 12 11 11
221 22

31 32 31 33 31 3

1 2

13 111 12 11 11

1 2 1 3 1

n

n

n

n
n

n

n n nn

n

n n n n n nn

aaaa a a

a aa a a a
aa a

a aa a a a
aa a

A a a a a a a

a a a
a aa a a a

a a a a a a

   

2. Dodgson’s Condensation Method 

Dodgson’s condensation method computes determinants 

of size n × n by expressing them in terms of those of size (n 

− 1) × (n − 1), and then expresses the latter in terms of de-

terminants of size (n−2)×(n−2), and so on (see [30]). 

This method is based on Dodgson and Chio’s method, but 

the difference between them is that this new method is re-

solved by calculating 4 unique determinants of (n − 1) × (n − 

1) order, (which can be derived from determinants of n × n 

order, if we remove first row and first column or first row 

and last column or last row and first column or last row and 

last column, elements that belong to only one of the unique 

determinants), and one determinant of (n − 2) × (n − 2) order 

which is formed from n × n order determinant with elements 

ai,j with i, j = 1, n, on condition that the determinant of (n − 2) 

× (n − 2) = 0. 

 

3. Complexity of Some Types of Cyclic 

Snake Graphs 

Lemma 4.1: Given a simple graph G with n vertices, its 

laplacian matrix nxnL  is defined as:
 L D A   where D is 

the degree matrix and A is the adjacency matrix of the graph. 

In the case of directed graphs, either the in degree or the out 

degree might be used, depending on the application. The 

elements of L are given by
 

 

where deg(vi) is degree of the vertex i 

Definition 4.1 [31]: 

A triangular snake (or k -snake) is a connected graph in 

which all blocks are triangles and the block-cut-point graph 

is a path. 

Definition 4.2: The nkc snake  is called linear, if the 

block-cut-vertex graph of nkc snake  has the property that 

the distance between any two consecutive cut-vertices is 

[ ]
2

n

 

Definition 4.3: The graphs (m, k) C4 as the family of 

graphs kC4-snake where every block has m copies of C4 with 

two non- adjacent vertices in common, where the number of 

blocks is denoted by k. 

Definition 4.4: The subdivision of a graph G is obtained 

by subdividing every edge of G exactly once. 

The Main Results: 

Theorem 5.1 The number of spanning trees of the linear 

http://www.sciencepg.com/journal/mma
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https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)


Mathematical Modelling and Applications http://www.sciencepg.com/journal/mma 

 

16 

4kc snake  

4(  ) =kc snake  ( ) 

4(  ) = 4 , 2,  where k is the number of  blocks.kkc snake k  

Proof. By induction, prove at m = 1, ( )G  is a 2* 2 matrix 

with both rows the same: 

1 3 1
( ) 4.

2 31
G

 
  

 
 

We try to prove at m=k that is 

Straightforward induction using properties of determinants 

and Dodgson and Chio method and applying Lemma 2.1, we 

have: 

0 0 04 1 1 1

0 01 1 1 1

0 04 1 1 1 1

0 0 01 2 1

0 1 1

0 01 1
( )

0 01 1

0 01 1

01 1

01 1

01 1

0 0 1 2

   
 

    
    


 


 

  

 
 

  

 
 

 


 

G
1 2 1 2 2 21 1

1 1 111

2 *2

1 (3*4 ) ( 4 ) 8*43*4 4
4 2,

2*4 2*4 2*43*4
 k      

4
.

   

  







  
    










k k kk k
k

k k kkk

k k

Where is the number of blocksk  

(2 2)*(2

4 0 0 1 1 1 1 0

0

4 1 1 1 1 0

1 2 1 0

1 1

1 1 0

1 0 0

0 1

1 0

1

1

1 0

0 0 2
k

S



   

   

 

 

 

 











1

2)

2*4k

k





  

4 0 0 1 1 1

0 1 1 1 1 0

4 1 0 1 1 1 0

1 2 1

1 1

1 1 0

1 0

1

0

1

0 1

1 1

1 1

A

  

   

   

 

 

 










 

 

1

(2 2)*(2 2)

3*4

0

1 0 0 2

k

k k



 





, 

+
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0 0 1 1 1 0

4 0 1 1 1 1 0

0 0 1 1 1 1 0

4 1 0 1 1 1 0

1 2 1 0

0 1 1

1 0 1 0

1 0 0

0 1 1

1 1 0

1 1

1 1

TB B

  

   

   

   

 

 

 
 



 

 

 

 

1

(2 2)*(2 2)

4

1 0

0 0 2 1

k

k k



 







 

4 0 0 1 1 1 1 0 0

0 1 1 1 1 0

4 1 0 1 1 1 0

1 2 1

0 1 1

1 1 0

1 1 0

0 1 1

1 1 0

1 1

1 0

1

0

C

   

   

   

 

 

 

 


 

 

 





1

(2 2)*(2 2)

3*4

1

0 0 1 2

k

k k



 







 

Theorem 5.2 The number of spanning trees of the (2, k) C4-snake 

( (2 , k )  C 4 -s n a k e ) ( 
)

 

((2, k) C4-snake) (32) 3k k    

Proof. By induction, prove at m = 1, ( )G  is a 2* 2 matrix with both rows the same: 

1 32 16
( ) 32.

24 16 32
G

 
  

 
 

We try to prove at m=k that is 

Straightforward induction using properties of determinants and Dodgson and Chio method and applying Lemma 2.1, we 

have: 
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0 0 02 1 1

0 0 02 1 1

0 01 1 4 1 1

0 8 0 01 1 1 1 1 1 1 1

0 0 01 1 2

0 01 1 2

0 0 01 2 1

0 01 2 1

0 1 1

( )G

 

 

   

       

 

 

 

 

 



01 1 1 1

0 0 01 1

01

0 0 01

0 01 1

8 01 1 1 1 1 1 1

0 0 0 0 0 01 1 2

0 0 0 0 0 01 1 2

0 01 2 1

   

 





 

      

 

 

 

5 *5

1
(32)

(32)1 2
(32) 3,

3 1 7
(32) (32) (32)

2 2 4

 k

0 0 0 01 2 1

1 1 4 1

0 0 0 0 0 01 1

    

2

 

k
k

k

k k k

k k

Where is the number ok f

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
  
 

   
   

1
( )

 .

T

A B
G

S B

o

C

bl cks

 

 

=
1

|

|

|

|

|

|

|
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|
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|

|

|

|

|

|

|

|
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|

|

|
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|

|
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|

|

|
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𝟏

𝑺
=

1

0 02 1 1

0 01 4 1 1

0 8 0 01 1 1 1 1 1 1

0 01 1 2

0 01 1 2

0 0 0 01 2 1

0 01 2 1

0 01 1 1 1 1 1 1 1

0

1

 

  

      

 

 

 

 

       

 1

01 1

0 01

0 8 01 1 1 1 1

0 0 01 1 2

01 1 2

0 01 2 1

0 01 2 1

0 0 1 1 4

 



    

 

 

 

 

  , 

A=

0 0 02 1 1

0 02 1 1

0 01 1 4 1 1

0 8 0 01 1 1 1 1 1 1 1

0 0 01 1 2

0 01 1 2

0 0 0 01 2 1

0 01 2 1

0 0 01 1 1 1 1 1 1

 

 

   

       

 

 

 

 

      

0 0 01

01 1

0 0 01 1

0 01

8 01 1 1 1 1 1

0 0 0 0 01 1 2

0 0 0 01 1 2

0 0 0 01 2 1

0 0 01 2 1

0



 

 



     

 

 

 

 

0 0 0 1 1 4 
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Theorem 5.3 The number of spanning trees of the (3, k) C4-snake 

)

((3, k) C4-snake) (   

((3, k) C4-snake) (192) 2k k    

Proof. 

0 0 0 02 1 1

0 0 02 1 1

0 0 02 1 1

6 0 01 1 1 1 1 1

0 0 01 1 1 12 1 1 1 1 1 1 1 1 1

0 0 0 01 1 2

( )G

 

 

 

     

           

 



0 01 1 2

0 01 1 2

0 0 0 0 01 2 1

0 0 01 2 1

0 0 01 2 1

0 0 01 1 1 1 1 1 1 1

0 0 01

 

 

 

 

 

       

  0 0 01

0 0 01

01

0 1

1

1

01 1 1 12 1 1 1 1 1 1 1











          1

0 0 0 0 0 0 01 1 2

01 1 2

1 1 2

1 2 1

0 0 0 01 2 1

0 0 0 0 0 0 01 2 1



 

 

 

 

 

 

7 *7

61 1 1 1 1

0 0 0 0 0 0 01 1 2

0 0 0 0 0 0 0 01 1 2

Straightforward induction using 

k k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

  
    

2 2 2

properties of determinants and Dodgson and Chio method 

and applying Lemma 2.1, we have:

1
(192)

(192)1 2
( )

11 71
*(192) (192)(192)

12 62

7 1 11
(192) (192) * (192)

6 4 12( ) (192)
11 11

*(192) * (192)
12 12

k
k

k kk

k k k

k

k m

G

G









   2,  k is the number of blocks.k where

 

 

4. Conclusion 

The number of spanning trees in graphs (networks) is an 

important invariant, and it is also an important measure of 

reliability of a network. In this paper we derived simple for-

mulas of the complexity, number of spanning trees, of some 

types of cyclic snake graphs using linear algebra and matrix 

analysis techniques. 
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