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Abstract 

The algebraic structure and distribution of prime numbers remain two of the most fundamental problems in mathematics. The 

Fundamental Theorem of Arithmetic, proved by Euclid, and Goldbach’s conjecture, while universal in scope with respect to how 

numbers can be represented multiplicatively or additively, do not provide insights into the structure of primes. Similarly, the 

definition of a prime −as a number divisible only by 1 and itself− or a sieve algorithm, commonly used to generate primes by 

successively eliminating multiples, offer no insight into the structure of primes. The powerful and persistent consideration of 

prime numbers as universal “arithmetic quanta” has not necessitated an equally powerful need for parallel research into a deeper 

and possibly more insightful explanation of primeness, that is, a better understanding of “why” a number is prime. In this paper, 

prime and coprime numbers are represented and generated by algebraic expressions. Specifically, given the first n primes, p1, 

p2,…, pn, sufficient conditions are given for expressing primes greater than pn, and coprimes with prime factors greater than pn, as 

algebraic functions of p1, p2,…, pn. Thus, primality and co-primality are shown to be mathematical properties with inherently 

evolutionary algebraic characteristics, since larger primes and coprimes can be generated algebraically from smaller ones. The 

methodology described in the paper can be a useful tool in the study and analysis of the complexity, structure, interrelationships 

and distribution of primes and coprimes. 
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1. Introduction 

The Fundamental Theorem of Arithmetic (FTA), proved by 

Euclid (300 BCE), states that any integer greater than 1 can be 

expressed as a prime, or unique product of primes called 

prime factors [1, 2]. Goldbach’s conjecture, in its broadest 

interpretation, states that any integer greater than 1 may be 

expressed as a sum of at most three primes, thus representing a 

“summative counterpart” to the factorization result of the FTA 

[3-6]. 

Such universally optimal representations, multiplicative or 

summative, do not help us gain meaningful insights into the 

structure of primes, since, by definition, primes are the 

“quanta”, i.e. indivisible building blocks, of all numbers. For 

that reason, the primality of a number is typically established, 

or refuted, by reverting to the definition of a prime: a number 

that is divisible only by itself and 1. No additional insight into 

the algebraic structure of primes is gained by applying a sieve: 
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the set of primes, P, corresponds to the “leftover” numbers, i.e. 

those not eliminated by the sieve algorithm [7]. However, the 

underlying mathematical structure of primes and coprimes is 

intrinsic and interdependent, and thus merits a more system-

atic focus. 

In this paper, it is shown that, under certain conditions, the 

primality of a number is dependent to that of smaller primes in 

an algebraic sense; a similar result holds for certain coprimes. 

Our findings demonstrate that primality, and co-primality, are 

properties with evolutionary characteristics, propagating from 

smaller to larger primes and coprimes. For example, while it is 

typically claimed that “3 is prime because it can only be di-

vided by itself and 1”, this paper offers an alternative expla-

nation: 3 is prime because it equals 21 + 1. Put differently, it 

can be shown that the quantity represented by 2𝑏 ± 1  is 

prime, if 2𝑏 ± 1 < 9. Hence, the primality of 3, 5 and 7 is a 

direct algebraic consequence of the primality of 2, without the 

need to apply the definition of a prime number, or rely on a 

sieve. 

A consequence of the above is that 3, 5 and 7 “inherit” their 

primality from that of 2. The values, and therefore the distri-

bution, of the next 3 primes, is a direct algebraic result of the 

primality and value of 2, the first prime. This result may be 

generalized by describing the algebraic structure that repre-

sents, and can therefore generate, prime numbers greater than 

the n
th

 prime, pn, as discussed in the next section. 

Prior research has established the “quantum optimality”, 

multiplicative and additive, of the set P of primes, and the 

existence of sufficient conditions for the algebraic represen-

tation of primes using Hybrid Prime Factorization (HPF), i.e. 

algebraic expressions containing structured sums [8, 9]. 

Specifically, this paper extends the results of the research [9], 

by establishing common, less restrictive sufficiency conditions 

for the algebraic representation of primes and coprimes. Such 

expressions can find applications in cryptography, where prime 

factorization and computationally efficient generation of in-

creasingly large primes are used for securely encrypting and 

decrypting digital information [10, 11]. 

The methodology presented in this paper can be a useful 

tool for the study of the evolutionary characteristics of pri-

mality, the relational properties of primes, coprimes, and their 

distribution. 

2. Generation of Primes and Coprimes 

The Hybrid Prime Factorization (HPF) algebraic structure, 

defined in the next section, is used to generate larger primes 

and coprimes. It consists of a coprime sum or difference, 

subject to several conditions. 

2.1. The HPF Algebraic Structure 

“HPF” refers to an algebraic expression of the form 

HPF = p1
a1 ∙ p2

a2 ∙ … ∙  pn
an ± p1

b1 ∙ p2
b2 ∙ … ∙  pn

bn      (1) 

where p1, p2 … , pn denote the first n primes and the integer 

exponents ai, bi satisfy the conditions: 

ai, bi  ≥ 0                     (2) 

ai  ∙ bi = 0                     (3) 

ai + bi ≥ 1                    (4) 

∑ ai
n
i=1 ≥ 1                    (5) 

∑ bi
n
i=1 ≥ 1                    (6) 

HPF > 1                     (7) 

for i = 1, 2, 3, … , n. 

Inequalities (2)-(4) ensure that the two multiplicative terms 

in (1) are coprime, i.e. no pi can be a factor in both terms, and 

(5)-(6) prevent either term in (1) to be 1. Condition (7) elim-

inates any trivial, non-prime solutions, i.e. where HPF = 1, 

such as: 24 − 3 ∙ 5, 52 − 23 ∙ 3, 22 ∙ 32 − 5 ∙ 7. 

Given the HPF structure (1)-(7), the prime generation result 

reported in research [9], can be summarized by stating that if 

HPF < pn:1
2                 (8) 

then the HPF represents a prime > pn. 

Example 1. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7. Each of 

the HPF expressions below, satisfies (2)-(8) for n = 3, and 

therefore it represents a prime > 5 

3 ∙ 5 − 2 = 13              (9) 

3 ∙ 5 + 2 = 17              (10) 

22 ∙ 3 − 5 = 7           (11) 

22 ∙ 3 + 5 = 17              (12) 

22 ∙ 32 − 52 = 11.             (13) 

If the sufficiency conditions (2)-(8) are not satisfied, HPF 

may or may not be a prime, as shown by the expressions 

below: 

22 ∙ 32 + 52 = 61 is prime; (8) not satisfied     (14) 

21 ∙ 33 − 5 = 49 is not prime; (8) not satisfied     (15) 

22 + 52 = 29 is prime; (4) not satisfied    (16) 

26 − 5 = 59 is prime; (4) and (8) not satisfied.   (17) 

The result described in the above example can be general-

ized, based on the observation that when the HPF satisfies 

(2)-(7) but not (8), it will either be a prime ≥ 7, or a compo-
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site number, coprime to {2, 3, 5+, with at most k prime factor 

terms, where k is the smallest integer such that HPF < 7k:1. 

Hence, the prime generation result reported in research [9], 

corresponds to the special case k = 1, for which the HPF 

value is predictably prime. The following proposition for-

malizes this generalized result. 

Proposition 1. The HPF expression, given by (1), subject to 

(2)-(4) and (7), is: 

(i) co-prime to p1, p2 … , pn; 

(ii) HPF ≥ pn:1; 

(iii) the number of terms in the prime factorization of the 

HPF is at most k, where k ≥ 1 is such that 

k ≤
log(HPF)

log(pn+1)
< k + 1        (18) 

and log(·) denotes the natural logarithm function. 

Proof. The HPF, given by (1), cannot have any of 

p1, p2 … , pn  as prime factor(s), since this would lead to a 

contradiction, given that the two product terms in (1) are 

coprime, by virtue of conditions (2)-(4) and (7). Hence, HPF > 

1 is coprime to p1, p2 … , pn, which proves the first part of the 

proposition. From this, it follows that the minimum value of 

the HPF is pn:1, i.e. its smallest prime factor. Therefore 

HPF ≥ pn:1.              (19) 

To prove the last part of the proposition, let k ≥ 1 such 

that 

pn:1
k ≤ HPF < pn:1

k:1 .         (20) 

Since every prime factor of HPF is ≥ pn:1, it follows that 

the HPF cannot have more than k terms in its prime factori-

zation, since this would violate the right side of (20). By 

taking the natural logarithms of all sides of (20), expression 

(18) follows, and the last part of the proposition is proved. 

From Proposition 1, it follows that for the special case 

k = 1 , the HPF, given by (1), is a prime number in the 

semi-open interval [pn:1, pn:1
2 ). For higher values of k, the 

HPF is either a prime or coprime in the semi-open interval 

[pn:1
k , pn:1

k:1), with a maximum “prime factor cardinality” of k, 

i.e. having at most k terms in its prime factorization (including 

any repeating primes). 

The following examples show how Proposition 1 can be 

used to represent, and thus generate, primes and coprimes. 

Example 2. Let n = 3 and consider the HPF expression 

(15) of the previous example. In this case, k = 2, since 

HPF = 21 ∙ 33 − 5 = 49 =  p4
2       (21) 

and HPF is coprime to *2, 3, 5+, with a maximum prime factor 

cardinality of 2 and no prime factor smaller than 7.  

Example 3. Consider the HPF expression (n = 3), given by 

HPF = 210 ∙ 35 ∙ 55 + 1 = 777,600,001     (22) 

for which, the corresponding value of k, from (18), is 

k = ⌊
log(HPF)

log(p4)
⌋ = ⌊

log(777,600,001)

log(7)
⌋ = 10       (23) 

where ⌊∙⌋ denotes the integer part operator. The above equa-

tion implies that (22) has a maximum prime factor cardinality 

of 10, with no prime factor < 7. This is confirmed by the prime 

factorization of the HPF, given by 

HPF = 777,600,001 = 31 ∙ 61 ∙ 411,211.     (24) 

The value of the HPF expression (1) may be minimized 

with respect to the exponents ai, bi, subject to the conditions 

of Proposition 1, to maximize the likelihood of the HPF rep-

resenting a relatively smaller prime > pn, or a (composite) 

coprime > pn with relatively small prime factors and cardi-

nality. 

In general, (1) may be viewed as an algebraic generator of 

primes and coprimes. Its prime and coprime generating per-

formance is analyzed in Section 3. 

2.2. Evolutional Characteristics of Primality 

The algebraic system described by (1)-(4) and (7) lends 

itself to a hierarchical evolutionary structure in the generation 

of primes from smaller ones. The relaxation of conditions 

(5)-(6) implies that such hierarchical generation can be traced 

to the smallest possible prime. To show this, consider a , 

where a = 1 + 1. Since 1 < a < 4, with 4 being the smallest 

possible non-prime (composite) number, it follows that 2 and 

3 are prime. The primality of 3 may also be established from 

the primality of HPF = 22 − 1, since it represents a number 

> 2 and < 4. 

The primality of HPF = 22 + 1  and HPF = 23 − 1  also 

follows directly from that of 2, i.e. without relying on the 

primality of p2 = 3. Since HPF = 2b ± 1, for b > 1, satis-

fies (1)-(4) and (7), and p2 ≥ 3, it follows that a lower bound 

of p2
2 is 9, i.e. 32 ≤ p2

2. From Proposition 1, every value of 

this HPF within the interval ,1,9) is, a priori, prime. Hence, 

the expressions 22 + 1 and 23 − 1 represent primes. 

For n = 1, since 7 cannot be generated by an expression of 

the form 2b + 1, it follows that some primes may be repre-

sented by an HPF sum or a difference, not both. For n = 2, 

the number 7 can be represented by the HPF sum: 22 + 31. 

Violation of condition (20), for 𝑘 = 1, i.e. if HPF ≥ 32, 

neither guarantees nor precludes the primality of HPF =

2b ± 1. For example: 24 + 1 and 25 − 1 are both prime, but 

23 + 1 and 24 − 1 are not. 

3. Prime Generator Performance 

In this section, the performance of the system (1), (2)-(4) 

and (7), viewed as a algebraic prime number generator, is 

evaluated theoretically and by using Monte Carlo simulation. 
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3.1. Definitions and Measures of Performance 

From Proposition 1, the expression (1), subject to (2)-(4), 

(7), either generates a prime > pn , or a coprime to 

p1, p2 … , pn, with at most k terms in its prime factorization, 

where 

k = ⌊
log(HPF)

log(pn+1)
⌋.             (25) 

As discussed in the previous section, the special case, 

k = 1, implies that 

HPF < pn:1
2                 (26) 

and thus, the HPF, given by (1), is a prime number in the 

semi-open interval [pn:1, pn:1
2 ). To facilitate the analysis of 

the “prime generating” performance of (1), its “prime gener-

ating power”, P(n, k), is defined as a measure of how likely it 

is for (1) to generate a prime. 

Definition 1. The “prime generating power”, P(n, k), of an 

HPF, given by (1), subject to (2)-(4) and (7), is defined by 

P(n, k) =
Number of HPF primes in ,pn+1

k ,pn+1
k+1) 

Number of HPF outcomes in ,pn+1
k ,pn+1

k+1)
.      (27) 

From the above definition, it follows that P(n, k) ≤ 1. The 

quantity P(n, k) expresses the likelihood that (1) generates a 

prime number within a given value range. Next, it is shown 

that P(n, k) starts at 100% for k = 1 and decreases as the 

value of k increases. 

Corollary 1. For any n ≥ 1: P(n, 1) = 1, and P(n, k) < 1 

for k ≥ 2. 

Proof. If k = 1, from Proposition 1 and (20), it follows that 

(26) is true. Since the smallest non-prime having all its prime 

factors greater than pn is equal to pn:1
2 , the HPF expression, 

given by (1), will always generate a prime number in 

,pn:1, pn:1
2 ). Therefore, the numerator and denominator in 

(27) are equal, and thus P(n, 1) = 1. For higher values of k, 

the HPF can take non-prime values, and therefore P(n, k) <

1.  

Proposition 1 implies that, within the value range 

,pn:1, pn:1
2 ), expression (1), subject to (2)-(4), (7) generates a 

prime number with certainty, i.e. P(n, 1) = 100% . In the 

general case, i.e. for HPF values ≥ pn:1
2 , this percentage is 

< 1, i.e. the value of P(n, k) decreases as k increases, as 

described in Proposition 1. The variation of P(n, k)  with 

respect to changes in the values of n and k is analyzed in the 

next section. 

It is infeasible to exhaustively determine all possible HPF 

values in a given interval, since it cannot be precluded that, for 

some higher exponent values, the difference in (1) would not 

generate a relatively small prime. Consider, for example, the 

following HPF, where n = 6, given by  

HPF = 51 ∙ 133 − 24 ∙ 32 ∙ 71 ∙ 111 

or 

HPF = 10985 − 11088 = 103        (28) 

represents a prime, since HPF < p7
2 , where p7 = 17. The 

two coprime terms in (28) are, approximately, 100 times 

greater than the value of the HPF. Hence, it is possible to 

generate primes in ,pn:1, pn:1
2 )  by subtracting coprime 

terms that are several orders of magnitude greater. 

Under the assumption that (1) can generate every prime and 

coprime, it follows that evaluating its actual performance, 

given by P(n, k) , is equivalent to assessing its predicted 

performance, P̂(n, k), defined below. 

Definition 2. The “predicted prime generating power”, 

P̂(n, k), of an HPF, given by (1), subject to (2)-(4) and (7), is 

defined by 

P̂(n, k) =
A(n,k)

A(n,k):B(n,k)
            (29) 

where A(n, k) is the number of primes in [pn:1
k , pn:1

k:1), and 

B(n, k) is the number of composites in [pn:1
k , pn:1

k:1), coprime 

to p1, p2 … , pn.  

As previously mentioned, P̂(n, k) is useful for two reasons: 

(i) the computational complexity of computing all the so-

lutions of (1), subject to (2)-(4) and (7), for n ≥ 10 easily 

exceeds the computational capabilities of a typical computer 

system, since the two terms comprising the difference in the 

HPF expression, given by (1), can reach extremely large 

values, even before generating an HPF prime within the de-

sired range. 

(ii) it is not known if every such prime and coprime can be 

represented by at least one solution in the form of (1). 

In the next section, the theoretically predicted P̂(n, k) and 

the actual P(n, k), obtained by Monte Carlo simulation, are 

computed and compared.  

3.2. Predicted vs. Simulated Performance 

Since B(n, k) = 0  for k = 1 , it follows that P̂(n, 1) =

100%, for any HPF value in ,pn:1, pn:1
2 ). Therefore, a single 

value is assigned to P̂(n, k)  within each interval 

[pn:1
k , pn:1

k:1) , starting with P̂(n, 1) = 1  for k = 1 . For a 

range of n, k  values, the number of primes and coprimes 

within each interval [pn:1
k , pn:1

k:1) is computed, and the cor-

responding value of P̂(n, k) for that interval is evaluated. 

To avoid the time-consuming component of performing 

prime factorization for each HPF value, the computation of 

A(n, k), B(n, k) and P̂(n, k), utilizes the list of the first 1M 

primes from [12]. The results are summarized in the following 

table. 
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Table 1. Predicted performance, 𝑃̂(𝑛, 𝑘) , for 𝑛 = 3, 4, 5  and 

𝑘 = 1, … ,5. 

k n = 3 n = 4 n = 5 Average 

1 100% 100% 100% 100% 

2 63.6% 67.9% 67.5% 66.4% 

3 50.3% 52.6% 49.2% 50.7% 

4 39.7% 41.2% 39.0% 40.0% 

5 33.0% 34.1% 32.1% 33.1% 

From Table 1, the values of 𝑃̂(𝑛, 𝑘) do not vary signifi-

cantly for 𝑛 = 3, 4, 5 . This observation has an interesting 

practical implication when searching for primes in higher 

order intervals, i.e. ,𝑝𝑛:1
𝑘 , 𝑝𝑛:1

𝑘:1) for 𝑘 > 1: it implies that the 

likelihood that HPF is prime does not change significantly as 

𝑛 increases. The last column of Table 1 shows the average 

values for each 𝑘. 

The above values of 𝑃̂(𝑛, 𝑘) are compared to 𝑃(𝑛, 𝑘) , 

obtained by Monte Carlo simulation. To avoid runtime 

overflow errors, all exponent parameters in (1) are capped. 

The Monte Carlo simulation results are summarized in Table 

2. 

Table 2. Simulated performance, 𝑃(𝑛, 𝑘) , for 𝑛 = 3, 4, 5 , and 

𝑘 = 1, … ,5. 

k n = 3 n = 4 n = 5 Average 

1 100.0% 100.0% 100.0% 100.0% 

2 66.7% 65.7% 65.6% 66.0% 

3 52.4% 47.3% 50.9% 50.2% 

4 38.3% 42.7% 37.6% 39.5% 

5 29.4% 33.1% 32.9% 31.8% 

From Tables 1 and 2, it follows that: 

(i) The average prime-generation performance of the HPF 

Prime and Coprime Generator (HPF PCG for short) is 50% or 

higher within the HPF range ,pn:1, pn:1
4 ), i.e. for 𝑘 ≤ 3. 

(ii) When the HPF PCG generates a coprime number q, the 

value of 𝑘 from (18) can be used to determine the maximum 

number of terms in the prime factorization of q. This can be 

used to eliminate a significant number of prime factor com-

binations that do not generate a product with the same last 

digit as q, making the prime factorization of HPF PCG 

coprimes more computationally efficient. This point is illus-

trated in Example 4. 

 
Figure 1. Comparison of average predicted vs. simulated HPF 

prime-generation performance, for 𝑘 = 1, … , 5. 

The results in Tables 1 and 2 are shown graphically in 

Figure 1. The average values of predicted performance, 

𝑃̂(𝑛, 𝑘), and simulated performance,  𝑃(𝑛, 𝑘), are not sig-

nificantly different for 𝑘 = 1, … , 5. 

Example 4. For n = 4, the HPF given by 

HPF = 21 ∙ 54 + 32 ∙ 71 = 1250 + 63 = 1313 

or 

HPF = 13 ∙ 101                (30) 

generates a coprime number. Applying (18), it follows that 

k = 2. Therefore, the prime factorization of 1313 has at most 

2 terms, i.e. a maximum prime factor cardinality of 2, and 

since HPF is coprime, it follows that HPF has exactly 2 prime 

factors. 

Let p and q be primes, such that 

p ∙ q = 1313.               (31) 

Since p, q can only end in 1, 3, 7 or 9, for their product to 

end in 3, there can only be four last-digit combinations: (1,3), 

(3,1), (7,9), (9,7). Also, since min(p, q) ≥ 11, it follows that 

max(p, q) ≤ 119. From Proposition 1, it follows that HPF is 

coprime to the first 4 primes. Thus, it is only necessary to test 

if HPF is divisible by an odd number w, where w ∈ ,11, 119-, 

and w mod 10 = 1 or w mod 10 = 7, i.e. a total of 44 pos-

sible numbers. This subset of possible factors may be further 

reduced, from 44 to 26, by excluding multiples of 3 or 7, e.g. 

21, 27, 33, 39, 49 etc., generating an additional reduction of 

41%. The remaining values are coprime with respect to the 

first 4 primes, and since w < 112, they are prime. The unique 

prime factorization solution is easily determined to be p = 13 

and q = 101. This process significantly reduces the potential 

number of prime factors of an HPF-generated coprime, thus 

increasing computational efficiency. In general, the factori-

zation of any HPF-generated coprime results in the determi-

nation of at least two primes greater than pn.  

As discussed in the previous example, the increased com-

putational efficiency in searching for prime factors of 
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HPF-generated coprimes is a result of the a priori knowledge 

of their maximum prime factor cardinality, established by 

Proposition 1 (part 3). In general, the computational savings 

in the prime factorization of an HPF coprime in [pn:1
k , pn:1

k:1), 

generated by (1), subject to (2)-(4) and (7), are twofold: 

(i) none of the n primes p1, p2 … , pn should be considered, 

since they are not prime factors of any HPF coprime, and 

(ii) since the prime factor cardinality of the HPF coprime is 

at most equal to k, where k is given by (18), the subset of 

admissible prime factors, for each cardinality scenario, is 

reduced by considering only those candidate primes whose 

product ends in the same digit as the HPF coprime. Moreover, 

for each cardinality scenario, upper and lower bounds for the 

prime factors of the HPF can be derived, as discussed below. 

Consider the case where the total prime factor cardinality of 

the HPF coprime equals m, where m ∈ ,2, k]. It then follows 

that the upper and lower bounds for each prime factor 

qj > pn, of the HPF, are given by 

HPF = ∏ qj
m
j=1          (32) 

pn:1 ≤ minj(qj) ≤ ⌊ √HPF
m

⌋        (33) 

maxj(qj) ≤ ⌊
HPF

pn+1
m−1⌋.        (34) 

Given that total prime factor cardinality includes any re-

peating prime factors, as explained in Section 2.1, (32) does 

not imply that the qj, j = 1, … , m, are different. For example, 

if HPF = 134, then m = 4 and qj = 13, for j = 1, … ,4. 

Some of the computational efficiencies, described above, 

materialize even when the lower bound, pn + 2 , is used, 

instead of pn:1. Given that pn < pn + 2 ≤ pn:1, it follows 

that no HPF prime factor is less than pn + 2. Since there are 

at most k* prime factors, where k∗ is given by 

k∗ = ⌊
log(HPF)

log(pn:2)
⌋                 (35) 

the next step is to proceed by considering feasible factors for 

each cardinality value, up to k∗. Any odds not coprime to 

p1, p2 … , pn, cannot be factors of the HPF coprime, since this 

would imply that the HPF is not coprime to p1, p2 … , pn. If 

the total prime factor cardinality of the HPF coprime is m, 

where m ∈ ,2, k∗], the modified upper and lower bounds for 

each prime factor qj, are given by: 

pn + 2 ≤ minj(qj) ≤ ⌊ √HPF
m

⌋         (36) 

maxj(qj) ≤ ⌊
HPF

(pn:2)m−1⌋.        (37) 

As expected, the modified bounds, given by (36)-(37) are 

weaker than those in (33)-(34), respectively. 

Example 5. Consider the factorization of the coprime HPF 

(n = 4), generated by 

HPF = 24 ∙ 33 ∙ 72 − 53 = 2899 = 13 ∙ 223.  (38) 

Since no prime factor of 2899 is less than 7+2 = 9, it fol-

lows that 

k∗ = ⌊
log(2899)

log(9)
⌋ = 3.             (39) 

and the total prime factor cardinality of 2899 is at most 3. 

Consider the first case, where the prime factor cardinality, 

m, is m = 2, i.e. 2899 is assumed to be represented by 

2899 = q1 ∙ q2               (40) 

where q1, q2 are prime. It follows, from (36)-(37), that 

9 ≤ min(q1, q2) ≤ 53              (41) 

max(q1, q2) ≤ 321.             (42) 

From the subset of odd numbers satisfying (41)-(42), only 

those with compatible last digits need to be considered, i.e. 

whose product ends in 9. There are 4 possible combinations: 

if q1 ends in 1 then q2 should end in 9 

if q1 ends in 9 then q2 should end in 1 

if q1 ends in 3 then q2 should end in 3 

if q1 ends in 7 then q2 should end in 7. 

Note that #1 and #2 are symmetric, and therefore only one 

of those should be considered, something that further in-

creases the computational efficiency of the prime factor 

search. This search yields two factors of 2899, coprime to 

2, 3, 5, 7: 13 and 223. 

It remains to be established that these factors are prime. 

Since 13 < 81, it follows that 13 is smaller than the smallest 

HPF coprime, therefore 13 is prime. Since the smallest prime 

factor of 223 cannot exceed ⌊ √223
2

⌋ = 14, only 11 and 13 

need to be considered. Since neither 11 nor 13 are factors, 223 

is a prime factor. Given that prime factors are unique, the case 

m = 3 need not be considered. 

4. Conclusions 

Primes greater than pn , for n ≥ 2 , and coprimes with 

prime factors > pn, can be generated algebraically using the 

HPF expression given by (1), subject to (2)-(4) and (7). The 

sufficiency condition (18) gives the maximum total prime 

factor cardinality of the HPF. For the special case where the 

cardinality bound, k, equals 1, the HPF is a priori prime, i.e. 

its primality can be established without computing its nu-

merical value. 

In cases where the HPF generates a coprime, the lower and 

upper bounds on its prime factors, and the upper bound on the 

total cardinality of its prime factorization (including any 

prime factors with multiplicity >1) result in additional com-

putational efficiencies in the prime factor search. In addition, 

http://www.sciencepg.com/journal/mcs


Mathematics and Computer Science http://www.sciencepg.com/journal/mcs 

 

63 

the prime factorization of any HPF coprime yields at least two 

primes greater than pn. 

The methodology described in this paper may be used to 

algebraically represent, generate, efficiently compute, factor 

and analyze larger primes and coprimes. In the case of prime 

factorization of HPF-generated coprimes, computational 

efficiencies are realized even when weaker non-prime bounds 

are used. 

The approach described in the paper unifies the structural 

characteristics of primes and coprimes, using a common al-

gebraic representation. Such an approach can be a useful tool 

for studying their distribution and interrelationships. 

Abbreviations 

FTA Fundamental Theorem of Arithmetic 

HPF Hybrid Prime Factorization 

PCG Prime and Coprime Generator 
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