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Abstract 

Two novel symmetric multidimensional affine nested variations of the Hill Cipher are presented. The Hill Cipher is a block 

polygraphic substitution encryption scheme based on a linear transformation of plaintext characters into ciphertext characters. In 

the time since Hill first published his encryption scheme, variations, modifications, and improvements of theoretical and 

practical importance have been published every year indicating that the Hill Cipher is an active area of cryptography research. 

The first variation presented in this paper incorporated invertible key matrices of orders 2, 4, and 8 such that the matrix values of 

the 2×2 matrix rotate positions with each block of characters in a similar manner to the rotating letter wheels of a German 

Enigma Encoder, then results of the 2×2 key matrices output are passed to 4×4 key matrices, and 8x8 key matrix, 4×4 key 

matrices, and rotative-value 2×2 key matrices. The second variation is configured with invertible key matrices of orders 4, 8, and 

16 without rotation of matrix values in a similar manner to the first variation. In both variations, plaintext characters of each block 

are operated on by exclusive-or (XOR) vectors prior to multiplication with the matrices to create the affine ciphers. Strengths, 

weaknesses, and other considerations are provided in the discussion. Two proposals are also argued with rationale for a more 

robust character set for encryption and the increase in modulus that the character set allows, and the possible advantages and 

disadvantages of affine XOR vectors. 
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1. Introduction 

In 1929 [1] and 1931 [2] Lester Hill defined a symmetric 

encryption scheme based on a linear transformation of 

plaintext characters into ciphertext characters. In Hill’s en-

cryption algorithm, individual plaintext letters were assigned 

to corresponding numbers, then scrambled by matrix opera-

tions to create an encrypted polygraphic substitution cipher-

text where blocks of plaintext characters were encrypted. The 

important feature that allowed decryption in Hill’s Cipher was 

that the encryption key matrices were invertible. A represen-

tation of Hill’s scheme can be seen in Figure 1 in which the 

matrix M3j (:Matrix of order 3, j
th

 block) is subscripted with 

the number 3 representing an invertible and block number j, 

and specifically, an involutory 3x3 matrix. In Hill’s scheme, a 

plaintext message is broken into j blocks where the block size 

is dependent upon the dimension n, for a square nxn invertible 

matrix. He also represented his affine scheme via a system of 

linear equations where xi and yi represent the plaintext and 

ciphertext respectively and ia  is the affine element compo-
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nent as: 

ij ij i iy a x a   over a field. 

 
Figure 1. Hill’s Encryption Scheme transforming j blocks at a time 

via an invertible 3x3 matrix. 

Variations and application of the Hill Cipher continue to 

generate significant research as of 2024. Over the time span 

between Hill’s original publication in 1929 through 2024 [3], 

researchers have proposed applications to elliptic curve 

cryptography [4, 5], RSA cryptography [6], image security [5, 

7, 8], public key cryptography [9], methods of generating key 

matrices and various types of key matrices (involutory, cir-

culant, non-involutory-non-circulant) [10-13], connection to 

German Enigma Encoders [14], and Rivest Codes [15], 

among many other topics [16-20]. However, the literature is 

silent on two important ideas. First, although models of using 

double and triple Hill Cipher encryptions have been published 

[19] along with well-known issues of the relationship between 

multiple encryptions of the same key with respect to security, 

to date, no one has presented a scheme for a multidimensional 

version of the Hill Cipher in which key matrices of different 

orders are aligned in the encryption sequence. Second, and 

interestingly, most examples, whether in character or binary 

formats, typically use some version of Hill’s original charac-

ter-map scheme of assigning the 26 characters in the English 

Language. The consequences of this limited character set has 

direct implications regarding the key space for matrices used. 

Both of these omissions and gaps in the literature will be 

explained below. 

2. The First Variation 

First, the key space requirements are presented in Table 1. 

Second, the scheme of the first variation is represented in 

Figure 2. Finally, a stepwise procedure of the algorithm is 

presented corresponding to the number steps along the left 

side of Figure 2. 

2.1. Key Space of First Variation 

Table 1 represents the number of pseudo-key XOR (XOR: 

exclusive or function) row vectors and invertible key matrices 

for the first variation. The pseudo-key XOR row vectors serve 

as operating on the initial plaintext character blocks and op-

erating on the outputs of each stage prior to input to the next 

stage of the algorithm. The danger of unwisely choosing these 

pseudo-key XOR row vectors will be stated in section 4.2. 

These vectors are not keys in the traditional sense, hence are 

called pseudo-keys. 

Table 1. Key Space Requirements for First Variation. 

Object Dimension 
Number 

Required 

Pseudo-Key XOR Row Vector 1x2 12 

Pseudo-Key XOR Row Vector 1x4 2 

Pseudo-Key XOR Row Vector 1x8 3 

Key Matrix 2x2 8 

Key Matrix 4x4 4 

Key Matrix 8x8 1 

* Number Required for 2-4-8 Dimension Hill Variation. 

2.2. Encryption Scheme of First Variation 

Reference to the left-hand numbers in Figure 2 will be 

made throughout the explanation of the first variation below. 

One minor notational device should be mentioned: without 

loss of generality and with a minor abuse of notation, the 

forward slashed down arrow  symbol normally repre-

sents an input (down-arrow) and the number of bits (to the 

right of the forward slash /). However, the Hill Cipher litera-

ture traditionally represents alphabet characters as both input 

and output, rather than a number of bits. Following this prac-

tice, and in slight abuse of the bit-use in conventional en-

cryption-decryption diagrams, the number represented in 

Figure 2 in the upper right of the forward slash / will represent 

the number of alphabet characters that will input in the di-

rection of the down-arrows rather than the number of bits. 

Researchers have variously used as keys: powers of a single 

key matrix of the same dimension [20], semi cipher block 

chaining [17, 18] using a string of 3 matrix keys of the same 

dimension with modified XOR inputs, multiple keys includ-

ing a case 24 key matrices of the same dimension with linear 

feedback shift register operations [19], and a string of rotating 

matrices of the same dimension that was somewhat similar to 

the German Enigma Encoder (Figures 3 and 4) [14]. 

The first variation presented in Figure 2 differs from all 

previously known variations due to the use of multidimen-
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sional matrices, that is, matrices of different orders. In this 

first variation, a combination of 2x2, 4x4, and 8x8 matrices are 

used. Refer to Figure 2 and the step numbers in the left col-

umn of that figure. 

 
Figure 2. Scheme of First Variation. 

Step 1: 1x8 block of 8 plaintext characters entered as a row 

vector 0 1 6 7j j j jx x x x    for characters ijx  ( ijx  : i
th

 ele-

ment of the j
th

 block) where i is the character number and j is 

the block. 

Pad the plaintext if necessary to ensure the plaintext is a 

multiple of 8 characters. Padding can be determined using any 

of several possibilities including an agreed upon padding 

string that will not affect the semantics of the plaintext when 

decrypted, a set of printable control characters, or another 

protocol agreed upon prior to encryption. 

The reference value j follows each block through the algo-

rithm and sometimes may also serve as an exponent modulo 

prime p for the pseudo-key xor row vectors. All vector char-

acters are subscripted 0 through 7 along with the block j and 

dimension. 

Step 2: XOR the first random 1x8 pseudo-key row vector 

raised to the j
th

 power with the j
th

 block of 1x8 row vector 

characters: 0 1 2 6 7j j j j jx x x x x    XOR 0 1 2 6 7

j

j j j j jv v v v v    

modulo p, where 0 1 2 6 7

j

j j j j jv v v v v    is interpreted as 

mod
j

ijv p 
 

 for i = 0 to 7. 

1) The pseudo-key xor row vectors are subscripted as fol-

lows: 

a. assigned vector number to keep track of each vector. 

b. the block number j. 

c. the dimension of the xor pseudo-key row vector as 

appropriate (either 2, 4, or 8). 

2) Raising each pseudo-key xor vector to the j
th

 power po-

tentially aids in confusion [20]. 

3) Pseudo-key xor vectors may enhance the ciphertext 

character distribution up to probability when the 

plaintext character distribution is considered. 

4) Raising each pseudo-key xor vector the j
th 

power (mod-

ulo prime p) allows each pseudo-key xor vector to 

change vector values (up to modulo prime p before re-

peating the original values) and adds variability into 

each pseudo-key xor vector. 

Step 3: Break the output of step 2 into 4 pairs of 1x2 row 

vectors (denoted as x-bar,  1i ix x  , in Figure 2) to xor in step 4. 

Step 4: XOR individually each of the first four 1x2 output 

vectors  1i ix x  in the above step with the j
th

 power each of 

one of the 4 random 1x2 pseudo-key xor row vectors respec-

tively. 

1) XOR pairs  modj
ij ijx v p 

 
 for i = 0, 3 in Figure 2. 

2) Comment in Step 2 a) and b) apply here regarding sub-

scripts and cryptographic confusion [21] (when properly 

constructed). 

Step 5: Multiply each of the output vector pairs from Step 4 

above with one of 4 random invertible 2x2 matrices respec-

tively. 

1) All matrices are invertible but neither involutory 

(self-invertible) nor circulant. Checking that the matri-

ces follow all of the conditions above is a relatively 
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simple process by testing whether an invertible matrix 
1 1( )A A orA A I   where I is the identity matrix, and 

by inspection that the matrix is not circulant. 

2) Matrices are subscripted as follows- 

a. Assigned matrix number i. 

b. The block number j. 

c. The dimension of the matrix appropriate to the input 

vector. 

3) With each new block j of plaintext, one 2x2 matrices 

rotate clockwise the values of the matrix when 

mod8j i , Table 2, in a similar manner to rotor wheels 

in German Enigma Encoders shown in Figures 3 and 4. 

4) Matrices rotate on a schedule with respect to the as-

signed matrix number as follows following an estab-

lished matrix-value rotation protocol [18]: 

When the block number j is congruent to the assigned ma-

trix number i modulo 8, rotate clockwise one-quarter each of 

the matrix values of matrix i. 

5) State S is defined to be the matrix configuration based on 

the number of blocks in the plaintext (with padding to 

mod 8). 

6) The length of the plaintext, len, (len: number of plaintext 

characters) is essentially the total number of characters 

in the plaintext/ciphertext. The number k of blocks j of 8 

characters is     mod8 8 mod8k len len   using 

appropriate padding. 

7) The state of each 2x2 rotor matrix in the encryption pro-

cess can be determined in advance of any encryption with 

the numbers k and j which are both based on the plaintext 

length. Both the length of the plaintext and the state s of 

all 8 matrices of order 2 with respect to the j
th
 block will 

allow tracking necessary for decryption where the block 

j=0 is the initial state of the matrices with respect to the 

original orientation of their matrix values. Since there is a 

one-to-one correspondence between plaintext and ci-

phertext characters, the length can be determined, and 

from the length, the state of all order 2 matrices can be 

calculated in a similar manner to an established protocol 

[17]. See Table 2 for the 2x2 matrix configurations with 

respect to the plaintext character length and block j. 

Step 6: Combine the 4 output 1x2 vectors of the step above 

into 2 input 1x4 vectors, 0 1 2 3ˆ ˆ ˆ ˆx x x x 
   and 5 74 6ˆ ˆ ˆ ˆx x x x 

  . 

Step 7: XOR each 1x4 vector respectively with a 1x4 

pseudo-key vector: 

 ˆ mod
j

ij ijx v p 
 

 for i = 0, 1 in Figure 2. 

Step 8: Multiply the output vector from Step 7 with one of 

two random invertible 4x4 matrices respectively. 

Comments from Step 5 apply with appropriate change of 

dimension. 

Step 9: Combine the output of the product of the two 1x4 

vector and 4x4 matrices into a single 1x8 vector. 

Step 10: XOR the output of Step 9 with the second random 

xor pseudo-key 1x8 vector. 

This is essentially a repeat of Step 2 with appropriate vec-

tors. 

Step 11: Multiply the output of Step 10 with an 8x8 in-

vertible matrix. 

This invertible 8x8 matrix is neither involutory nor circu-

lant. 

Step 12: XOR the output of Step 9 with the second random 

xor pseudo-key 1x8 vector. 

Step 13: Split the output 1x8 row vector from Step 12 into a 

lower half 1x4 row vector and an upper half 1x4 row vector. 

Step 14: Multiply each 1x4 row vector independently by 

the respective third and fourth random invertible 4x4 matrices 

respectively. 

These 4x4 matrices are neither involutory nor circulant. 

Step 15: Split the output of each 1x4 row vector from Step 

14 into a lower half 1x2 row vector and an upper half 1x2 row 

vector. 

There will be four total 1x2 row vectors from Step 15, two 

each for each of the two 1x4 row vectors from Step 14. 

Step 16: XOR each output of Step 15 with random xor 

pseudo-key 1x2 vectors respectively. 

1) with the j
th

 power each of one of the 4 random 1x2 

pseudo-key xor row vectors respectively. 

2) XOR pairs  mod
j

ij ijx v p 
 

 for i = 4, 7 in Figure 2. 

Step 17: Similar to Step 5, Multiply the row vector output 

of Step 16 with four new random invertible 2x2 matrices. 

Matrices rotate once clockwise with each block j: 

1) Matrices rotate on a schedule with respect to the as-

signed matrix number following Steps 5.c) and 5.d): 

When the block number j is congruent to the assigned ma-

trix number i modulo 8, rotate clockwise one-quarter each of 

the matrix values of matrix i. 

2) Both the length of the plaintext and the state s with re-

spect to the j
th

 block will allow tracking necessary for 

decryption where the block j=0 is the initial state of the 

matrices with respect to the original orientation of their 

matrix values. 

Step 18: XOR each output of Step 17 with 4 new random 

xor pseudo-key 1x2 vectors respectively. 

XOR pairs  mod
j

ij ijx v p 
 

 for i = 8, 11 in Figure 2. 

 
Figure 3. A Typical German Enigma Encoder with respect to Step 5. 

Used with permission from copyright owner Enigma Museum: 

http://EnigmaMuseum.com©. 
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Step 19: The four resulting 1x2 row vectors from Step 18 

constitute the ciphertext in four subblocks. 

Step 20: Final step, concatenate the four 1x2 row vectors 

from Step 19 into a single 1x8 row vector 0 1 6 7j j j jy y y y 
   

representing the j
th

 block of plaintext 0 1 6 7j j j jx x x x 
  . 

 
Figure 4. Signal Flow of a German Enigma Encoder with respect to Step 5. Used with permission from copyright owner Louise Dade©. 

2.3. State Tracking of 2x2 Rotor Matrices 

It is necessary to keep track of the state S of each 2x2 rotor 

matrix in order to determine how to orient the rotor matrices 

for decryption. We will use the following convention as an 

initial rotor matrix position with respect to the normal fixed 

matrix element subscript positions of a matrix element ija for 

i,j = 1 to 2: 11 12

21 22

x x

x x

 
 
 

. Let the matrix value a in the 2x2 

rotor matrices be rotated as clockwise one-quarter turn in Step 

5 with respect to Figure 2 as further explained below. For ease 

of visualization, the matrix values are noted in alphabetical 

order. The convention will be to rotate the values of the 2x2 

matrices for each block j 

a b d a c d b c

d c c b b a a d

       
         

       
. The initial value 

positions will be the assignment 

11 12 21 22, , ,a x b x c x d x    . The state can now be 

stated as in Table 2 with respect to the plaintext length, as-

signed matrix number i, and the j
th

 block. For example, with a 

plaintext character length of 8, and the 0
th

 block, the matrix 

values are in the initial state. Matrix values will rotate 

clockwise one-quarter turn such that the matrix values will 

now be 12 22 21 11, , ,a x b x c x d x    as 
d a

c b

 
 
 

. 

Rotate clockwise one-quarter turn the matrix 2i jM  ( 2i jM : 

i
th

 2x2 Matrix, j
th

 block) when mod8j i . Initialize 

020

b c

a d
M

 
  

 
 prior to passing the first block j = 0 

through the encryption process. Once the plaintext character 

length is known, which also means the ciphertext character 

length is known, the number of 8-character blocks j is known. 

By the rotation scheme above, it is deterministic to configure 

each of the eight 2x2 matrices in the correct orientation for 

decryption. Hence, the block number corresponds to which 

2x2 matrices have rotated and taking the block number mod 8 

indicates how many times the particular 2x2 matrix has ro-

tated, which indicates which state the particular 2x2 matrix is 

in according to Table 2. The integer portion of 
8

j
represents 

the number of times all matrices have rotated. When the block 
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number j is a multiple of 8, all of the 2x2 matrices are in State 

0. State configuration for 2x2 rotor Matrix 2i jM  is 

mod8j i . 

Table 2. State of 2x2 Rotor Matrices. 

State 0 State 1 State 2 State 3 

a b

d c

 
 
 

 
d a

c b

 
 
 

 
c d

b a

 
 
 

 
b c

a d

 
 
 

 

State configurations for each 2x2 rotor Matrix 2i jM for

mod8j i  

2.4. Decryption of First Variation 

Decryption is possible with an additional preliminary Step 

0, not shown on Figure 2. This preliminary step is accom-

plished by taking the ciphertext character count i, determining 

the number of blocks j, and setting the state of each 2x2 matrix 

according to the state rotation schedule in Table 2. 

Due to the ability to unwind the ciphertext because all ma-

trices and all XOR operations are invertible. The state of each 

2x2 matrix can be determined by the ciphertext length by 

section. 2.3 above. 

Attention must be made to the state of the 2x2 matrices 

because these 2x2 matrix values will now rotate counter-

clockwise for decryption, for each block j of characters ac-

cording to the rotation scheme of rotating the i
th

 2x2 matrix for 

each block j when mod8j i . The ciphertext length, len, is 

known which also determines the padding number. From that, 

the number of k is known, thus, the state of each 2x2 matrix, 

that is the number of times each matrix has been rotated 

one-quarter turn clockwise, can be determined. For each block 

j of ciphertext characters, each 2x2 matrix will be set to the 

appropriate state with respect to matrix-value positions and 

reverse the rotation direction to counterclockwise for each 

block j. 

Once the states of all of the 2x2 matrices are set, decryption 

proceeds from the bottom up in Figure 2 ensuring to use the 

inverse of each matrix. 

2.5. Remarks on First Variation 

It is well known that using multiple key matrices of the 

same order does not necessarily improve security using the 

Hill Cipher. Therefore, the following points are made. First, in 

this first variation example, three matrices of different di-

mensions, orders 2, 4, and 8, are used for encryption. Second, 

XOR is repeatedly used as an affine operation, which can 

increase security if appropriately used. Third, although im-

practical on some level, the values of all 8 matrices of order 2 

are rotated in different ways somewhat similar to the rotor 

wheels in a typical German Enigma Encoder. Fourth, this first 

variation increases confusion [21], possibly mitigating some 

of the Hill Cipher vulnerabilities of various attacks [17]. 

Further remarks will be stated below in the implications sec-

tion 4. 

3. Second Variation 

First, the key space requirements are presented in Table 3. 

Second, the scheme of the first variation represented in Figure 5. 

Finally, a stepwise procedure of the algorithm is presented cor-

responding to the number steps along the left side of Figure 5. 

3.1. Key Space of Second Variation 

Table 3 represents the number of pseudo-key XOR row 

vectors and key matrices for the second variation. As in the 

first variation, the pseudo-key XOR row vectors serve as 

encryption functions operating on the initial plaintext char-

acter blocks and operating on the outputs of each stage prior to 

input to the next stage of the algorithm. The danger of un-

wisely choosing these pseudo-key XOR row vectors will be 

stated in the section 4.2. 

Table 3. Key Space Requirements for Second Variation. 

Object Dimension 
Number Re-

quired 

Pseudo-Key XOR Row Vector 1x4 12 

Pseudo-Key XOR Row Vector 1x8 2 

Pseudo-Key XOR Row Vector 1x16 3 

Key Matrix 4x4 8 

Key Matrix 8x8 4 

Key Matrix 8x8 1 

* Number Required for 4-8-16 Dimension Hill Variation. 

3.2. Encryption Scheme of Second Variation 

Again, reference to the left-hand numbers in Figure 5 will 

be made throughout the explanation of the second variation 

below. Again, we make a minor abuse of notation regarding 

the forward slashed down arrow  symbol. Normally the 

down-arrow represents an input and the number of bits (to the 

right of the forward slash /). And again, traditionally the Hill 

Cipher literature nearly always represents alphabet characters 

as both input and output, rather than a number of bits. Fol-

lowing this tradition, and in slight abuse of the bit-use in 

conventional encryption-decryption diagrams, the number 
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represented in Figure 5 in the upper right of the forward slash 

/ will represent the number of alphabet characters that will 

input in the direction of the down-arrows rather than the 

number of bits. 

 
Figure 5. Scheme of Second Variation. 

Step 1: 1x16 block of 16 plaintext characters entered as a 

row vector 0 1 2 14 15j j j j jx x x x x 
  for character ijx where i is 

the character number and j is the block number. 

The reference value j follows each block through the algo-

rithm also serves as an exponent modulo prime p for the 

pseudo-key xor row vectors. All vector characters are sub-

scripted 0 through 15. 

Step 2: XOR the first 1x16 pseudo-key row vector block of 

characters raised to the j
th

 power of first random 1x16 row 

vector designated in the vector subscript. That is, 

0 1 2 14 15j j j j jx x x x x    XOR 0 1 2 14 15

j

j j j j jv v v v v    modulo p, 

where 0 1 2 14 15

j

j j j j jv v v v v    is interpreted as modj
ijv p 

 
 

for i = 0 to 15. 

1) The pseudo-key xor row vectors are subscripted as fol-

lows: 

a. assigned vector number to keep track of each vector. 

b. the block number j. 

c. the dimension of the xor pseudo-key row vector as 

appropriate (either 4, 8, or 16). 

2) Raising each pseudo-key xor vector to the j
th

 power po-

tentially aids in confusion [21]. 

3) Pseudo-key xor vectors may enhance the ciphertext 

character distribution up to probability when the 

plaintext character distribution is considered. 

4) Raising each pseudo-key xor vector the j
th 

power (mod-

ulo prime p) allows each pseudo-key xor vector to 

change vector values (up to modulo prime p before re-

peating the original values) and adds variability into 

each pseudo-key xor vector. 

Step 3: Break the output of step 2 into 4 pairs of 1x4 row 

vectors denoted as x-bar,  1 2 3i i i ix x x x   , in Figure 5 to xor in 

step 4. 

Step 4: XOR individually each of the first four 1x4 output 

vectors  1 2 3i i i ix x x x   in the above step with the j
th

 power 

each of one of the 4 random 1x4 pseudo-key xor row vectors 

respectively. 

1) XOR pairs  modj
ij ijx v p 

 
 for i = 0, 3 in Figure 5 

remembering these computations are preformed modulo 

p for prime p. 

2) Comment in Step 2 a) and b) apply here regarding sub-

scripts and cryptography confusion [21] (when properly 

constructed). 

Step 5: Multiply each of the output vector pairs from Step 4 

above with one of 4 random invertible 4x4 matrices respec-

tively. 

1) All matrices are invertible but neither involutory 

(self-invertible) nor circulant. Checking that the matri-

ces follow all of the conditions in a) is a relatively simple 

process by testing whether an invertible matrix 
1 1( )A A orA A I   where I is the identity matrix, and 

by inspection that the matrix is not circulant. 
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2) Matrices are subscripted as follows- 

a. Assigned matrix number. 

b. The block number j. 

c. The dimension of the matrix appropriate to the input 

vector. 

Step 6: Combine the four output 1x4 vectors of the step 

above into two input 1x8 vectors, 70 1 6ˆ ˆ ˆ ˆx x x x 
   and 

8 9 14 15ˆ ˆ ˆ ˆx x x x 
  . 

Step 7: XOR each 1x8 vector respectively with a 1x8 

pseudo-key vector. 

 modj
ij ijx v p 

 
 for i = 0, 1 in Figure 5 ensuring all 

computations are completed modulo p for prime p. 

Step 8: Multiply the output vector from Step 7 with one of 2 

random invertible 8x8 matrices respectively. 

Comments from Step 5 apply with appropriate change of 

dimension. 

Step 9: Combine the output of the product of each 1x8 

vector and 8x8 matrices into a single 1x16 vector. 

Step 10: XOR the output of Step 9 with the second random 

xor pseudo-key 1x16 vector. 

This is essentially a repeat of Step 2 with appropriate vec-

tors. 

Step 11: Multiply the output of Step 10 with an 16x16 in-

vertible matrix. 

This invertible 16x16 matrix is neither involutory nor cir-

culant. 

Step 12: XOR the output of Step 9 with the second random 

xor pseudo-key 1x16 vector. 

Step 13: Split the output 1x16 row vector from Step 12 into 

a lower half 1x8 row vector and an upper half 1x8 row vector. 

Step 14: Multiply each 1x8 row vector independently by the 

respective third and fourth (numbered as matrix 2 and matrix 

3) random invertible 8x8 matrices respectively. 

These 8x8 matrices are neither involutory nor circulant. 

Step 15: Split the output of each 1x8 row vector from Step 

14 into a lower half 1x4 row vector and an upper half 1x4 row 

vector. 

There will be four total 1x4 row vectors from Step 15, two 

each for each of the two 1x8 row vectors from Step 14. 

Step 16: XOR each output of Step 15 with random xor 

pseudo-key 1x4 vectors respectively with the j
th

 power each of 

one of the 4 random 1x4 pseudo-key xor row vectors respec-

tively. 

XOR pairs  modj
ij ijx v p 

 
 for i = 4, 7 in Figure 5. 

Step 17: Similar to Step 5, Multiply the row vector output 

of Step 16 with four new random invertible 4x4 matrices. 

Step 18: XOR each output of Step 17 with 4 new random 

xor pseudo-key 1x4 vectors respectively. 

XOR pairs  modj
ij ijx v p 

  
 for i = 8, 11 in Figure 5. 

Step 19: The four resulting 1x4 row vectors from Step 18 

constitute the ciphertext in four subblocks. 

Step 20: Final step, concatenate the four 1x4 row vectors 

from Step 19 into a single 1x16 row vector 

0 1 14 15j j j jy y y y 
 

representing the j
th

 block of plaintext 

0 1 14 15j j j jx x x x 
  . 

3.3. Decryption of Second Variation 

Decryption of the second variation (Figure 5) follows sim-

ilarly to decryption of the first variation with the exception of 

the lack of rotor matrices in the second variation and no need 

of state tracking. All key matrices and the xor-operation are 

invertible. The ciphertext can be immediately operated on in a 

bottom-up fashion in Figure 5. 

3.4. Remarks on Second Variation 

This second variation used key matrices of orders 4, 8, and 

16 that increase the confusion [21] between the plaintext and 

the encryption keys. Remarks in section 2.5 apply other than 

comments on matrix-value rotation of the 2x2 matrices. Ad-

ditionally, this second variation fills a gap in the literature in 

which matrices, no matter how many are used in the encryp-

tion process, all use a matrix of order n. This second variation 

is also susceptible to known attacks [17], although these 

various attacks may take longer to decrypt due to the orders of 

the key matrices and xor-functions used. 

4. Implications 

4.1. Character Set Implications 

The character map of character-number assignments plays 

a significant role in the Hill Cipher that has not been ad-

dressed in the literature. Both the size of the matrix and the 

size of the character set used play a significant role with re-

spect to the total keyspace of invertible matrices. 

Although not all permutation of matrix values lead to an 

invertible matrix, the number of permutations does give an 

upper bound to the possible number of invertible matrices. 

The left column in Table 4 represents the number of charac-

ters in the language of the plaintext character set. The center 

column of Table 4 represents the order of the matrix, nxn. The 

right column indicates the number of permutations the 

plaintext characters can be in. The number of characters in the 

set (the modulus) influences boundaries of the correspond-

ence between character-numerical value assignments. Again, 

not all possible permutations yield an invertible matrix, rather 

the number of possible permutations in an upper bound on the 

total number of invertible matrices. 
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Table 4. Modulus and Order of the Matrices. 

Modulus nxn Matrix 

Number of Possible Permutations 

in Matrix slots 

11 1

1

n

m mn

a a

a a

 
 
 
 
 

 

26 2x2 Matrix 264=456,976 

29 2x2 Matrix 294=707,281 

191 2x2 Matrix 1914=1,330,863,361 

191 4x4 Matrix 1916>3.137E36 

191 8x8 Matrix 19164>9.685E145 

191 16x16 Matrix 191256>8.801E583 

The formula for determining the total number of invertible 

nxn matrices (including involutory matrices and circulant 

matrices) is well known [22, 23]. Table 5 represents 

 2, pGL : the General Linear Group of invertible 2x2 ma-

trices over the integers modulo prime p [23] as an example 

illustrating for a constant order 2 matrix, the number of in-

vertible matrices increases as the character set increases. 

Understanding that small-order matrices (2, 3, sometimes 4) 

are typically given in the literature when examples are ex-

plained and calculated, and typically for academic journals 

requiring the English Language, 26 is nearly always chosen as 

the modulus (26 characters in the English alphabet). Using 

ASCII ISO 8851-1 characters excluding unprintable control 

characters as the domain, the encryption character set is in-

creased to 191 characters and creates a mapping that to the 

codomain which (ASCII ISO 8851-1). A function  ije x can 

be created which avoids the control characters with 

 
 

 

1

2

ij

ij

ij

e x
e x

e x




 


. Even though a message may only be de-

fined to say the English alphabet, ISO 8851-1 allows greater 

semantic clarity and disambiguation. 

Table 5. Invertible 2x2 Matrices over various Moduli. 

Modulo p    
2 1

2

0

2,
i

p

i

GL p p





   

26 157,248 

29 682,080 

191 1,323,859,200 

As the modulus increases, the number of invertible matri-

ces with constant order increases 

Tables 4 and 5 highlight the greater the number of elements 

in a character set, the greater the number of possible and 

actual invertible matrices, hence the greater the confusion [21] 

between the key matrices and the ciphertext. 

4.2. XOR Pseudo-Key Vector Implications 

Both of the multidimensional Hill Cipher variations pre-

sented above made use of xor functions between a random 

vector (raised to the j
th

 power) and components of the 

plaintext and output of key matrices. This either can increase 

or decrease diffusion [21]. That is, the intermediate text and 

ciphertext may either be closer to or further from a uniform 

distribution. Analysis of these types of vectors used in 

xor-functions will not be given here, it is worth careful con-

sideration if the use of such xor-function vectors are used. 

5. Conclusion and Recommendations 

This paper described two multidimensional affine varia-

tions of the Hill Cipher as well as implications between the 

encryption character set and pseudo-key xor-function vectors. 

The novelties of the two variations were that each used several 

orders of key matrices (either orders 2, 4, and 8 or orders 4, 8, 

and 16) with the first variation rotating matrix values of each 

2x2 matrix depending on the block j. These two variations 

using multidimensional affine encryption schemes have not 

previously been reported in the literature. 

Recommendations for further study include: an analysis of 

each of the schemes using specific well-chosen pseudo-key 

xor-vectors, key matrices, and a significant length plaintext, 

the consequences of poorly chosen xor-functions, the deter-

mination of a rotation schedule that admits invertible matrices 

of orders greater than 2, and the use of genetic programming 

to determine variations of the numbers and orders of inverti-

ble key matrices and pseudo-key xor-vectors that meet spe-

cific encryption analytics that incorporate key matrix genera-

tion ideas from previous work [10-13]. Genetic algorithms 

have been used in the past [12], but the genetic programming 

approach would a significant advancement in key space of the 

Hill Cipher. 

Abbreviations 

injM  j
th

 Block of the i
th

 Matrix of order n 

j

ijV  j
th

 Block of the i
th

 Character Raised to the j
th 

Power 

XOR Exclusive-or Function 

 pGL 2,Z  General Linear Group of degree 2 (2x2) 

Invertible Matrices Over the Integers, of 

Prime p. 
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The supplementary material can be accessed at  

https://doi.org/10.11648/ j.mcs.20240903.11 
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