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Abstract 

The representation of integers by prime factorization, proved by Euclid in the Fundamental Theorem of Arithmetic −also 

referred to as the Prime Factorization Theorem− although universal in scope, does not provide insight into the algebraic 

structure of primes themselves. No such insight is gained by summative prime factorization either, where a number can be 

represented as a sum of up to three primes, assuming Goldbach’s conjecture is true. In this paper, a third type of 

factorization is introduced, called hybrid prime factorization, defined as the representation of a number as sum −or 

difference− of two products of primes with no common factors between them. By using hybrid factorization, primes are 

expressed as algebraic functions of other primes, and primality is established by a single algebraic condition. Following a 

hybrid factorization approach, sufficient conditions for the existence of Goldbach pairs are derived, and their values are 

algebraically evaluated, based on the symmetry exhibited by Goldbach primes around their midpoint. Hybrid prime 

factorization is an effective way to represent, predict, compute, and analyze primes, expressed as algebraic functions. It is 

shown that the sequence of primes can be generated through an algebraic process with evolutionary properties. Since prime 

numbers do not follow any predetermined pattern, proving that they can be represented, computed and analyzed 

algebraically has important practical and theoretical ramifications. 
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1. Introduction 

Prime numbers have been a subject of research for 

centuries. Mathematicians and scientists from various 

fields continue to study the numerical, algebraic, geometric, 

distributional, asymptotic, and other properties of primes. 

Since the time of Euclid, as the Fundamental Theorem of 

Arithmetic suggests, primes are linked to some of the most 

profound, and thus consequential, truths in mathematics 

and science. 

Primes are used to model and better understand several 

phenomena in nature, such as the lifecycle of the American 

cicada [1]. Scientists have uncovered a “hyperuniformity” in 

the distribution of primes, akin to that observed in crystals [2]. 

The seemingly “random” properties of primes have been used 

to model the Brownian motion observed in fluid particles [3]. 

The distribution of primes, and the associated zeroes of the 

Riemann zeta function, have been linked to the correlation 

function of random Hermitian matrices [4-6], quantum 

computing [7], entanglement [8], elementary particle decay 

[9], and quantum field theory [10]. 

Since primes can optimally represent any measured quan-

tity to an arbitrary degree of accuracy, a deeper understanding 

of their mathematical structure, properties and distribution 
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enables a more profound understanding of the universe. 

The set, P, of primes is a relatively sparse subset of the set, 

ℤ, of integers. It has the smallest cardinality and member 

values capable of optimally encoding all integers through 

product or sum operations. Moreover, since multiplicative 

prime factorization represents a number as a product of its 

(prime) factors, it corresponds to the unique solution of a 

linear integer optimization problem (ILP), where the factor 

sum is minimized [11]. 

Representing a number as a sum of the least number of 

primes, i.e. through summative factorization, is possible if 

Goldbach’s conjecture (GC), which states that “every even 

number > 2 can be expressed as the sum of two primes”, is 

true. A consequence of GC is that any number can be written 

as a sum of up to three primes. Although GC has been com-

putationally verified for extremely large numbers, it has not 

been proved. This may explain the fact that summative fac-

torization has not been studied as extensively as its multipli-

cative counterpart [12-17]. 

In this paper, a hybrid form of factorization is introduced, 

called hybrid prime factorization (HPF), which represents a 

number as a sum (or difference) of two products with mutu-

ally exclusive prime factors. 

In the following section, it is shown that hybrid prime 

factorization can be used to represent primes algebraically, by 

direct computation or optimization, and test for primality 

without the need for conventional, computationally cumber-

some primality tests such as sieves or other primality testing 

algorithms [18]. 

In Section 3, the properties of hybrid prime factorization 

are applied to Goldbach pairs. Sufficient conditions are de-

rived for their existence and their values are computed di-

rectly by evaluating a simple algebraic formula. 

2. HPF Representation of Numbers 

A number can be either represented multiplicatively as a 

product of primes, called prime factors, or summatively, as 

sum of the least number of primes, up to three, if Goldbach’s 

conjecture is true. 

While these two factorizations have different properties, 

each enables an optimal encoding –i.e. an optimized mathe-

matical representation− of a number [11]. 

HPF, defined and discussed below, combines the algebraic 

structure of those two factorizations. 

2.1. Definition of Hybrid Prime Factorization 

(HPF) 

Hybrid prime factorization is based on a sum of two 

products of primes, with no common factors between them. In 

contrast to the factorizations previously discussed, repre-

senting primes by HPF reveals unique properties about their 

mathematical structure and distribution, i.e. how primes can 

be generated and analyzed algebraically. 

Consider the first n primes, p1, p2, …, pn, in ascending order, 

where n ≥ 2. HPF is given by an algebraic expression of the form. 

HPF = p1
a1 ∙ p2

a2 ∙ … ∙  pn
an ± p1

b1 ∙ p2
b2 ∙ … ∙  pn

bn     (1) 

where the integer exponents ai, bi satisfy the following con-

ditions: 

ai, bi  ≥ 0                   (2) 

ai  ∙ bi = 0                  (3) 

ai + bi ≥ 1                  (4) 

∑ ai
n
i=1 ≥ 1                  (5) 

∑ bi
n
i=1 ≥ 1                  (6) 

HPF > 1                   (7) 

for i = 1, 2, …, n. 

From (1)-(7), an HPF corresponds to a sum (or difference) 

of two primes, or products of primes, partitioned in a way that 

they share no common factor, while no prime is excluded 

from the HPF. The HPF given by (1) is called an HPF of 

dimensionality n. 

The following example illustrates the HPF concept. 

Example 1. Consider the first 3 primes {2, 3, 5}. The fol-

lowing expressions satisfy the HPF conditions (2)-(7): 

22 ∙ 31 ∙ 50 ± 20 ∙ 30 ∙ 51 

23 ∙ 30 ∙ 51 ± 20 ∙ 33 ∙ 50 

23 ∙ 32 ∙ 50 ± 20 ∙ 30 ∙ 51 

210 ∙ 30 ∙ 51 ± 20 ∙ 34 ∙ 50. 

The expressions below violate at least one of (2)-(7) and, 

therefore, are not considered HPF expressions: 

21 ∙ 31 ∙ 51 ± 20 ∙ 30 ∙ 50 

23 ∙ 30 ∙ 51 ± 21 ∙ 33 ∙ 50 

21 ∙ 30 ∙ 51 ± 20 ∙ 33 ∙ 50.  

If conditions (3)-(7) are relaxed, algebraic expressions of 

the form given by (1), subject to (2), can be shown to repre-

sent any number N. For example, if pn ≤ N < pn+1, it fol-

lows that the quantities N − 1 and N − pi , for any i ≤ n, are 

always represented by a factorization of p1, p2, …, pn. Such 

representations however, though universal in scope, are 

mathematically trivial, and do not help us gain any insight into 

the structural properties of primes. By contrast, as shown in 
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the next section, the structural interdependence of primes can 

be algebraically established through HPF functions. 

Euclid, in his seminal mathematical work, Elements [19], 

constructed the “HPF-like” number 

1 + p1 ∙ p2 ∙ p3 ∙ … ∙ pn             (8) 

to prove the infinitude of primes, i.e. to establish that a prime 

larger than pn exists, no matter how large n is. Expression (8) 

can be generated from (1), by setting ai = 0 and bi = 1 for i = 

1, …, n. As this violates condition (5), the expression given by 

(8) is not considered an HPF. 

A special-case HPF, given by p2·p3·…·pn − 2
m
, was intro-

duced in ([11] p. 6) to represent primes, or composites having 

all prime factors greater than pn. It can be generated from (1) 

by setting a1 = 0, ai = 1, b1 = m, bj = 0 for i, j = 2, …, n, with m 

such that the resulting HPF is non-negative and minimum. 

2.2. Fundamental HPF Properties 

Proposition 1. Any HPF given by (1), subject to (2)-(7), 

represents either a prime larger than pn, or a composite with 

no prime factor less than or equal to pn. 

Proof. If an HPF equals one of p1, p2, …, pn, or some 

product of p1, p2, …, pn, then it shares at least one prime factor 

with one of its two product terms, implying that the other 

product term also includes this prime factor, something that is 

impossible, since the prime factors between the two products 

are, by definition, mutually exclusive. It therefore follows that 

the HPF either equals a prime larger than pn, or a composite 

number having no prime factor less than or equal to pn.  

Example 2. Examine each HPF sum of Example 1, to dis-

cern if it represents a prime or a composite number: 

22 ∙ 31 ∙ 50 + 20 ∙ 30 ∙ 51 = 12 + 5 = 17 (prime > 5) 

23 ∙ 30 ∙ 51 + 20 ∙ 33 ∙ 50 = 40 + 27 = 67 (prime > 5) 

23 ∙ 32 ∙ 50 ± 20 ∙ 30 ∙ 51 = 72 + 5 = 77 = 7 ∙ 11 (compo-

site, all prime factors > 5) 

210 ∙ 30 ∙ 51 + 20 ∙ 34 ∙ 50 = 5120 + 81 = 5201 = 7 ∙ 743 

(composite, all prime factors > 5).  

The characteristic HPF property to represent a prime 

greater than pn, or products of primes greater than pn, implies 

that if it takes a value of less than pn+1
2 , then it must represent 

a prime larger than pn. This is proved in the proposition below. 

Proposition 2. If an HPF, given by (1)-(7), satisfies 

HPF < pn+1
2                (9) 

then it represents a prime larger than pn. 

Proof. From Proposition 1, an HPF represents either a 

prime larger than pn, or a composite with prime factors larger 

than pn. Since the smallest possible such composite is pn+1
2 , 

it follows that if HPF < pn+1
2 , then the value of the HPF must 

equal some prime in the open interval (pn, pn+1
2 ).  

Proposition 2 implies that any number represented by an 

HPF, satisfying (1)-(7) and (9), is a priori prime, i.e. is prime 

regardless of its numerical value. In certain cases, as shown in 

the following sections, it can be proved that (9) holds without 

having computed the numerical value of the HPF. To see this, 

consider the HPF expression given by 2·5±3. Regardless of its 

computed value, this algebraic expression represents two 

primes, since HPF∈ [1, 49]. There is no need to compute 

2·5±3, in order to prove that it cannot exceed 7
2
. For example, 

condition (7) requires that 1±3 < 2·5, and since ±3 < 2·5 it 

follows that HPF < 20 and thus HPF < 49. This is also true for 

a parametric family of HPF’s with dimensionality 3, e.g. 

2
2
·5±3, 2

3
·5±3, 5

2
±2·3, 5

2
±2

2
·3 etc. In each case, the structure 

of the algebraic HPF functions suffices to establish the 

primeness of its values. 

Proposition 2 offers an answer to one of the “open ques-

tions” posed by G. H. Hardy ([14] p. 7), since primes in 

(pn, pn+1
2 )  can be represented as algebraic functions of 

primes in [2, pn ]. From Bertrand’s postulate ([14] p. 455), it 

follows that there is always at least one prime in [pn+2, pn+1
2 ), 

since 2 ∙ pn < pn+1
2  for n ≥ 1. 

Example 3. Given the HPF 

23 ∙ 30 ∙ 51 − 20 ∙ 33 ∙ 50 = 40 − 27 = 13 

and since 13 < 72  =  49, by Proposition 2, the HPF repre-

sents a prime in the interval (5, 49). 

The certainty that the computed value of the above HPF is 

prime has two salient characteristics: 

1) Structural: the value is represented by an algebraic ex-

pression in the form of (1), and 

2) A priori: the value’s primeness can be established 

without the need to compute it first.  

Proposition 2 provides a sufficient condition for primeness. 

If the HPF value is larger than or equal to pn+1
2 , the HPF may 

or may not represent a prime. To see this, consider the two 

HPF expressions: 

23 ∙ 30 ∙ 51 + 20 ∙ 33 ∙ 50 = 67 > 49 

23 ∙ 32 ∙ 50 + 20 ∙ 30 ∙ 51 = 77 > 49 

where 67 is prime and 77 is composite with no prime factor 

less than 5; in both cases, the primality sufficiency condition 

(9) is not satisfied. 

The implication of Proposition 2 is twofold: 

1) candidate primes can be generated algebraically by the 

HPF expression given by (1), and 

2) testing if either value of the HPF is prime can be done 

by evaluating (9) directly, without the need to apply a 

conventional primality test. 

The HPF representation of a prime may also be modeled as 

a nonlinear integer optimization (NLP) problem, proved in the 

http://www.sciencepg.com/journal/mcs


Mathematics and Computer Science http://www.sciencepg.com/journal/mcs 

 

15 

next proposition. 

Proposition 3. Consider the nonlinear integer optimization 

problem 

minai,bi
,HPF-                 (10) 

where the objective function HPF is given by (1), subject to 

the constraints (2)-(6) and 

1 < HPF < pn+1
2 .            (11) 

The solution to the above NLP (nonlinear minimization 

problem) is a prime in (pn, pn+1
2 ). 

Proof. Any solution to (10), subject to (2)-(6) and (11), also 

satisfies Proposition 2. Therefore, the resulting HPF repre-

sents a prime in the interval (pn, pn+1
2 ).  

If pn+1 is not known, the right-hand side of (9) or (11) may 

be replaced by a tighter upper bound given by (pn + 2)2 , 

since (pn + 2)2 ≤ pn+1
2 . 

The value of the obtained minimum solution, given by (10), 

depends on n. Table 13 of the Appendix shows how this 

minimum varies for n = 2,…, 10. 

It is helpful to note that Propositions 2 and 3 do not imply 

that one or more solutions to (1)-(6) and (11) always exist, or 

that HPF expressions represent all primes in [pn+2, pn+1
2 ). 

These statements are revisited in Section 2.4. 

An HPF can be used to represent and algebraically compute 

sequences of primes, by increasing the value of n. In the next 

example, an HPF based on the first 2 primes is used to alge-

braically generate and numerically compute the next 7 primes. 

Example 4. For n = 2, the HPF, given by (1), takes the form 

HPF = 2a1 ∙ 3a2 ± 2b1 ∙ 3b2 .           (12) 

A sample of computed HPF values, up to the primality 

sufficiency condition’s upper bound p3
2 =  25, given by (9), 

are tabulated below: 

Table 1. Sum HPF for n = 2. 

a1 a2 b1 b2 𝟐𝒂𝟏 ∙ 𝟑𝒂𝟐 + 𝟐𝒃𝟏 ∙ 𝟑𝒃𝟐  

1 0 0 1 5 

2 0 0 1 7 

3 0 0 1 11 

2 0 0 2 13 

3 0 0 2 17 

4 0 0 1 19 

 

Table 2. Difference HPF for n = 2. 

a1 a2 b1 b2 𝟐𝒂𝟏 ∙ 𝟑𝒂𝟐 − 𝟐𝒃𝟏 ∙ 𝟑𝒃𝟐  

3 0 0 1 5 

0 2 1 0 7 

0 3 4 0 11 

4 0 0 1 13 

0 4 6 0 17 

0 3 3 0 19 

5 0 0 2 23 

0 3 2 0 23 

As shown in Table 2, using the HPF approach described in 

this section, all primes between 5 and 25 can be algebraically 

represented by (12), as functions of the first 2 primes. This is 

notable for the following reasons: 

(1) all primes in [5, 25] are parametric expressions of a 

single HPF function, given by (12); 

(2) all of the HPF values obtained are a priori known to be 

prime, because they satisfy a single algebraic condition, 

i.e. HPF < 25; 

(3) The sequence of primes p3, p4,…, p9, can be generated 

parametrically through (12), i.e. an algebraic function 

of the first two primes, p1 and p2.  

Since all HPF values such that HPF < pn+1
2  are prime, the 

HPF approach described in this section, is a useful tool for 

representing, analyzing, predicting and computing primes. 

2.3. Prime Gaps in HPF Expressions 

If there are gaps in the sequence of primes used to construct 

an HPF, Propositions 2 and 3 may be applied iteratively. If the 

HPF evaluates to a composite number with some (or all) of its 

prime factors less than pn, such prime factor(s) correspond to 

the missing prime(s) in the sequence. Once these primes are 

included in an augmented version of the HPF the process can 

be repeated, until there are no gaps in the HPF prime sequence 

and the HPF represents either a prime larger than pn or a 

composite with prime factors larger than pn. 

Even in the case of prime gaps, the “iterative augmentation” 

of the HPF described here, is more efficient in searching for a 

larger prime than testing by conventional primality tests. 

Once there are no prime gaps, computing a larger prime is 

straightforward, i.e. done in one step, if (2)-(6) and (11) are 

satisfied. 

In Section 3.1, this methodology is used to determine suf-

ficient conditions for the existence of Goldbach pairs, and to 

compute their values. 
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2.4. Generalizations and Open Questions 

Let L(n) be the set of all HPF values that satisfy (1)-(6) and 

(11), for n ≥ 2. It follows that every member of the solution 

space L(n) is a prime in [pn+2, pn+1
2 ). Hence, the following 

questions are of particular interest: 

1) does L(n) contain at least one prime in [pn+2, pn+1
2 ) for 

every n? 

2) does the union of solution spaces, L(n), for 2 ≤ n ≤ N, 

contain all primes in [5, pN+1
2 )? 

Based on these two questions and the results presented so 

far, two conjectures are proposed for future research: 

Weak HPF Conjecture: For any n ≥ 2, there always exists at 

least one HPF solution to (2)-(6) and (11) that represents a 

prime in [pn+2, pn+1
2 ). 

Strong HPF Conjecture: For any N ≥ 2, the set L̂(N) de-

fined by 

L̂(N) = *2, 3+ ⋃ L(n)N
n=2            (13) 

where L(n), n ≤ N, is the solution space of (1)-(6) and (11), 

includes every prime in ,2, pN+1
2 ). 

In the Appendix, solutions to (1)-(6) and (11) are computed, 

for n = 2, 3,…, 10. Current research is focused on a better 

understanding of the evolution and characteristics of solution 

spaces L(n), more specifically regarding: (1) the minimum 

value of n for which a prime can be represented by an HPF; (2) 

conditions under which a prime is represented by multiple 

HPF expressions, with similar or different dimensionalities. 

3. Modeling Goldbach Pairs by Using 

Hybrid Prime Factorization 

Goldbach’s conjecture (GC) states that “every even num-

ber >2 can be expressed as the sum of two primes”. Such 

primes are called “Goldbach primes” or a “Goldbach pair”. 

The HPF properties discussed in Section 2 can be used to 

represent potential Goldbach pairs and subsequently test if 

they are prime by deriving sufficient conditions for their ex-

istence. 

3.1. HPF Modeling of Goldbach Pairs 

Let s > 2 be an even number. All Goldbach primes that add 

up to s are, by definition, equidistant from the midpoint s/2. 

Consequently, if the value of the first product term in the HPF, 

given by (1), is set to s/2, the second term can be structured so 

that the HPF satisfies (2)-(6) and (11). When the two HPF 

expressions are added, the second product terms cancel each 

other and s is expressed as a sum of two primes, with each 

HPF corresponding to a Goldbach prime. 

This approach is explained in the following example: 

Example 5. Let s = 20; the HPF given by (1) with n = 3, is 

HPF =  2a1 ∙ 3a2 ∙ 5a3 ± 2b1 ∙ 3b2 ∙ 5b3 .       (14) 

From Proposition 2, if HPF < p4
2 = 72 = 49 , the HPF, 

given by (14), represents a prime. Goldbach primes can al-

ways be expressed as a sum or a difference from the midpoint 

s/2. The first term of the HPF can be set to the prime factori-

zation value of s/2 = 10, and the second term to the distance, 

α = 3b2, from the midpoint s/2. Therefore, the HPF becomes 

HPF =  21 ∙ 51 ± 3b2 .              (15) 

Let HPF1 and HPF2 be given by 

HPF1 = 10 + 3b2  and HPF2 = 10 − 3b2 .      (16) 

From Proposition 2, if the exponent b2 in (16) is such that 

HPF1 < 49 and HPF2 < 49, then HPF1 and HPF2 are prime. 

Also, by adding the above HPF expressions, 

HPF1 + HPF2 = 10 + 3b2 + 10 − 3b2 =  20     (17) 

and thus, s is expressed as the sum of HPF1 and HPF2. For b2 = 

1, it follows that HPF1 = 13 < 49 and HPF2 = 7 < 49, therefore 

(13,7) is a Goldbach pair.  

Note: If the right term in (14) included the factor 7b3, this 

would result in a negative value for HPF2 =  21 ∙ 51 − 3b2 ∙

7b3 , since b2 ≥ 1 and b3 ≥ 1, in order to satisfy (4). 

So far, no prime gaps in the HPF have been considered; this, 

however, is not the case in general, as shown in the next ex-

ample. 

Example 6. Let s = 44, so that s/2 = 22 = 2·11, with Gold-

bach pairs 22 ± 9 and 22 ± 15, that is, (13, 31) and (7, 37) 

respectively. An HPF-like expression that can generate these 

Goldbach pairs is given by 

HPF =  21 ∙ 111 ± 3b2 ∙ 5b3 ∙ 7b4           (18) 

where b2 = 2, b3 = 0, b4 = 0 and b2 = 1, b3 = 1, b4 = 0 respec-

tively. Note that these two sets of parameters violate (4). 

For each set of the above exponents, it can be proved that 

HPF1 =  21 ∙ 111 − 3b2 ∙ 5b3 ∙ 7b4         (19) 

is prime, since it is less than the smallest possible composite 

with prime factors not in HPF1. More specifically, for b2 = 2, 

b3 = 0, b4 = 0, this composite is 5·5 = 25 and for b2 = 1, b3 = 1 

b4 = 0, it is 7·7 = 49. In both cases, although prime gaps exist, 

the applicable sufficiency inequalities are satisfied, i.e. 

HPF1 =  21 ∙ 111 − 32 =  13 <  25        (20) 

HPF1 =  21 ∙ 111 − 31 ∙ 51 =  7 <  49       (21) 

and, in both cases, HPF1 is prime. The first summation term 
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HPF2 =  21 ∙ 111 + 32 = 31 > 25        (22) 

HPF2 =  21 ∙ 111 + 31 ∙ 51 = 37 < 49      (23) 

violates the respective inequality condition, and so there is no 

guarantee that, by adding (20) and (22), a Goldbach pair is 

obtained. HPF2 satisfies the primality sufficiency condition 

(23), therefore 22 ± 15 is a Goldbach pair.  

As shown in the previous example, a more general result 

can be established if the “no prime gap” condition, given by 

(4), is relaxed, i.e. if both exponents αi, bi, in (1), are allowed 

to be zero, for some i. In this case, the primality sufficiency 

condition (11) should also be adjusted. This is proved in the 

next proposition. 

Proposition 4. Consider an even number s ≥ 6 and the HPF 

given by 

HPF = p1
a1 ∙ p2

a2 ∙ … ∙  pm
am ± p1

b1 ∙ p2
b2 ∙ … ∙  pm

bm    (24) 

for m ≥ 2, where p1, p2, …, pm are the first m primes in as-

cending order, with pm+1 ≥ s/2, subject to 

ai, bi  ≥ 0                     (25) 

ai  ∙ bi = 0                     (26) 

∑ ai
m
i=1 ≥ 1                     (27) 

∑ bi
m
i=1 ≥ 1                     (28) 

1 < HPF < pk
2                    (29) 

where pk, k ∈ [2, m] corresponds to the smallest prime that 

is not a factor of either product term in (24). Assuming that a 

solution to (24)-(29) always exists, there is an HPF such that 

its values correspond to a Goldbach pair. 

Proof. Let s ≥ 6 be an even number and q1, q2, …, qm be the 

primes in [2, s/2], listed in ascending order. Consider the HPF 

expression given by 

HPF = s/2 ± q1
b1 ∙ q2

b2 ∙ … ∙  qm
bm          (30) 

where the first term is equal to the prime factorization of s/2, 

that is, either equals one of the primes qi or a product of more 

than one qi, and the second term is equal to the product of 

some, or all, of the remaining primes that are not prime factors 

of s/2. Let qk be the smallest prime factor not included in (30). 

Since, by assumption, there is a solution that satisfies (30) and 

(25)-(29), then there exist b1,…, bm such that, both values of 

(30) are prime, since (29) is also satisfied, with pk = qk , i.e. 

the values of HPF, given by (30), are less than the smallest 

feasible composite number; thus the proposition is proved.  

This method is applied in Section 3.2.2 (see Example 8). 

 

3.2. Partially Satisfied Sufficiency Conditions 

There are even numbers for which (29) does not hold and 

therefore, Proposition 4 cannot be applied. For example, 

consider s = 88, hence, s/2 = 44 = 2
2
·11. The Goldbach pairs 

associated with s = 88 are generated by the following HPF 

values: 44±3, 44±15, 44±27 and 44±39. For each HPF, the 

respective sufficiency condition is violated for one or both 

terms: 44±3 > 25 (false), 44+15 > 49 (false), 44+27 > 25 (false) 

and 44+39 > 25 (false). Therefore, Proposition 4 cannot be 

directly applied here, to a priori guarantee that both HPF 

values are prime. In such cases, one of the three approaches 

described in the sections below can be followed. 

3.2.1. Capacity-Based Approach 

One way to circumvent (29) is to use a “capacity-type” 

argument, based on the count differential between primes and 

composites in an interval. 

Let r, m be the number of odd composites and primes in [1, 

s] respectively, where s is even. Since any number >1 is either 

prime or composite, and the number of even composites is 
s

2
− 1, it follows that 

s = 1 + m + r + (
s

2
− 1)           (31) 

or 

r =
s

2
− m.                (32) 

A sufficient condition for the existence of a Goldbach pair 

is r < m, since, if true, the odd composites are fewer than the 

residuals Ri = s − pi of the Goldbach partition, and thus, at 

least one such residual Rj is prime. Hence, by using (32), the 

sufficiency condition r < m can be expressed as 

r =
s

2
− m < m 

or equivalently 

m >
s

4
                   (33) 

Example 7. For s = 88, it follows that m = 23 and (33) is 

satisfied, since 23 > 88/4 = 22 . Therefore, at least one 

Goldbach pair exists. 

By using this method, the existence of at least one Gold-

bach pair has been proved, subject to (33) being true. How-

ever, in contrast to the HPF approach described in Section 3.1, 

there is no formula for computing the values of Goldbach 

primes. There are limitations to this approach, discussed be-

low. 

Inequality (33) holds up to s = 126; beyond that value, the 

number of odd composites exceeds that of primes, and the 

capacity-based approach is not applicable. 
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Testing for the existence of Goldbach pairs when (29) 

and/or (33) are violated is the subject of the next section. 

3.2.2. Composite Elimination Approach 

Consider the HPF given by 

HPF̅̅ ̅̅ ̅̅
± = w ± q1

b1 ∙ q2
b2 ∙ … ∙  qm

bm         (34) 

where w ≥ 6 is even, and q1, q2, … , qm  are the remaining 

primes, in ascending order, that are not prime factors of w, 

with qi < w for i = 1,…, m. 

Assume the exponent values bi are set so that 

HPF̅̅ ̅̅ ̅̅
− = w − q1

b1 ∙ q2
b2 ∙ … ∙  qm

bm         (35) 

satisfies (29), i.e. 

1 < HPF̅̅ ̅̅ ̅̅
− < qk

2                 (36) 

where qk  is the smallest prime not included in (38). From 

(35)-(36), it follows that HPF̅̅ ̅̅ ̅̅
−  is prime. It remains to be 

investigated if 

HPF̅̅ ̅̅ ̅̅
+ = w + q1

b1 ∙ q2
b2 ∙ … ∙  qm

bm < qk
2       (37) 

is satisfied. If (37) is not satisfied, the next step is to test if 

HPF̅̅ ̅̅ ̅̅
+ equals any of the composites in range. If this is not true, 

HPF̅̅ ̅̅ ̅̅
+ is prime. 

The following example illustrates this method. 

Example 8. Let w = 128 = 2
7
 and write (34) as 

HPF̅̅ ̅̅ ̅̅
± = 128 ± 3b1 ∙ 5b2 ∙ 7b3            (38) 

so that the HPF primality sufficiency conditions are 

1 < 128 ± 15 < 49               (39) 

1 < 128 ± 105 < 121.              (40) 

The only primality condition satisfied is 

1 < 128 − 105 < 121               (41) 

which implies that 128 − 105 = 23 is prime. 

Hence, a potential candidate for a Goldbach pair is (23, 

128+105), provided that 128+105 = 233 is also prime. In 

Section 2 it was shown that 233 is either prime or composite 

with prime factors greater than 7, i.e. no prime factor less than 

11. Given that ⌊233/11⌋ = 21 , and assuming that 233 is 

composite, the only possible prime factors of 233 could be: 11, 

13, 17 or 19. However, since 11
2
, 13

2
, 11·13, 11·17, 11·19, 

13·17 do not equal 233, and any other product of these prime 

factors is greater than 233, it follows that 233 is prime. Thus, 

the pair (23,233) is a Goldbach pair associated with s = 2·w = 

256.  

3.2.3. Dimensional Augmentation Method 

In the previous example, it may be directly established that 

233 is prime by adjusting the dimensionality of the HPF. 

Given that 233 < 172, consider the HPF given by (1) and 

n = 6 

HPF̿̿ ̿̿ ̿̿ = 2
a1 ∙ 3

a2 ∙ 5
a3 ∙ 7

a4 ∙ 11
a5 ∙ 13

a6 ± 

±2
b1 ∙ 3

b2 ∙ 5
b3 ∙ 7

b4 ∙ 11
b5 ∙ 13

b6 .    (42) 

Table 3 shows how 233 can be algebraically represented by 

the 6-dimensional HPF̿̿ ̿̿ ̿̿ , given by (42). Since 233 < 172, the 

sufficiency primality condition (9) of Proposition 2 is satisfied 

and therefore, HPF̿̿ ̿̿ ̿̿ = 233 is prime. 

Table 3. Algebraic representations of “233” using a 6-dimensional HPF with n = 6, given by (45). 

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 𝐇𝐏𝐅̿̿ ̿̿ ̿̿   

0 0 0 3 3 0 2 3 2 0 0 2 233 

0 2 0 2 0 1 2 0 3 0 1 0 233 

3 0 0 1 0 1 0 2 1 0 1 0 233 

 

Dimensional augmentation can be used to test if a number 

is prime, by encoding it using a dimensionally higher HPF, i.e. 

with a higher value of n, in (1), than that originally used to 

generate it. In the previous example, 233 was first generated 

by (38) as follows 

233 = 27 + 31 ∙ 51 ∙ 71 = HPF(2,3,5,7) 

and subsequently by (42), whereby using the exponent values 

of the first row of Table 3. 

233 = 73 ∙ 113 − 22 ∙ 33 ∙ 52 ∙ 132 =  HPF̿̿ ̿̿ ̿̿ (2,3,5,7,11,13) 

in order to apply the corresponding primality sufficiency 

condition, given by 233 < 172, to prove that it is prime. 
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The above approach is a computationally efficient way to 

conduct a targeted search for Goldbach primes, when the 

original primality sufficiency conditions fail. 

4. Discussion 

The HPF expression, given by (1), can be written as 

HPF(m) = G(pm, a̅) ± G(pm, b̅)         (43) 

where 

G(pm, a̅) = Gm(p̅, a̅) = p1
a1 ∙ p2

a2 ∙ … ∙  pm
am 

G(pm, b̅) = Gm(p̅, b̅) = p1
b1 ∙ p2

b2 ∙ … ∙  pm
bm 

and p̅, a̅, b̅  are the m-dimensional vectors of the first m 

primes, p1, p2, …, pm, and the exponents ai, bi, for i = 1,…, m, 

respectively. Note that the parametric vectors a̅ and b̅ may 

be considered as “exponential weights” on the elements of 

vector p̅. 

The primality sufficiency condition 

1 < HPF(m) < pm+1
2              (44) 

implies that there exist vectors a̅, b̅ such that the sum and 

difference of Gm(p̅, a̅), Gm(p̅, b̅) are prime, i.e. 

Gm(p̅, a̅) ± Gm(p̅, b̅) = pm+j          (45) 

where j ≥ 1 and the primes pm+j ∈ [pm+2, pm+1
2 ). 

Primes in [pm+2, pm+1
2 ) are considered “novel” since they 

cannot be mathematically represented by either factorization 

term Gm(p̅, a̅) or Gm(p̅, b̅). However, as (45) implies, they 

can be generated by adding or subtracting two optimally par-

titioned, exponentially weighted factorization terms of primes, 

up to and including pm. 

The expression (45) can be viewed as an “evolutionary” 

algebraic prime number generator: it can be used iteratively in 

a feedback-loop configuration, to augment the dimensionality, 

m, of the HPF given by (43), by including the novel primes 

generated, subject to (44). 

This type of “prime generation mechanism” closely re-

sembles a natural process, where the new primes, pm+j, are 

outcomes (“offsprings”) of an evolutionary interaction be-

tween two structurally partitioned, jointly optimized entities: 

Gm(p̅, a̅) and Gm(p̅, b̅). 

5. Conclusions 

Hybrid prime factorization (HPF) represents a number as a 

sum of two product terms with no common prime factors. 

HPF expressions are an effective tool to algebraically repre-

sent primes and test for primality directly, thus bypassing 

computational primality tests. 

HPF expressions can be applied to model, analyze, predict, 

algebraically represent and numerically compute primes, 

including Goldbach primes. 

The HPF-based representation of primes exhibits predictive 

capabilities, in the sense that the first n primes, p1, p2, …, pn, can be 

used to algebraically represent and compute primes in the interval 

[pn+2, pn+1
2 ). This process is illustrated in the Appendix, where 

solutions to (1)-(7) and (9) are computed for n = 2, 3,…, 10. 

It is well known that primes do not follow any pattern; 

proving that primes can be represented algebraically −and 

therefore studied analytically on that foundational basis− 

presents interesting challenges for future research. 
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ILP: Integer Linear (Optimization) Problem 

GC: Goldbach’s Conjecture 

HPF: Hybrid Prime Factorization 
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Appendix: Programmatic Computation 

of HPF Solutions 

HPF solutions to (1)-(6) and (9), are programmatically 

computed, for n = 2, 3,…, 10. The maximum exponent values 

are limited by a fixed upper bound, to ensure that runtimes, 

especially for larger values of n, remain reasonable. Due to 

space limitations, only some of the computed solutions are 

provided here. 

In the following tables, for each n, the values of the expo-

nents αi, bi and the HPF are provided. Only the smaller term in 

(1) is evaluated, since it generates more primes, as it is less 

likely to violate (9). 

The HPF is given by 

HPF = p1
a1 ∙ p2

a2 ∙ … ∙  pn
an − p1

b1 ∙ p2
b2 ∙ … ∙  pn

bn     (46) 

subject to (2)-(6) and (11), for n = 2, 3,…, 10. 

For n = 2, the HPF expression (46) becomes 

HPF = 2a1 ∙ 3a2 − 2b1 ∙ 3b2  

and from (9) it follows that the “cutoff” HPF value is 5
2
 = 25. 

Table 4 shows all computed HPF values. All primes in [5, 25) 

are generated using this HPF. 
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Table 4. HPF solutions for n = 2. 

a1 a2 b1 b2 HPF 

0 2 2 0 5 

3 0 0 1 5 

5 0 0 3 5 

0 2 1 0 7 

4 0 0 2 7 

0 3 4 0 11 

4 0 0 1 13 

8 0 0 5 13 

0 4 6 0 17 

0 3 3 0 19 

0 3 2 0 23 

5 0 0 2 23 

For n = 3, Table 5 shows all solutions for HPF = 7, HPF = 11 and only the first computed solution for all other HPF values. All 

primes in [7,49) are generated by this HPF. 

Table 5. HPF solutions for n = 3. 

a1 a2 a3 b1 b2 b3 HPF 

0 0 2 1 2 0 7 

0 3 0 2 0 1 7 

0 1 1 3 0 0 7 

0 3 1 7 0 0 7 

1 0 1 0 1 0 7 

1 0 3 0 5 0 7 

2 1 0 0 0 1 7 

0 1 1 2 0 0 11 

0 1 2 6 0 0 11 

2 0 1 0 2 0 11 

2 2 0 0 0 2 11 

0 1 1 1 0 0 13 

0 3 0 1 0 1 17 

0 0 2 1 1 0 19 

1 0 2 0 3 0 23 

0 2 1 4 0 0 29 

0 4 0 1 0 2 31 

0 2 1 3 0 0 37 
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a1 a2 a3 b1 b2 b3 HPF 

0 2 1 2 0 0 41 

0 2 1 1 0 0 43 

1 0 2 0 1 0 47 

For n = 4, Table 6 includes one solution for each prime HPF value computed. All primes in [11,121) are generated by this HPF. 

Table 6. HPF solutions for n = 4. 

a1 a2 a3 a4 b1 b2 b3 b4 HPF 

0 1 0 1 1 0 1 0 11 

0 0 2 1 1 4 0 0 13 

0 0 1 1 1 2 0 0 17 

0 0 0 2 1 1 1 0 19 

0 0 1 1 2 1 0 0 23 

0 0 1 1 1 1 0 0 29 

0 2 1 0 1 0 0 1 31 

0 3 1 0 1 0 0 2 37 

0 0 3 0 2 1 0 1 41 

0 0 0 3 2 1 2 0 43 

0 1 0 2 2 0 2 0 47 

0 2 0 1 1 0 1 0 53 

0 2 1 1 8 0 0 0 59 

0 1 2 0 1 0 0 1 61 

0 0 2 1 2 3 0 0 67 

3 1 1 0 0 0 0 2 71 

0 0 0 3 1 3 1 0 73 

0 3 1 0 3 0 0 1 79 

0 0 3 0 1 3 1 0 83 

0 3 0 1 2 0 2 0 89 

0 1 0 2 1 0 2 0 97 

0 1 1 1 2 0 0 0 101 

0 3 1 0 4 0 1 0 107 

0 3 0 1 4 0 1 0 109 

0 2 2 0 4 0 0 1 113 

Table 7 includes only one computed HPF solution for each prime value obtained, for n=5. All primes in [13,169) are generated 

by this HPF. 
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Table 7. HPF solutions for n = 5. 

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 HPF 

0 0 0 3 0 1 1 1 0 1 13 

0 4 0 1 0 1 0 2 0 1 17 

0 0 4 1 0 2 2 0 0 2 19 

0 0 0 3 1 1 1 4 0 0 23 

0 2 0 0 1 1 0 1 1 0 29 

0 1 0 1 1 3 0 2 0 0 31 

0 0 0 1 2 1 4 1 0 0 37 

0 1 0 1 2 2 0 4 0 0 41 

0 0 2 1 0 2 1 0 0 1 43 

0 0 0 1 1 1 1 1 0 0 47 

0 2 2 0 4 2 0 0 7 0 53 

0 3 2 0 0 3 0 0 1 1 59 

0 0 1 1 1 2 4 0 0 0 61 

0 1 1 0 1 1 0 0 2 0 67 

0 2 2 0 0 1 0 0 1 1 71 

0 2 1 1 0 1 0 0 0 2 73 

0 3 0 1 0 1 0 1 0 1 79 

0 1 1 1 0 1 0 0 0 1 83 

0 0 0 2 1 1 2 2 0 0 89 

0 0 0 1 2 1 1 3 0 0 97 

0 0 1 0 2 3 2 0 1 0 101 

0 2 1 0 1 3 0 0 2 0 103 

0 0 2 0 1 3 1 0 1 0 107 

0 0 2 1 0 1 1 0 0 1 109 

0 3 0 2 0 1 0 1 0 2 113 

0 4 0 1 0 3 0 1 0 1 127 

0 1 0 1 1 2 0 2 0 0 131 

0 5 1 0 0 1 0 0 2 1 137 

0 1 2 0 1 1 0 0 3 0 139 

0 0 3 1 0 1 1 0 0 2 149 

0 1 1 0 1 1 0 0 1 0 151 

0 3 0 0 1 2 0 1 1 0 157 

0 0 4 0 0 1 1 0 1 1 163 

0 2 2 1 0 7 0 0 0 1 167 

In Tables 8-12, only five randomly selected solutions are shown, for n = 6, …, 10, respectively. 
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Table 8. Sample HPF solutions for n = 6. 

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 HPF 

0 0 3 1 0 0 1 1 0 0 1 1 17 

1 0 1 1 0 1 0 4 0 0 1 0 19 

0 4 2 0 0 0 1 0 0 1 1 1 23 

0 5 2 0 0 1 10 0 0 1 1 0 127 

0 2 1 1 1 0 8 0 0 0 0 1 137 

Table 9. Sample HPF solutions for n = 7. 

a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7 HPF 

0 1 1 3 1 0 0 8 0 0 0 0 1 1 19 

0 4 1 0 0 1 0 2 0 0 1 1 0 1 29 

0 10 0 1 0 0 0 1 0 1 0 1 1 2 73 

0 0 1 2 1 0 2 9 2 0 0 0 2 0 103 

10 1 2 1 0 0 0 0 0 0 0 1 2 2 349 

Table 10. Sample HPF solutions for n = 8. 

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 b7 b8 HPF 

0 0 0 1 1 0 2 0 1 2 1 0 0 1 0 1 23 

2 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 31 

1 3 1 0 1 1 0 0 0 0 0 1 0 0 2 1 173 

2 3 2 0 1 0 0 0 0 0 0 1 0 1 1 1 307 

2 0 0 1 2 1 0 0 0 3 1 0 0 0 1 1 439 

Table 11. Sample HPF solutions for n = 9. 

a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9 HPF 

3 0 0 1 1 0 1 0 1 0 1 2 0 0 2 0 1 0 31 

0 3 0 1 2 1 0 0 0 3 0 1 0 0 0 1 1 1 137 

3 1 1 0 1 1 0 1 0 0 0 0 2 0 0 2 0 1 337 

0 0 0 1 1 0 0 1 1 1 1 2 0 0 1 1 0 0 499 

0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 619 
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Table 12. Sample HPF solutions for n = 10. 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 HPF 

0 3 2 1 0 0 1 1 0 0 4 0 0 0 1 1 0 0 1 1 79 

4 2 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 163 

0 0 0 0 0 1 1 2 2 0 2 3 2 2 1 0 0 0 0 1 449 

1 2 0 0 0 2 0 1 1 0 0 0 1 2 1 0 1 0 0 1 719 

1 2 0 0 0 1 2 1 0 0 0 0 2 1 1 0 0 0 1 1 919 

 

The following table shows how the solution to the NLP 

minimization problem of Proposition 3 varies with n. 

For n = 2,…, 8, the minimum HPF values coincide with the 

sequence of primes. For n ≥ 9, gaps start to exist. This may be 

caused by the fact that an upper bound of 15 has been set for 

all HPF exponent parameters. Relaxing this bound may ena-

ble the computation of lower minimum HPF values. However, 

this comes at a significant computational cost, since the 

computed values of the two exponential products can easily 

exceed the numerical processing capabilities of a desktop 

computer system. 

Table 13. min[HPF] values for n = 2,…,10. 

n min[HPF] 

2 5 

3 7 

4 11 

5 13 

6 17 

7 19 

8 23 

9 31 

10 79 
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