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Abstract 

The performance of an organic solar cell is strongly influenced by the structure of the photosensitizer. In this work, the 

open-circuit voltage (VOC) and conversion efficiency (η) of a series of coumarin dyes are quantitatively related to the structure of 

nine coumarin derivatives. The Quantitative Structure Property Relationship (QSPR) is performed using the statistical method of 

multiple linear regression. In addition, descriptors determined from the ground state at the Cam_B3lyp/6-31G(d, p) level of 

theory and from the 2D structure of the molecules are mathematically related to the photovoltaic properties. These VOC and η 

models are accredited with very good statistical indicators (R
2
 = 0.906 and 0.918; Qcv

2
= 0.845 and 0.849; S= 0.045 and 0.112; F 

= 14.524 and 16.846). These statistical indicators confirm the robustness and performance of the models developed. The results 

show that Voc improves with decreasing surface tension (ts) and increasing number of cycles (cycle). As for the conversion 

efficiency of light radiation into electrical energy, it is optimal when the light harvesting efficiency (LHEth) and the excited state 

lifetime (τth) are high. In conclusion, these models have good predictive capabilities and can be used to predict and explain the 

open-circuit voltage and efficiency of coumarin derivatives that belong to the same field of application. 
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1. Introduction 

Dye-Sensitized Solar Cells (DSSCs) are a solar cell tech-

nology using organic dyes to absorb light and generate elec-

tricity [1-5]. DSSCs are promising alternative to traditional 

silicon solar cells because they are less expensive to produce 

and can be made from abundant materials [6, 7]. The dyes 

used in DSSCs are generally organic compounds that exhibit 

light absorption properties in the visible range (figure 1). 
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Figure 1. Different constituents and functioning principle of a DSSC [7]. 

DSSCs are composed of several layers [7]. Dye layer, 

usually based on organic dyes such as coumarins, is adsorbed 

onto a layer of porous semiconductor material, called elec-

trode material. When sunlight hits dye and it is excited, it 

releases electrons. These electrons are then captured by elec-

trode material. Subsequently, holes left by the electrons are 

filled by electrons from a liquid electrolyte or solid material in 

the opposite layer of DSSC. Dye behaves like an electron 

pump. 

There are several types of dyes, including ruthenium-based 

dyes, phosphine derivatives and coumarin derivatives [7] 

Coumarin-derived photosensitizers [8]. are synthetic and 

natural organic compounds found in the plant kingdom [9]. 

The dye C343 is the basic motif for the development of 

coumarin-derived photosensitizers [10, 11]. Coumarin dyes 

offer several advantages for use in DSSCs. They have good 

light absorption capacity in the visible spectrum, enabling 

them to convert efficiently solar energy into electricity. In 

addition, coumarins can be synthesized with a wide variety of 

molecular structures, enabling researchers to modify their 

light absorption properties and facilitate electron transfer. 

Coumarins are chemical compounds with a characteristic 

structure called a coumarin core. The addition of specific 

functional groups enhances light absorption, while the use of 

special molecular structures facilitates electron transfer. Our 

study focuses on coumarin photosensitizers. This class of 

solar cell dyes is based on the π-conjugated donor-acceptor 

(D-π-A) structure) [12-14]. The donor is coumarin, which 

contains an amino group in its structure. The acceptor is cyano 

acrylic acid. In these compounds, the spacer is a π-conjugated 

system. It consists of thiophene or methine substituents [15]. 

Coumarin-based DSSCs show promising results, with so-

lar-to-electricity conversion efficiencies up to more than 10%. 

However, it should be noted that coumarin-based DSSCs are 

not yet widely commercialized and challenges remain to im-

prove their long-term stability. Therefore, in order to improve 

the performance of these systems, it is important to understand 

the origin of their photovoltaic properties. The overall objective 

of this study is to establish a quantitative structure- photovoltaic 

property relationship (QSPR) for a series of nine coumarin 

derivatives. The QSPR methodology used in this work consists 

of establishing a mathematical property function whose varia-

bles are molecular descriptors [16]. 

2. Material and Methods 

2.1. Material and Method of Calcul 

The molecular descriptors used in the models are obtained 

from the 2D structure of the dyes and the ground state mole-

cule. The 2D and 3D descriptors are determined using 

Chemsketch and Gaussian 09 Rev A.02 software, respectively 

[17]. The minimum energy state is obtained after optimization 

and frequency calculation. In this study, the density functional 

theory (DFT) method [11, 5, 18] at Cam-B3LYP/6-31G(d,p) 

is employed for geometry optimization and frequency calcu-

lation. In addition to DFT, time-dependent DFT (TD-DFT) [5] 

is used to simulate excited states. This calculation is per-

formed at the TD-Cam-B3LYP/6-31G(d,p) level. 

The experimental database consists of nine molecules 

whose photovoltaic properties in derived solar cells have been 

determined under the same conditions [12]. Compound C343 

is the reference. These compounds absorb in the visible region. 

The introduction of methine (-CH=CH-) groups linked to 

cyano (-CN) and carboxyl (-COOH) in the structure increases 
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the extent of conjugation. Figure 2 shows the structures of the compounds studied. 

 
Figure 2. Structures of the coumarin derivatives studied. 

Moreover, the introduction of thiophene not only increases conjugation but also stabilizes and performs photovoltaic without 

affecting absorption properties. Table 1 displays the photovoltaic property values of the coumarin dye solar cells studied. 

Table 1. Absorption wavelengths of the coumarin derivatives studied and performance of the corresponding DSSCs) [12]. 

Colorant 𝝀𝒎𝒂𝒙
𝒂𝒃𝒔 (nm) Jsc (mA cm-2) VOC (V) ff η(%) 

C343 442 4.100 0.410 0.560 0.900 

NKX-2311 504 15.200 0.550 0.620 5.200 
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Colorant 𝝀𝒎𝒂𝒙
𝒂𝒃𝒔 (nm) Jsc (mA cm-2) VOC (V) ff η(%) 

NKX-2388 493 12.900 0.500 0.640 4.100 

NKX-2398 451 11.100 0.510 0.600 3.400 

NKX-2586 506 15.100 0.470 0.500 3.500 

NKX-2593 510 14.700 0.670 0.730 7.200 

NKX-2677 511 14.300 0.730 0.740 7.700 

NKX-2753 492 16.100 0.600 0.690 6.700 

NKX-2807 566 14.300 0.510 0.730 5.300 

 

These molecules are divided in two groups where six mole-

cules form our training set and three molecules are used for 

validation. 

Experimental properties can be mathematically related to 

theoretical descriptors. However, if the order of the property 

under investigation varies from one molecule to another, then the 

inverse of the base-10 logarithm of the property shall be used. 

2.2. Data Analysis Methods 

The aim of these methods is to analyze the structural data in 

order to identify the factors that determine the measured activity. 

Some are linear, such as Simple Linear Regression (SLR), 

Multiple Linear Regression (MLR) [19] and Partial Least Squares 

(PLS) [20]. Others are non-linear, such as decision trees [21], 

neural networks [22], and genetic algorithms [23]. These methods 

are available in software such as Excel [24]. Origin Microcal, 

Minitab, XLSAT [25] Statistica, SPSS, to cite only those. 

The statistical analysis method used in our study is the Multiple 

Linear Regression (MLR) method available in XLSAT [25]. 

The selection of the best models is based on certain statis-

tical indicators. These include the coefficient of determination 

R (and its square R
2
), the standard deviation S, and the Fischer 

coefficient F. The statistical quality of a model is determined 

by these three criteria [26]. They allow us to assess the accu-

racy of the values calculated on the test set and describe the 

internal predictive ability of the model. The coefficient of 

cross-determination 𝑄𝐶𝑉 
2 estimates the external predictive 

ability of the model. R
2
, S and F refer to the fit between 

calculated and experimental values: they describe the predic-

tive capacity within the limits of the model and allow us to 

estimate the accuracy of the values calculated on the training 

set [26]. The cross-validation correlation coefficient 

𝑄𝐶𝑉 
2 provides information about the predictive power of the 

model. This predictive power is called "internal" because it is 

calculated from the structures used to build the model. 

The coefficient of determination R
2 
provides an assessment 

of the dispersion of theoretical values around experimental 

values.The quality of the model is best when the points are 

close to the line of best fit [27]. The fit of the points to this line 

can be assessed by the correlation coefficient: 

𝑅2 = 1 −
∑(𝑦𝑖,𝑒𝑥𝑝−𝑦̂𝑖,𝑡ℎé𝑜)

2

∑(𝑦𝑖,𝑒𝑥𝑝−𝑦̅𝑖,𝑒𝑥𝑝)
2            (1) 

Where: 

𝑦𝑖, 𝑒𝑥: Experimental value of the photovoltaic property 

𝑦𝑖, 𝑡ℎé: Theoretical value of the photovoltaic property 

𝑦𝑖, 𝑒𝑥: Average value of the experimental values of the 

photovoltaic property 

The closer the R² value is to 1, the more the theoretical and 

experimental values are correlated. Furthermore, the variance 

𝜎2 is determined by relationship 2: 

𝜎2 = 𝑠2 =
∑(𝑦𝑖,𝑒𝑥𝑝−𝑦𝑖,𝑡ℎé𝑜)

2

𝑛−𝑘−1
        (2) 

Where k is the number of independent variables (de-

scriptors), n is the number of molecules in the test or training 

set and n-k-1 is the degree of freedom. 

The standard deviation S: 

𝑆 = √
∑(𝑦𝑖,𝑒𝑥𝑝−𝑦𝑖,𝑡ℎé𝑜)

2

𝑛−𝑘−1
              (3) 

The Fisher F index is used to measure the level of statistical 

significance of the model, i.e. the quality of the choice of 

descriptors making up the model. 

𝐹 =
∑(𝑦𝑖,𝑡ℎé𝑜−𝑦𝑖,𝑒𝑥𝑝)

2

∑(𝑦𝑖,𝑒𝑥𝑝−𝑦𝑖,𝑡ℎé𝑜)
2 ∗

𝑛−𝑘−1

𝑘
         (4) 

The coefficient of determination for cross-validation QCV
2  

is calculated using the following relationship: 

𝑄𝑐𝑣
2 =

∑(𝑦𝑖,𝑡ℎé𝑜−𝑦̅𝑖,𝑒𝑥𝑝)
2
−∑(𝑦𝑖,𝑡ℎé𝑜−𝑦𝑖,𝑒𝑥𝑝)

2

∑(𝑦𝑖,𝑡ℎé𝑜−𝑦̅𝑖,𝑒𝑥𝑝)
2       (5) 

For Eriksson and al. [28] the performance of a mathematical 

model is characterised by a value of QCV
2  > 0.5 for a satisfac-

tory model. The model is said to be excellent if QCV
2  > 0.9. 

According to them, given a test set, a model will perform well if 
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the acceptance criterion 𝑅2 − 𝑄𝑐𝑣
2    ,  is met. 

2.3. Interpretation and Validation of a QSPR 

Model 

2.3.1. Internal Validation 

The influence of compounds in the training set on the model is 

estimated by internal validation methods. Internal validation of a 

QSPR model is performed using LOO (Leave-One Out) or LMO 

(Leave-Many Out) cross-validation, which is quantified by the 

coefficient QCV
2 . In this process, a certain number k of molecules 

are extracted from the initial set of N molecules, and a new 

model is built with the remaining (N-k) molecules using the 

selected descriptors (only the regression constants change). This 

process is then repeated to remove and predict the values of all 

the molecules in the training set. Depending on the number of 

molecules removed at each iteration, this refers to 

Leave-One-Out (LOO) or Leave-Many-Out (LMO), as one or 

more molecules are removed [29]. 

2.3.2. Randomization 

To ensure the reliability of a RQSP/RQSA model, ran-

domization tests [30] are one of the most widely used tech-

niques. The randomization test is used to assert that the good 

correlations between the descriptors and the activity or prop-

erty presented by the RQSA/ RQSP model are not due to 

chance. To do this, the observations are disordered, for ex-

ample ten times, by randomly changing the activity column, 

but the descriptor columns remain unchanged. The result is 

ten models with specific statistical characteristics. If the 

randomization of observations leads to reliable predictive 

models, then the predictive abilities of the constructed RQSA/ 

RQSP model are not due to chance correlations [28, 31]. 

2.3.3. External Validation 

External validation tests the reliability and predictive 

power of the QSAR/QSAR model. The model is applied to a 

set of molecules not used in its development to determine the 

correlation between calculated and experimental activities. 

The higher the correlation, the better the model's ability to 

predict activities for molecules outside the training set [32]. 

The set of molecules used in this framework is called the 

validation set. This validation is characterized by the param-

eters R
2
 (test) QCV

2  (test). Model validation can be performed 

by calculating the cross-validation regression coefficient 

QCV
2  and the quotient (or ratio) of the theoretical activity to the 

experimental activity. 

This ratio is calculated using the validation set. The model is 

considered to perform well if QCV
2  or the ratio is close to one. 

Other criteria can be used to check the predictive power of 

RQSP/RQSA models. They are known as "external validation 

criteria" or "Tropsha criteria" [33]. 

External validation criteria (test series) 

𝑅𝑇𝑒𝑠𝑡
2 >  ,7 (Criteria 1) 

𝑄𝐶𝑣 𝑇𝑒𝑠𝑡
2 >  ,6 (Criteria 2) 

|𝑅𝑇𝑒𝑠𝑡
2 − 𝑅0

2| ≤  ,  (Criteria 3) 

|RTest
2 −R0

2|

RTest
2   ,1 et  ,85 ≤ 𝑘 ≤ 1,15 (Criteria 4) 

|𝑅𝑇𝑒𝑠𝑡
2 −𝑅′0

2|

𝑅𝑇𝑒𝑠𝑡
2   ,1 et  ,85 ≤ 𝑘′ ≤ 1,15 (Criteria 5) 

With 

𝑅2: Correlation coefficient for molecules in the test series. 

𝑅0
2: Correlation coefficient between predicted and experi-

mental values for the test series. 

𝑅0
′2 : Correlation coefficient between experimental and 

predicted values for the test series. 

k: is the constant of the correlation line (at the origin) 

(predicted values vs. experimental values). 

k': is the constant of the correlation line (at the origin) 

(experimental values versus predicted values). 

2.4. Photovoltaic Properties Studied 

2.4.1. Light Harvesting Efficiency (LHE) 

The electron injection efficiency can be approximated 

theoretically by calculating the light harvesting efficiency 

(LHE) [34] of the dyes. This value must be as high as possible 

to maximize the induced photocurrent. The LHE is deter-

mined by the following expression:  

LHE = 1 – 10-A = 1 – 10-f            (6) 

A (or f) is the oscillator strength of the electronic transition 

of greatest absorbance. 

2.4.2. Conversion Efficiency 

The conversion efficiency of a system can be calculated 

from the short-circuit current density (JSC), the open-circuit 

voltage (VOC), the form factor (ff) and the light intensity IS: 

𝜂 =
𝐽𝑆𝐶𝑉𝑂𝐶𝑓𝑓

𝐼𝑆
                  (7) 

In addition to the properties of the semiconductor and the 

redox mediator, the photo-physical and electrochemical 

properties of the photosensitizer will be largely responsible 

for the cell's performance. Indeed, its oxidation potential will 

determine the maximum Voc and the absorption properties 

will determine the short-circuit current [35]. 

From this expression, JSC and IS cannot be calculated the-

oretically. The open-circuit voltage (VOC) is a function of the 

dye's LUMO energy and the TiO2 conduction band energy [36] 

by the following expression: 

http://www.sciencepg.com/journal/mc


Modern Chemistry http://www.sciencepg.com/journal/mc 

 

38 

VOC = 
1

e
 (ELUMO - ECB)            (8) 

A higher LUMO value results in a higher VOC value. 

2.4.3. Excited STATE Lifetime τ 

The excited state lifetime is an important factor in the 

evaluation of the charge transfer efficiency of the dye. A dye 

with a long excited state lifetime will have an easy electron 

transfer. The excited state lifetime is calculated by the fol-

lowing formula [37]: 

𝜏 =
1,499

𝑓𝐸2
                  (9) 

E and f represent the transition energy and transition os-

cillator strength respectively. 

3. Results and Discussion 

3.1. Molecular Descriptors and QSAR Models 

Obtained 

A QSPR model is built from a database of experimental 

data, but most importantly from molecular descriptors. A 

large number of descriptors are available. In the case of this 

study, the 2D and 3D descriptors used (Table 1) are deter-

mined using Chemsketch and Gaussian 09 software, respec-

tively [17]. The 3D descriptors are obtained from the geome-

try of the ground state. This minimum energy state is obtained 

after geometry optimization and frequency calculation using 

the DFT method at the Cam-B3LYP/6-31G(d,p) level. Table 2 

shows the descriptors used in the QSPR model and the values 

of the photovoltaic properties determined experimentally. The 

photovoltaic properties, the open circuit voltage VOC and the 

conversion efficiency η, are the subject of the study. 

Table 2. Molecular descriptors used in the QSPR models. 

CODE Descriptors Photovoltac property 

Colorant ts cycle LHEth τth pɳexp Vocexp 

C343 73.900 4 0.832 0.049 0.046 0.410 

NKX-2388 64.300 4 0.888 0.136 -0.613 0.500 

NKX-2586 61.900 4 0.992 0.078 -0.544 0.470 

NKX-2677 74.200 6 0.98 0.107 -0.886 0.730 

NKX-2753 59.000 5 0.986 0.085 -0.826 0.600 

NKX-2807 73.000 5 0.985 0.09 -0.724 0.510 

NKX-2311 62.900 4 0.972 0.095 -0.716 0.550 

NKX-2398 58.500 4 0.806 0.155 -0.531 0.510 

NKX-2593 68.200 5 0.986 0.096 -0.857 0.670 

 

The interdependence of both descriptors is elucidated by a 

correlation matrix analysis (Table 2). The descriptors used in a 

QSPR model must be independent of each other. This 

non-dependence is verified for a cross-correlation coefficient 

aij less than 0.7. Examination of Table 3 shows that all aij 

coefficients are less than 0.7. Hence, the descriptors used in 

the different models are independent of each other. 

Table 3. Cross Correlation Coefficients for Descriptors Used in 

QSPR Models. 

Variables LHEth τth ts cycle 

LHEth 1 0.188 -0.305 0.566 

Variables LHEth τth ts cycle 

τth 0.188 1 -0.189 0.216 

ts -0.305 -0.189 1 0.345 

cycle 0.566 0.216 0.345 1 

Using linear regression, the descriptors are mathematically 

related to the photovoltaic property: this is called a QSPR 

model. The number of descriptors involved in a model must 

be equal to 1/5 of the number of molecules in the series 

studied. In our study, the models obtained are a function of 

two descriptors corresponding to 1/5 of the nine molecules of 
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the coumarin series studied. 

For the purposes of this study, this experimental database is 

divided into two parts. A first set of six molecules constitutes 

the learning set, while the remaining three molecules consti-

tute the validation set. The validation set for the QSPR con-

version efficiency model consists of the compounds 

NKX-2593, NKX-2677 and NKX-2807, while the validation 

set for the QSPR open circuit voltage VOC model consists of 

the molecules NKX-2311, NKX-2398 and NKX-2593. 

The best QSPR model obtained for open circuit voltage is a 

function of the 2D descriptor surface tension (ts) and the 

number of cycles contained in the coumarin derivative 

structure (cycle). The equation for this QSPR open circuit 

voltage model is: 

Vocexp = 0.19124 – 0.00455*ts + 0.14001*cycle   (10) 

The negative surface voltage coefficient indicates that an 

increase in the value of this parameter reduces the 

open-circuit voltage. However, increasing the number of 

cycles will increase the open-circuit voltage of the photovol-

taic cell. 

The relative contribution of the descriptors to open-circuit 

voltage prediction (Figure 3) is also studied. 

Examination of the contributions shows that the conversion 

efficiency of a solar cell is closely related to its 

light-harvesting efficiency and the lifetime of the excited state 

of the photosensitizer. Examination of this equation shows 

that pɳexp increases as LHEth and τth decrease. In other words, 

the conversion efficiency ɳexp increases as LHEth and τth 

increase. Light-harvesting efficiency is the key to maximizing 

electricity production from solar energy. Solar panels are 

designed to capture sunlight and convert it to electricity. The 

efficiency of solar panels depends on factors such as the 

quality of the materials used, the panel design, and the ability 

to absorb sunlight efficiently over a wide range of wave-

lengths. Thus, improving light-harvesting efficiency is a 

constant goal to optimize the performance of optical devices 

and maximize energy yields. The excited state lifetime of a 

photosensitizer, also known as the excitation lifetime, refers to 

the amount of time the photosensitizer remains in an excited 

state after absorbing light. This parameter is important in 

fields such as photobiology, photochemistry, and photody-

namics. The longer the excitation lifetime, the greater the 

chance that the chromophore will transfer its electron to the 

semiconductor, such as titanium dioxide. 

Furthermore, in this model, the light harvesting efficiency 

(LHEth) is the primary descriptor in predicting the conversion 

yield of coumarin derivatives. This is clarified by analyzing 

the contribution of each descriptor (Figure 4). The number of 

aromatic rings is the main descriptor. Thus, an increase in the 

number of cycles, and therefore in the extent of conjugation, 

improves open-circuit voltage. In fact, in cycles, electrons do 

not belong to the atoms but to the cycle, which increases their 

mobility. 

 
Figure 3. Contribution of the various descriptors used in the model. 

In addition to open-circuit voltage, the conversion efficiency η 

of light radiation into electrical energy is related to descriptors. 

The conversion efficiency η is a key parameter for assessing the 

efficiency of converting light energy into electrical energy. 

Using the multilinear regression method, the opposite of the 

logarithm to base ten (pɳexp = -log(ɳexp)) is mathematically 

related to descriptors. Table 2 shows the values of the descriptors 

and the photovoltaic property under study.  

The equation of the QSPR-pɳexp model is as follows: 

pɳexp = 3.13044-3.35340*LHEth -6.02687*τth    (11) 

The conversion efficiency of a solar cell is closely related to 
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its light-harvesting efficiency and the lifetime of the excited 

state of the photosensitizer. Examination of this equation 

shows that pɳexp increases as LHEth and τth decrease. In 

other words, the conversion efficiency ɳexp increases as 

LHEth and τth increase. Light-harvesting efficiency is the key 

to maximizing electricity production from solar energy. Solar 

panels are designed to capture sunlight and convert it to 

electricity. The efficiency of solar panels depends on factors 

such as the quality of the materials used, the panel design, and 

the ability to absorb sunlight efficiently over a wide range of 

wavelengths. Thus, improving light-harvesting efficiency is a 

constant goal to optimize the performance of optical devices 

and maximize energy yields. The excited state lifetime of a 

photosensitizer, also known as the excitation lifetime, refers to 

the amount of time the photosensitizer remains in an excited 

state after absorbing light. This parameter is important in 

fields such as photobiology, photochemistry, and photody-

namics. The longer the excitation lifetime, the greater the 

chance that the chromophore will transfer its electron to the 

semiconductor, such as titanium dioxide. 

Furthermore, in this model, the light harvesting efficiency 

(LHEth) is the primary descriptor in predicting the conversion 

yield of coumarin derivatives. This is clarified by analyzing 

the contribution of each descriptor (Figure 4). 

 
Figure 4. Contribution of descriptors in the QSPR-pɳexp model. 

3.2. Internal and External Validation of the 

QSPR Models 

3.2.1. Internal Validation and Significance of the 

Models 

The statistical indicators for the QSPR-VOC and 

QSPR-ɳexp models are shown in Table 4. 

Table 4. Statistical indicators. 

QSPR model Voc ɳexp 

Indicators statistical Value 

Number of compounds N 9 

Correlation coefficient of the regression line R2 0.906 0.918 

Prediction correlation coefficient 𝑄𝑐𝑣
2  0.845 0.849 

Standard Deviation 0.045 0.112 

Validation of Fischer F 14.524 16.846 

QSPR model Voc ɳexp 

Confidence level α 95% 

Statistical analysis was used to determine the significance 

of the model. The values of the statistical indicators deter-

mined are summarized in Table 4. 

The values of the statistical indicators listed in this table 

reflect a good correlation of the property with surface tension 

and the number of cycles in the different molecules. The 

correlation coefficient 𝑅2
 indicates that 90.64% of the mo-

lecular descriptors were taken into account in establishing the 

model. Moreover, the standard deviation of 0.045 reflects the 

consistency of the method used. The significance of the model 

is given by the Fischer coefficient F= 14.524: this high value 

reflects a strong relationship between the photovoltaic prop-

erty and the descriptors used in the model. Also, the value of 

the QCV
2
 cross-validation coefficient of determination is 0.845. 

This value (greater than 0.5 and close to 0.9) indicates that the 

model is highly satisfactory. The acceptability of this model is 

proven by calculating the absolute value of the difference 

between 𝑅2
 and QCV

2
. This difference (0.062), which is less 

than 0.3, testifies the model's acceptability. 
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As for the QSPR-ɳexp model, molecular descriptors 

(LHE et τ) are taken into account at 91.82%, with a 

standard deviation of 0.112. This model is significant with 

a Fischer coefficient (F= 16.846) above the Fischer 

threshold. This indicator shows a strong relationship be-

tween conversion yield and the descriptors. This model is 

acceptable and very satisfactory with a cross-validation 

correlation coefficient QCV
2
 = 0.849 ˃ 0.5 and |𝑅2 −

𝑄𝑐𝑣
2 | =  , 69    , . 

Internal validation is achieved by calculating Roy's pa-

rameter. This key parameter of the randomization test is 

obtained after ten (10) iterations. The randomization test is 

performed only on the compounds in the test set, as the model 

is based on these. We have limited ourselves to ten iterations. 

The randomized coefficients of determination (R
2
r) for each 

iteration are given in the following Table 5: 

Table 5. Randomized coefficients of determination (R2
r). 

QSPR-VOC model 

Iterations 1 2 3 4 5 6 7 8 9 10 

Rr
2 0,841 0,842 0,535 0,012 0,092 0,027 0,027 0,101 0,101 0,101 

QSPR- ɳexp model 

Iterations 1 2 3 4 5 6 7 8 9 10 

𝑅𝑟
2 0,852 0,804 0,840 0,321 0,276 0,711 0,790 0,472 0,461 0,251 

 

Roy's parameter (R
2

p =0.679 and 0.506) is lower than the 

model's R
2
 coefficient (0.911), so we can confirm that the 

pattern established is not due to chance. 

3.2.2. External Validation of QSPR Models 

External validation is carried out using the ratio (Theoret-

ical property/Experimental property) and the Trophsa criteria. 

The Vocth/Vocexp ratio is determined for all nine molecules. 

The values are shown in Table 6. 

The values of the Vocth/Vocexp ratio of the validation set, 

which tend towards unity (Table 6.), reflect the good correla-

tion between the theoretical and experimental open-circuit 

voltage of coumarin molecules. 

The model can therefore be used to predict the properties of 

other coumarin molecules. These observations are confirmed 

by the regression line corresponding to the QSPR-Voc model 

(Figure 5). The blue points correspond to the test set and the 

red points correspond to the validation set. In addition to the 

Vocth/Vocexp ratio, Tropsha criteria are used for external model 

validation. The Tropsha criteria are listed in Table 7. 

Table 6. Experimental and theoretical open-circuit voltage values of the QSPR-Voc model. 

Colorants Vocexp Vocth Vocth/Vocexp 

Training set 

C343 0.410 0.415 1.013 

NKX-2388 0.500 0.459 0.918 

NKX-2586 0.470 0.470 1.000 

NKX-2677 0.730 0.694 0.951 

NKX-2753 0.600 0.623 1.038 

NKX-2807 0.510 0.559 1.097 

Validation set 

NKX-2311 0.550 0.465 0.846 

NKX-2398 0.510 0.485 0.951 

NKX-2593 0.670 0.581 0.867 
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Figure 5. Model linear regression line QSPR-Voc. 

Table 7. Tropsha Criteria. 

Tropsha criteria 𝑹𝑻𝒆𝒔𝒕
𝟐   𝑸𝒄𝒗 𝑻𝒆𝒔𝒕

𝟐   |𝑹𝑻𝒆𝒔𝒕
𝟐 − 𝑹𝟎

𝟐|  
|𝑹𝑻𝒆𝒔𝒕
𝟐 −𝑹𝟎

𝟐|

𝑹𝑻𝒆𝒔𝒕
𝟐   

|𝑹𝑻𝒆𝒔𝒕
𝟐 −𝑹𝟎

′𝟐|

𝑹𝑻𝒆𝒔𝒕
𝟐   k k’ 

QSPR-Voc model 0.845 0.845 0 0 0.007 1.131 0.886 

QSPR-ɳ model 0.849 0.849 0 0 0.172 0.916 1.088 

 
Figure 6. Model linear regression line QSPR-pɳ. 

All values satisfy the Tropsha criteria, so these models are 

acceptable for predicting the photovoltaic properties of cou-

marins.  

External validation of this QSPR-nexp model is performed 

using the pnth/pnexp ratio and Tropsha criteria. The pnth/pnexp 

ratio values reported in the table are close to unity. These 

values indicate the good correlation between theoretical and 

experimental conversion efficiencies. This is illustrated by the 

model's regression line (figure 6). This model therefore offers 

a better prediction of the conversion yields of the coumarin 

derivatives in the validation set. 

Table 8. pnth/pnexp ratio values. 

Colorants pɳ exp pɳth pnth/pnexp 

Training set 

C343 0.046 0.045 0.986 

NKX-2311 -0.716 -0.702 0.980 
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Colorants pɳ exp pɳth pnth/pnexp 

NKX-2388 -0.613 -0.667 1.089 

NKX-2398 -0.532 -0.507 0.953 

NKX-2586 -0.544 -0.666 1.225 

NKX-2753 -0.826 -0.688 0.833 

Validation set 

NKX-2593 -0.857 -0.755 0.880 

NKX-2677 -0.887 -0.801 0.903 

NKX-2807 -0.724 -0.715 0.987 

With respect to the Tropsha criteria listed in Table 8, ex-

amination of this table shows that all five Tropsha criteria are 

met. Therefore, this model is acceptable for predicting the 

photovoltaic properties of coumarins that belong to the same 

field of application. 

 

3.3. Scope of Applicability 

A QSPR model can be used to determine the property value 

for systems belonging to the same family. However, this 

prediction is only possible if the system belongs to the same 

applicability domain. This applicability domain is obtained by 

determining the threshold lever from the standardized resid-

uals. Analysis of this graph indicates that a molecule belongs 

to the same applicability domain if the value of its lever is less 

than 1 (hthreshold =1). 

A QSPR model cannot be considered universal because it is 

developed on a limited number of compounds that do not 

cover the entire chemical space. For this reason, the predicted 

property of a compound that is chemically dissimilar to the 

training set cannot be considered reliable. The applicability 

domain defines the range in which a compound can be pre-

dicted with confidence. It therefore corresponds to the region 

of chemical space that includes compounds from the training 

set and similar, nearby compounds in the same space. This 

region is defined by a threshold lever. For the QSPR model, 

the threshold lever is one (Figures 7 and 8). Thus, the predic-

tion of the conversion yield of a coumarin derivative using 

this model is reliable only if the compound has a leverage 

value less than unity. 

 
Figure 7. Domain of application of QSPR-Voc model. 

 
Figure 8. Scope of application of the QSPR-conversion efficiency model. 

4. Conclusion 

In this work, the photovoltaic properties of a series of nine 

coumarin derivatives are related to molecular descriptors 

using QPSR methodology. The photovoltaic properties stud-

ied are open circuit voltage and conversion efficiency. Mo-

http://www.sciencepg.com/journal/mc


Modern Chemistry http://www.sciencepg.com/journal/mc 

 

44 

lecular descriptors are related to these photovoltaic properties 

using multiple linear regression. The best QSPR model ob-

tained for the open-circuit voltage is a function of the surface 

tension (ts) and the number of aromatic rings in the coumarin 

derivative structure. As for the light conversion efficiency, the 

best QSPR model obtained depends on the light harvesting 

efficiency (LHEth) and the excited state lifetime (τth). Fur-

thermore, the open-circuit voltage is strongly influenced by 

the aromatic ring number, while the conversion efficiency is 

closely related to the light collection efficiency. These VOC 

and η models are accredited with very good statistical indi-

cators 𝑅2 = 0.906 – 0.918; 𝑄𝑐𝑣
2 = 0.845 – 0.849; S= 0.045 – 

0.112; F=14.524 – 16.846, highlighting their acceptability and 

performance in predicting open-circuit voltage characteristics 

and conversion efficiency (VOC and ɳ). These models are not 

arbitrary. All five Tropsha criteria are met, demonstrating the 

predictive effectiveness of the established models. The sig-

nificance of these two QSPR models through validity tests 

and ranges of applicability will play an important role in 

understanding the relationship between the selected de-

scriptors and the photovoltaic properties of coumarin deriva-

tives. This study could help us to design new photovoltaic 

compounds of coumarin derivatives with improved proper-

ties. 
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