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Abstract 

Lithium-ion battery is one of the core components of electric vehicles, and the state of charge-state of health estimation results of 

it is the key to restrict the safe and efficient use of it, which then affects the comprehensive performance of electric vehicles. 

However, SOC and SOH of lithium-ion batteries have a coupling relationship, and have fast and slow time-varying 

characteristics respectively, with inconsistent time scales. Hence, it is necessary to carry out SOC-SOH collaborative estimation 

and select a suitable time scale, which can ensure the accuracy and robustness of SOC-SOH collaborative estimation without 

consuming too much calculation cost. This article proposed an innovative hybrid optimization network to improve the ability of 

the analysis and feature extraction capability of the input sequences for precise SOC estimation. This hybrid network fully 

combines the advantages of convolutional neural network, bidirectional long short-term memory, attention mechanism. 

Additionally, kepler optimization algorithm is applied for hyperparameter optimization of the hybrid network for the first time 

according to our knowledge, and SOH is also estimated accurately for more ideal SOC estimation results. The experimental 

results of lithium-ion batteries indicate that the innovative hybrid optimization network can reach ideal SOC estimation results 

under different working conditions and ambient temperatures. The mean absolute error and root mean square error are 0.55% and 

0.72% respectively, only about a third of the SOC estimation results without considering SOH, which means that SOC-SOH 

collaborative estimation are very essential. Hence, this article is of great significance for the development of smarter battery 

management system. 
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1. Introduction 

Facing the increasingly severe energy shortage and envi-

ronmental pollution, Chinese government adopts more pow-

erful policies and measures, strive to peak carbon dioxide 

emissions before 2030, and strive to achieve "carbon neutral-

ity" by 2060 [1, 2]. Among them, transportation is the key 

control area in China to achieve the "double carbon" goal, and 

the carbon emissions in this field account for 10% of the total 

carbon emissions, and mainly led by road transport. Hence, it 

is an urgent need to vigorously develop the electric vehicle 

industry. 
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According to the Global Electric Vehicle Outlook 2024 

released by the international energy agency on April 23, 2024, 

the electric vehicle sales of China have been growing steadily 

since 2020 [3]. From the perspective of the global market 

share of new electric vehicles in 2023, China accounts for 

nearly 60%. With the growth of electric vehicle sales, the 

demand for batteries is also increasing. Lithium-ion battery 

with its high energy density, long cycle life, short charging 

time, low self-discharge rate advantages, has become the main 

battery type of electric vehicle energy supply, and is also the 

core component of electric vehicles, as shown in Figure 1. 

 
Figure 1. 2020-2030 China's lithium-ion battery actual loading demand and forecast loading demand. 

State of charge estimation (SOC) plays a crucial role in the 

whole battery usage process, for it directly determines the 

driving range of electric vehicles and affects other functions 

of the battery management system, such as state of health 

(SOH) estimation, thermal management, fault diagnosis, etc 

[4]. Moreover, accurate SOC estimation results are conducive 

to improving the lithium-ion battery use efficiency, formu-

lating reasonable charging/discharging strategies, and ex-

tending the lithium-ion battery service life, which can effec-

tively promote the safe and efficient application of the lithi-

um-ion battery in the field of electric vehicles [5]. However, 

the frequent changes in the speed of electric vehicles during 

the driving process will lead to nonlinear changes in the in-

ternal parameters of the lithium-ion battery such as tempera-

ture, voltage, current and internal resistance [6], so it is dif-

ficult to estimate SOC accurately and robustly. Therefore, the 

accurate and robust estimation of lithium-ion battery SOC 

remains a challenging task. 

So far, scholars at home and abroad have made great efforts 

and remarkable progress in SOC estimation. With the rapid 

development of deep learning theory and technology, da-

ta-driven SOC estimation methods have broad application 

prospects [7, 8]. Among them, convolutional neural network 

(CNN) and long short-term memory (LSTM) are the two most 

commonly popular networks [9]. 

Buchicchio et al. proposed a machine learning approach 

based on a CNN for SOC estimation [10], Fan et al. proposed 

a U-net architecture CNN to improve the SOC estimation 

accuracy [11], Kim et al. extracted high-level information 

features through 2-D time–frequency domain spectrogram 

analysis using CNN for more accurate SOC estimation and 

the spectrogram helped improve the model’s generalization 

performance [12]. Hannan et al. trained a CNN with learning 

rate optimization strategies to estimate SOC. The proposed 

network is capable of estimating SOC at constant and varying 

ambient temperature on different drive cycles without having 

to be retrained [13]. Sharma et al. integrated an atten-

tion-based mechanism into a CNN framework to achieve 

accurate and computationally efficient SOC estimation results 

[14]. 

Based on the traditional LSTM, Ren et al., E. Bobobee et al., 

H. Xu et al, Chai et al. optimized the hyperparameters of 

LSTM by the particle swarm optimization algorithm [15-17] 

and random search algorithm [18] respectively for more en-

hanced and more adequate adaptability SOC estimation re-

sults. Jia et al. introduced the Hausdorff difference to improve 

the memory unit in the LSTM network, and introduced the 

order to enhance the degree of freedom of the LSTM network 

[19]. They also introduced the improved Borges derivative 

order to build a “bridge” to optimize the hyperparameters in 

the LSTM network, and the optimization of the hyperparam-

eters parameters is converted to the optimization of the orders 

[20]. These two work both reaches satisfactory SOC estima-

tion. Moreover, Chen et al. combined a LSTM with a 

self-attention mechanism to enhance the process capability of 

the traditional LSTM network [21] and Xu et al. proposed an 

integrated attention mechanism to improve the performance 

of the LSTM network to estimate SOC [22]. 
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Inspired by the past research of CNN and LSTM for SOC 

estimation, this paper develops an innovative hybrid optimi-

zation network by fully combing the advantages of CNN and 

bidirectional LSTM (BiLSTM). Additionally, the attention 

mechanism (Att) is introduced to enhance important features 

and avoid irrelevant information affecting the result, and the 

kepler optimization algorithm (KOA) is applied for hy-

perparameter optimization of the hybrid network for the first 

time according to our knowledge. SOH, which has a strong 

correlation with SOC according to the definition is estimated 

by forgetting factor recursive least squares (FFRLS). More-

over, the capacity convergence coefficient is introduced to 

ensure more accurate and reasonable SOH estimation results, 

and the temperature correction method based on the Arrhenius 

equation is applied to correct the ambient temperature effect 

during the SOH estimation process. Thus, SOC estimation 

accuracy can be further improved. 

Therefore, the main contributions of this work can be 

summarized as follows: (1) CNN-BiLSTM-Att hybrid opti-

mization network is proposed to improve the ability of the 

analysis and feature extraction capability of the input se-

quences for precise SOC estimation; (2) KOA is applied for 

hyperparameter optimization of the hybrid network and SOH 

is also estimated accurately, for more ideal SOC estimation 

results; (3) The capacity convergence coefficient and the 

temperature correction method based on the Arrhenius equa-

tion are applied for precise SOH estimation. 

The remainder of this paper is organized as follows. The 

innovative hybrid optimization network is proposed in Sec-

tion 2. The experimental results and analysis are given in 

Section 3. The conclusion and future work are described in 

Section 4. 

2. Innovative Hybrid Optimization 

Network 

CNN-LSTM is a commonly used SOC estimation network 

model [23, 24]. CNN uses one-dimensional convolutional 

neural network to extract spatial advanced features from 

lithium-ion battery data, and obtains complex spatial features. 

LSTM uses logic gates to extract time-domain correlations 

between features. Therefore, CNN-LSTM network structure 

considers both spatial characteristics and time series charac-

teristics of the data. 

However, one-way LSTM can only consider the influence 

of the previous sequence data on the existing data, but cannot 

feedback the learning of the later text to the previous text for 

judgment, that is, it cannot be integrated learning based on the 

context. Meanwhile, the effects of gradient vanishing and 

gradient explosion on the long time series have not been 

eliminated. The hyperparameter optimization of network is 

worthy of further study as well. 

Hence, Figure 2 shows the innovative hybrid optimization 

network proposed in this paper. The input layer include 

voltage, current, temperature, SOH. The hybrid optimization 

network first captures the spatial features of the input se-

quence through CNN, then captures the time-domain corre-

lation of the input sequence through BiLSTM, and finally 

better understands the correlation within the sequence through 

attention mechanism. The output layer is SOC. This hybrid 

optimization network integrates advantages of different net-

works, making it suitable for a wide range of applications, 

thus improving the ability of the analysis and feature extrac-

tion capability of the input sequences. 

 
Figure 2. Innovative hybrid optimization network. 
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2.1. CNN 

CNN is usually composed of input layer, convolution layer, 

pooling layer, fully connection layer, and output layer, which 

is trained by backpropagation algorithm to make it better to 

predict the target [25], as shown in Figure 3 and Eq. (1). 

 
Figure 3. CNN network structure. 

𝑌𝑖 = 𝑓(𝑋𝑖⊗𝜔𝑖 + 𝑏𝑏)                (1) 

where ⊗ represents the convolution operation. 𝜔𝑖 and 𝑏𝑏 

are the weight matrix and the bias respectively. 𝑓(⋅) is the 

activation function. 

2.2. BiLSTM 

BiLSTM is based on a one-way LSTM, adding a backward 

propagation LSTM layer, which can understand and represent 

the sequence data more comprehensively [26], as shown in 

Figure 4 and Eq. (2). 

 
Figure 4. BiLSTM network structure. 

BiLSTM is composed of two independent LSTM, and the 

input sequences enter two LSTM in positive order and reverse 

order respectively for time-domain feature extraction. It has 

better feature extraction efficiency and prediction perfor-

mance compared with a single LSTM. 

𝑦𝑡 = 𝜎(𝑊𝑦 ∙ [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡] + 𝑏𝑦)             (2) 

where 𝑦𝑡 is the output, ℎ⃗ 𝑡 and ℎ⃖⃗𝑡 are the forward layer state 

and the backward layer state respectively. 𝑊𝑦 and 𝑏𝑦 are the 

weight matrix and the bias respectively. 𝜎  is the sigmod 

activation function. 

2.3. Attention Mechanism 

Attention mechanisms can assign different weights to dif-

ferent input features to enhance important features and avoid 

irrelevant information affecting the result [27], as shown in 

Figure 5. 

 
Figure 5. Attention mechanism calculation process. 

Attention mechanism calculation process can be divided 

into three steps. Firstly, the attention score is calculated by 

calculating the correlation between the Query and Key, as 

shown in Eq. (3). 

𝑠𝑡 = tanh⁡(𝑊ℎℎ𝑡 + 𝑏ℎ)               (3) 

where tanh represents hyperbolic tangent activation function. 

Secondly, the attention score is normalized based on the 

softmax function and the weights of the important features are 

highlighted, as shown in Eq. (4). 

𝛼𝑡 =
𝑒𝑠𝑡𝑣

∑ 𝑒𝑠𝑡𝑣𝑛
𝑡=1

                     (4) 

where v is a constant. 

Finally, the attention value is obtained by weighted sum-

mation of the values according to the weight coefficients, as 

shown in Eq. (5)-(6). 

ℎ𝑡
∗ = ∑ 𝛼𝑡ℎ

𝑛
𝑡=1                    (5) 

𝑦𝑡 = 𝜎(𝑊𝑦 ∙ ℎ𝑡
∗ + 𝑏𝑦)               (6) 

where ℎ𝑡
∗ is the output of the attention layer. 
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2.4. Kepler Optimization Algorithm 

The KOA is an intelligent optimization algorithm inspired 

by the laws of planetary motion formulated by Johannes 

Kepler [28]. In the KOA, individuals represent planets in the 

solar system, and the position and velocity of each individual 

reflect its motion state in the solar system. The core idea of the 

algorithm is to simulate the influence of gravitational forces 

from the sun on the planets, as well as the interaction of 

gravitational forces between planets, to update the positions 

and velocities of individuals, thereby solving optimization 

problems. The computational process is as Table 1. 

2.5. SOH Estimation 

Considering that SOC and SOH are coupled with each 

other and have inconsistent time scales, SOH needs to be 

updated at the right time, as shown in Eq. (7). 

∑ 𝜂𝐼𝑗Δ𝑡
𝑘
𝑗=𝑘−𝐿𝑠+1

= 𝑄𝑛,𝑘(𝑆𝑂𝐶𝑘 − 𝑆𝑂𝐶𝑘−𝐿𝑠+1) + 𝑒𝑘   (7) 

where 𝜂 is the coulomb efficiency, 𝐼𝑗 is the terminal current, 

Δ𝑡=1 s is the sampling period, 𝐿𝑠 is the sampling number, 𝑒𝑘 

is the Gaussian white noise. 𝑄𝑛,𝑘 can be estimated by FFRLS. 

In this paper, the micro time scale for SOC estimation is 1 s, 

the macroscopic time scale for SOH estimation is 300 s. 

Meanwhile, based on the authors’ previous research funda-

ment [29], the capacity convergence coefficient 𝛿 is intro-

duced to ensure that 𝑄𝑛,𝑘 would not change abruptly during 

normal use, thus for more accurate and reasonable SOH es-

timation results, as shown in Eq. (8). 

{
𝛿 = |

𝑄𝑛,𝑗−𝑄̅𝑛,𝑘

𝑄̅𝑛,𝑘
| ≤ 𝜉, 𝑗 = 𝑘 − 𝑆 + 1,… , 𝑘

𝑄̅𝑛,𝑘 =
1

𝑆
∑ 𝑄𝑛,𝑘−𝑟
𝑆−1
𝑟=0 , 𝑘 ≥ 𝑆

      (8) 

where 𝜉 is the allowable fluctuation range, 𝑄̅𝑛,𝑘  is the av-

erage value of the first S steps since the kth system sampling 

period of 𝑄𝑛,𝑘. 

After that, the temperature correction method based on the 

Arrhenius equation is applied to correct the ambient temper-

ature effect during the SOH estimation process, promising the 

SOH estimation results are not affected by the ambient tem-

perature, as shown in Eq. (10). 

𝑄𝑛,𝑘 = 𝑄𝑛,𝑘 + 𝑄𝑛,𝑟𝑒𝑓 − 𝑄𝑛,𝑟𝑒𝑓𝑒𝑥𝑝[
𝐸𝑎𝑐𝑡
𝑄𝑛

𝑅
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)]   (9) 

where 𝑄𝑛,𝑟𝑒𝑓 is the maximum available capacity of the lith-

ium-ion battery at 𝑇𝑟𝑒𝑓=25°C. The temperature sensitivity of 

the 𝑄𝑛,𝑘 is controlled by the activation energy 𝐸𝑎𝑐𝑡
𝑄𝑛  (J/mol). 

R=8.8143 J/(mol⋅K) is the universal gas constant. T is the 

ambient temperature. 

Finally, SOH can be estimated as Eq. (11). 

SOH =
𝑄𝑛

𝑄𝑛𝑜𝑟𝑚𝑎𝑙
                    (10) 

where, 𝑄𝑛𝑜𝑟𝑚𝑎𝑙 is the rated capacity of the lithium-ion bat-

tery. 

3. Experimental Results and Analysis 

3.1. SOC Estimation Results 

To substantiate the innovative hybrid optimization Net-

work for SOC-SOH collaborative estimation introduced in the 

previous section, a lithium-ion power battery, INR 

18650-20R, is utilized. The established experimental setup is 

mainly including a battery charging and discharging behavior 

test equipment, a environmental simulation equipment and a 

PC. 

This paper uses 80% data as the training set and 20% data 

as the test set. The input layer is composed of the terminal 

voltage, the terminal current, the average temperature of the 

battery surface, the SOH, as shown in Eq. (11). 

(

𝑈𝑘
𝐼𝑘
𝑇𝑘

𝑆𝑂𝐻𝑘

𝑈𝑘−1 … 𝑈𝑘−𝑀
𝐼𝑘−1
𝑇𝑘−1

𝑆𝑂𝐻𝑘−1

……
…

𝐼𝑘−𝑀
𝑇𝑘−𝑀

𝑆𝑂𝐻𝑘−𝑀

)         (11) 

where M=20 is the window width of the input sequence. 

Figures 6–8 show the SOC estimation results under dif-

ferent working conditions at 25°C. In Figures 6–8, the black 

line “true” represents the SOC value obtained in the labora-

tory environment and it is a reference value to evaluate the 

SOC estimation performance, the remaining lines of different 

colors represent different SOC estimation algorithms. 

 
Figure 6. SOC estimation results at DST, 25°C. 
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Figure 7. SOC estimation results at BJDST, 25°C. 

 
Figure 8. SOC estimation results at UDDS, 25°C. 

They show that the proposed CNN-BiLSTM-Att-KOA can 

reach ideal SOC estimation results and it is obviously superior 

to other methods under different working conditions. When 

the SOC is less than 50%, the electrochemical reaction inside 

the battery is more complex. However, on the one hand, the 

BiLSTM structure can be used to read the data information 

from the front and back respectively, mining the internal 

relationship between the data, fitting the current data, and 

improving the SOC estimation accuracy. On the other hand, 

the attention mechanism assigns different weights to each 

feature, which improves the SOC estimation stability. 

Meanwhile, KOA is used to optimize the network hyperpa-

rameters. Therefore, the advantages of the 

CNN-BiLSTM-Att-KOA are more obvious. 

Figures 9–11 show the SOC estimation errors distribution 

frequency under different working conditions at 25°C. 

 
Figure 9. SOC estimation error distribution frequency at DST. 

 
Figure 10. SOC estimation error distribution frequency at BJDST. 

 
Figure 11. SOC estimation error distribution frequency at UDDS. 
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They show that the SOC estimation error distribution in-

terval of it is obviously smaller than that of other methods. 

The maximum absolute error of the proposed method is less 

than 1%, 1.5%, 1.8% under DST, BJDST, UDDS respectively, 

which are all smaller than other methods under the corre-

sponding working condition. 

Figure 12 shows the SOC estimation statistical character-

istics at different working conditions and ambient tempera-

tures of the proposed method. The mean absolute error (MAE) 

and root mean square error (RMSE) are 0.55% and 0.72% 

respectively. The SOC estimation error reduces significantly 

with the increase of the ambient temperature. As the ambient 

temperature increases from 5°C to 45°C, the mean MAE 

reduces from 0.82% to 0.36%, reduced by 56.10%, the mean 

RMSE reduces from 0.94% to 0.54%, reduced by 42.55%. It 

means that the high ambient temperature within a certain 

range facilitates accurate SOC estimation and the network has 

strong generalization ability. 

 
Figure 12. SOC estimation results at different working conditions 

and ambient temperatures. 

3.2. SOH Estimation Results 

Figure 13 shows the SOH estimation results under different 

ambient working conditions at 25°C. The initial SOH esti-

mation value is configured at 100% to validate the correction 

and the convergence capabilities of the algorithm. In Figure 

18, the black line “true” represents the SOH value obtained 

through capacity test and it is a reference value to evaluate the 

SOH estimation performance, the remaining lines of different 

colors represent different working conditions. 

Figure 14 shows the SOH estimation errors distribution 

frequency under different ambient working conditions at 

25°C. The maximum absolute error of the proposed method is 

less than 1.3%, 1.9%, 1.6% under DST, BJDST, UDDS re-

spectively. 

 
Figure 13. SOH estimation results at 25°C. 

 
Figure 14. SOH estimation error distribution frequency at 25°C. 

Figure 15 shows the SOH estimation results at different 

working conditions and ambient temperatures. 

 
Figure 15. SOH estimation results at different working conditions 

and ambient temperatures. 
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The MAE and RMSE are all below 0.80% and 1.00% re-

spectively. The SOC estimation error reduces significantly 

with the increase of the ambient temperature. As the ambient 

temperature increases from 5°C to 45°C, the mean MAE 

reduces from 0.71% to 0.58%, reduced by 18.30%, the mean 

RMSE reduces from 0.89% to 0.73%, reduced by 17.98%. It 

means that the high ambient temperature within a certain 

range also facilitates accurate SOH estimation. Combined 

Figure 12 and Figure 15, it indicates that the SOC estimation 

results as well as SOH estimation results both exhibit the 

poorest at 5°C. It may mainly because that the battery per-

formance is more unstable and experiences more pronounced 

variations at low temperatures. 

In order to further explain the necessity of SOC-SOH col-

laborative estimation, Figure 16 shows the SOC estimation 

results under different working conditions at 35°C with dif-

ferent input layers. 

 
Figure 16. SOC estimation results at 35°C. 

The black line represents the SOC value obtained in the 

laboratory environment, the red line represents the SOC es-

timation without considering SOH, the blue line represents 

the SOC estimation considering SOH. It indicates that the 

SOC estimation accuracy considering SOH is significantly 

higher than that without considering SOH. The mean MAE 

and the mean RMSE of the former are 0.38% and 0.56%, 

rather that of the latter is 1.12% and 1.58%, reduced by 71.64% 

and 64.56% respectively. 

Figure 17 shows the SOC estimation errors distribution 

frequency under different working conditions at 35°C with 

different input layers. It shows that the SOC estimation error 

distribution interval of the input layer considering SOH is 

obviously smaller than that of the input layer without con-

sidering SOH. The maximum absolute error of the former is 

less than 1%, 2.2%, 1.8% under DST, BJDST, UDDS re-

spectively, rather that of the latter is less than 2.8%, 6.4%, 

3.2%, reduced by 64.29%, 65.63%, 43.75% respectively. 

Figure 18 shows the SOC estimation statistical character-

istics at different working conditions and ambient tempera-

tures without considering SOH in the input layer. Compared 

Figure 18 with Figure 12, SOC estimation results of the input 

layer without considering SOH is much worse. The mean 

MAE and the mean RMSE are 1.54% and 2.05%, which are 

nearly three times of that of the input layer considering SOH, 

that means SOC-SOH collaborative estimation are very es-

sential. 

 
Figure 17. SOC estimation errors distribution frequency with dif-

ferent input layers. 

 
Figure 18. SOC estimation results without considering SOH in the 

input layer. 

4. Conclusions 

In this article, an innovative hybrid optimization network is 

proposed to improve the ability of the analysis and feature 

extraction capability of the input sequences for precise SOC 
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estimation. This hybrid network fully combines the ad-

vantages of CNN, BiLSTM, Att. Specifically, CNN first 

captures the spatial features of the input sequence, then 

BiLSTM captures the time-domain correlation of the input 

sequence, it not only considers the influence of the previous 

sequence data on the existing data, but also feedbacks the 

learning of the later text to the previous text for judgment. 

Finally, Att helps better understands the correlation within the 

sequence. Moreover, KOA is applied for hyperparameter 

optimization of the hybrid network and SOH is also estimated 

more accurately by FFRLS, the capacity convergence coeffi-

cient and the temperature correction method, for more ideal 

SOC estimation results. 

The experimental results indicate that the innovative hybrid 

optimization network can reach ideal SOC estimation results 

under different working conditions and ambient temperatures. 

The mean MAE is 0.51% rather that of the traditional CNN is 

1.24%, reduced by 58.87% at 25°C. The mean RMSE is 0.60% 

rather that of the traditional CNN is 1.34%, reduced by 55.22% 

at 25°C. For SOH estimation, the mean MAE and the mean 

RMSE of the proposed method are 0.62% and 0.80% respec-

tively at 25°C. It is worth noting that as the ambient temper-

ature increases from 5°C to 45°C, the mean MAE and the 

mean RMSE of both SOC estimation results and SOH esti-

mation results are reduced. It means that the high ambient 

temperature within a certain range facilitates accurate SOC 

estimation and SOH estimation, and the innovative hybrid 

optimization network has strong generalization ability. Addi-

tionally, compared with the input layer without considering 

SOH, SOC estimation results in this article is obviously su-

perior, which highlights the necessity of SOC-SOH collabo-

rative estimation. The mean MAE and the mean RMSE are 

reduced by 71.64% and 64.56% respectively at 35°C. 

Subsequent research endeavors should encompass the in-

corporation of additional ambient temperature points and 

battery aging degree points to validate the efficacy of the 

proposed multi-time-scale improved adaptive unscented 

Kalman filter presented in this article. Furthermore, as the 

research outcomes are currently derived from laboratory 

conditions, it is imperative to further demonstrate the feasi-

bility and effectiveness of the proposed method in real-world 

application scenarios. 
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Appendix 

Table 1. KOA Optimization Process. 

Process Mathematical Formulas 

Initialization process 

Xi
j
=Xi, low

j
+rand[0,1]× (Xi,up

j
-Xi,low

j
) , {

i=1,2,…,N.

j=1,2,…,d.
  

ei=rand[0,1],i=1,…,N;  

Ti=|r|,i=1,…,N;  

Defining the gravitational force Fg
i
(t)=ei×μ(t)×

M̅s×m̅i

R̅i
2
+ε

+r1  
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Process Mathematical Formulas 

Calculating an object’ velocity 

Vi(t)=

{
 
 

 
 l×(2r4X⃗⃗ i-X⃗⃗ b)+l ̈×(X⃗⃗ a-X⃗⃗ b)+ (1-Ri-norm

(t))

×J×U⃗⃗ 1×r 5×(X⃗⃗ i,up-X⃗⃗ i,low),if Ri-norm
(t)≤0.5 

r4×L×(X⃗⃗ a-X⃗⃗ i)+ (1-Ri-norm
(t)) ⁡⁡               

×J×U2×r 5×(r3X⃗⃗ i,up-X⃗⃗ i,low),Else ⁡⁡⁡          

⁡  

l=U⃗⃗ ×M×L  

L= [μ(t)×(Ms+mi) |
2

Ri(t)+ε
-

1

ai(t)+ε
|]

1

2
  

M=(r4×(1-r4)+r4)  

U⃗⃗ = {
0                     r 5≤r 6
1                     Else,

  

J = {
1,            if r 4≤0.5

-1,                 Else,
  

l ̈=(1-U⃗⃗ )×M⃗⃗⃗ ×L  

M⃗⃗⃗ =(r3×(1-r 5)+r 5)  

U⃗⃗ 1= {
0                     r 5≤r4

1                     Else,
  

U2= {
0                     r3≤r4

1                     Else,
  

Escaping from the local optimum / 

Updating objects’ positions X⃗⃗ i(t+1)=X⃗⃗ i(t)+ J×V⃗⃗ i(t)+(Fg
i
(t)+|r|)×U⃗⃗ ×(X⃗⃗ 

s
(t)-X⃗⃗ i(t))  

Updating distance with the Sun X⃗⃗ i(t+1)=X⃗⃗ i(t)×U⃗⃗ 1+(1-U⃗⃗ 1)×(
X⃗⃗ i(t)+X⃗⃗ s+X⃗⃗ a(t)

3.0
+h×(

X⃗⃗ i(t)+X⃗⃗ s+X⃗⃗ a(t)

3.0
-⁡X⃗⃗ b(t)))      

Elitism X⃗⃗ i,new(t+1)= {
X⃗⃗ i(t+1),                      if f(X⃗⃗ i(t+1))≤f(X⃗⃗ i(t))

X⃗⃗ i(t),                                                  Else
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