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Abstract 

The growing interest in employing radar for human activity recognition is driven by the exponential rise in the incidence and risk 

of falls associated with aging, compounded by diminished leg strength, prolonged medication side effects, visual impairments, 

and other variables that contribute to decreasing strength. In comparison to contact devices and other non-contact devices, radar 

exhibits considerable advantages in terms of non-contact capability, accuracy, resilience, detection range, and privacy security. 

Radar-based Human Activity Recognition (HAR) works by using a Doppler frequency shift to figure out what people are doing. 

This shift creates unique Doppler signatures. The Doppler frequency shift is when electromagnetic waves change their frequency 

and wavelength depending on how fast the observer is moving compared to the source. This paper presents Radar based human 

activity recognition based on a convolutional neural network. Specifically, this paper utilized public datasets available by 

University of Glasgow, United Kingdom. The radar utilizes Novelda's X4 system-on-chip (SoC), with an integrated receiver and 

transmitter antenna, providing very precise distance and motion measurements. The target was located 0.45 meters from the radar 

at the time of data collection. The investigation makes use of PyTorch to implement classification through CNN architectures. 

The CNN model demonstrates effective ability to detect human activities within radar-based RF images. Although the model 

proves resilient it requires a larger collection of labelled data to reach higher performance standards. 
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1. Introduction 

By 2050, there will be a predicted 21.64% rise in the global 

population of elderly individuals over 65 [1]. With aging came 

an exponential increase in the effect and risk of falls because 

of decreased leg strength, long-term drug side effects, visual 

impairments, and other factors that reduced strength. Fall rates 

differ between countries. For instance, according to a South-

east Asian study, Japan has 20% of its older population fall per 

year, compared to 6 to 31% in China. According to research 

conducted in the American region, the annual percentage of 

senior individuals who fall varies from 21.6% in Barbados to 

34% in Chile. Still, a lot of old individuals fall at home. Ac-

cording to estimates from 2002, 28.6% (26-31%) of Italians 65 

years of age and older fall within a year. Of these, 43% have 

several falls. Home is where 60% of falls happen [2]. When it 

comes to older adults living independently in their own homes, 

about half of the falls happen in the home and its immediate 

surroundings. These falls typically happen in areas that are 

used frequently, like the kitchen, bathroom, living room, and 
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bedroom. The remaining falls happen in public places or in 

other people’s homes [3]. The world has become quite con-

cerned with fall detection and prediction in recent years [4]. 

Physiological reasons include age, a history of falls (for exam-

ple, plantar phobia), mobility issues, sleep difficulties, and 

neurological illnesses are among the many factors that con-

tribute to falls. Environmental factors also play a role. Dim 

light, smooth surfaces, and other environmental conditions are 

examples [5]. Though it doesn't stop falls from happening, fall 

prediction does necessitate taking into account all affecting 

circumstances. Health care providers are the only ones who 

should utilize fall risk assessment as a reference because fall 

prediction has a high likelihood of false alarms [6]. As such, 

the primary means of addressing the incidence of fall incidents 

is fall detection. Fall events and activities of daily living are 

the primary targets of fall detection systems now in use, which 

share a similar structure [7]. Sensing technologies play a cru-

cial role in detecting and recognizing signals in healthcare. 

Over the past decade, a range of sensor technologies became 

available on the market. Unwanted outcomes and detrimental 

downstream impacts throughout the machine learning pipeline 

have been documented in recent research as a result of data 

problems [8, 9]. Given that falls are the primary cause of fatal 

injuries in the elderly, such as fractures, early detection of falls 

is crucial in preventing loneliness, fractures, loss of con-

sciousness, and other related consequences. Therefore, the risk 

of falls in today's ageing society is a critical concern. Conse-

quently, the number of systems designed to detect falls has 

significantly increased in recent years. Furthermore, medical 

studies of the harm caused by falls have shown that this is 

greatly influenced by the speed of response and rescue. These 

falls constitute a minimum of 50% of the reasons for hospital-

ization among the elderly, and around 40% of their non-natural 

causes of death. At a time when the identification and preven-

tion of falls are vital for the welfare of older and susceptible 

persons, it is of paramount significance to get a high level of 

precision in detecting such occurrences [10]. 

The growing interest in employing radar for human activ-

ity recognition is driven by the exponential rise in the inci-

dence and risk of falls associated with aging, compounded by 

diminished leg strength, prolonged medication side effects, 

visual impairments, and other variables that contribute to 

decreasing strength. Human activity recognition (HAR) with 

Doppler radar is essential for applications in smart homes, 

assisted living, and medical diagnostics [17]. In comparison 

to contact devices and other non-contact devices, radar ex-

hibits considerable advantages in terms of non-contact capa-

bility, accuracy, resilience, detection range, and privacy se-

curity [11], greater resilience to variations in ambient condi-

tions, including illumination, weather, temperature, and hu-

midity [17]. Moreover, the power consumption and expense 

of radar-based systems are significantly cheaper than those 

of camera-based solutions. Radar-based Human Activity 

Recognition (HAR) works by using a Doppler frequency shift 

to figure out what people are doing. This shift creates unique 

Doppler signatures. The Doppler frequency shift is when 

electromagnetic waves change their frequency and wave-

length depending on how fast the observer is moving com-

pared to the source [12]. Typically, in radar-based human 

activity recognition (HAR), the raw radar signal is initially 

converted to the time-frequency domain using the short-time 

Fourier transform, resulting in a 2-D matrix known as the 

radar spectrogram [17]. Radar-based human activity recogni-

tion primarily encompasses continuous wave radar, ul-

tra-wideband radar, and frequency-modulated continuous 

wave radar. FMCW radar is very good at finding people be-

cause it can measure quickly, has a low peak-to-average 

power ratio, and can measure both speed and distance at the 

same time [18]. 

Recent approaches in human motion classification have 

utilized deep neural networks (DNNs). Deep neural networks 

are limited, though, by the fact that they can't use large data 

sets for proper training and performance validation. Also, 

DNNs are only used for time-frequency (TF) representations, 

and their performance hasn't been fully tested on a difficult 

database like ours, which has a lot of participants, locations, 

and viewing angles [16]. This paper presents Radar based 

human activity recognition based on a convolutional neural 

network. 

2. Radar Principle of Operation 

Throughout the measurement process, an FMCW radar 

continuously emits a signal with a linearly modulated fre-

quency [19]. The fundamental representation of a radar signal 

reflecting towards a target is given by [13]: 

𝑠𝑡(𝑡) = sin(2𝜋ƒ𝑐𝑡 + 𝜋𝑎𝑡2)            (1) 

In equation 1, the slope is defined as α and mathematically 

represented as: 

α =
Ω

𝑇𝑐
,               (2) 

𝑇𝑐  = chirp duration. Ω = chirp bandwidth 

The range resolution 𝑅𝑟𝑒𝑠, 𝑅𝑟𝑒𝑠 =  
𝑐

2Ω
         (3) 

The range resolution 𝑅𝑟𝑒𝑠 is impacted by the chirp band-

width, Ω, and the speed of light, c 

The received signal 𝑠𝑟(𝑡), corresponding to an attenuated 

and delayed 𝑇d copy of the transmitted signal 𝑠𝑡 (t), reflects 

from a target positioned at distance d and is given by the 

following: 

𝑠𝑟(𝑡) = 𝜉𝑠𝑡(𝑡 - 𝑇d)                 (4) 

attenuation coefficient = 𝜉, thus 𝑇d is given by: 
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𝑇𝑑 =
2𝑅

𝑐
                   (5) 

R = target range. 

Intermediate frequency (IF) signal is written as: 

𝑦(𝑡) = −
𝜉

2
cos 2𝜋𝛼𝑇𝑑t + 2𝜋ƒ𝑐𝑇𝑑 - 𝜋𝛼𝑇𝑑

2           (6) 

The distance calculation, maximum distance, velocity 

calculation and maximum velocity is given by [14]: 

ƒ𝑏 =
2𝑑

𝑐
∙ 𝑆                       (7) 

S = the slope of the chirp and d = distance between the radar 

and the objects, d can be estimated as shown below: 

𝑑 =  
ƒ𝑏𝑐

2𝑆
                       (8) 

The maximum distance is given as: [29]. 

𝑑𝑚𝑎𝑥 = √
𝜎 𝑃𝑡𝑥𝐺𝑡𝑥𝐺𝑟𝑥𝜆2

(4𝜋)3𝐿𝑃𝑟𝑥

4
              (9) 

In equation 9, 𝑑𝑚𝑎𝑥 = maximum detectable range 

𝑃𝑡𝑥 = transmission power 

𝐺𝑡𝑥  and 𝐺𝑟𝑥  = the antenna gains of the transmitter and 

receiver 

𝜆 = wavelength 

L = loss of the entire system 

𝑃𝑟𝑥 = maximum power required for the reciever to receive 

the signal. 

Assuming an object is moving at velocity 𝑣, then the dis-

placement of the object between any two successive chirps 

would be 𝑇𝑐 ∙  𝑣. 

The second chirp signal would have travelled an additional 

distance of ∆𝑑 =  2 ∙  𝑇𝑐  ∙  𝑣 

The phase of a sinusoid before and after travelling a dis-

tance ∆𝑑 can be written as 

2𝜋ƒ (𝜏 + 
∆𝑑

𝑐
) 

The phase shift would be: 

∆ɸ = 2𝜋ƒ (𝜏 + 
∆𝑑

𝑐
) - 2𝜋ƒ 𝜏 = 2𝜋ƒ 0

∆𝑑

𝑐
 = 2𝜋

∆𝑑

𝑐
   (10) 

Therefore, the phase shift between two chirps due to the 

velocity is: 

∆ɸ = 2𝜋 
2∙ 𝑇𝑐 ∙ 𝑣

𝜆
                   (11) 

By transposition: 

𝑣 = 
𝜆∆ɸ

4𝜋𝑇𝑐
                   (12) 

Since the phase of a signal always has a range of [-𝜋, 𝜋], 

Unambiguous measurement of the phase requires |∆ɸ|≤

180° or |∆ɸ|≤ 𝜋. 

Considering the extreme situation where ∆ɸ = 𝜋, t 

Then: 

𝑣𝑚𝑎𝑥 = 
𝜆𝜋

4𝜋𝑇𝑐
 = 

𝜆

4𝑇𝑐
                  (13) 

The maximum range, 𝑅𝑚𝑎𝑥 , 

𝑅𝑚𝑎𝑥 =
𝐶

2𝛼𝑇𝑠
                (14) 

3. Related Work 

The study in [12] suggests a radar-based system for de-

tecting human activity that combines range-time-Doppler 

maps with range-distributed convolutional neural networks. 

To see how well the proposed model worked, tests were done 

using the "radar signatures of human activities" dataset from 

the University of Glasgow. The proposed model did better at 

identifying things and making recognition errors less frequent 

compared to CNNs with the same number of parameters. The 

authors in reference [16] presented Radar Data Cube Pro-

cessing for Human Activity Recognition utilizing Mult sub-

space Learning. The proposed RDC-based method starts with 

a step called eCLEAN, which is meant to get rid of any un-

wanted data distortions and noise artifacts. They showed that 

the multidimensional PCA method is better than those that use 

predefined features, 1-D and 2-D PCA features, and a 12-layer 

CNN by using MDC. They collected two sets of data from 

two different indoor scenarios. Five distinct motions were 

examined in the experiments: falling (191 samples), sitting 

(213 samples), bending (203 samples), kneeling (108 sam-

ples), and walking (112 samples). They executed movements 

in five distinct orientations: 0°, 30°, 45°, 60°, and 90°. For a 

5-class activity recognition task, the suggested method 

worked 97.2% of the time using 1D-PCA, preset features, 

2D-PCA, and CNN on the spectrograms. For 1D-PCA, 

pre-defined features, 2D-PCA, CNN, and MPCA, the average 

classification accuracy is 65.32%, 73.65%, 83.10%, 84.54%, 

and 91.4%, in that order. In study [17], a simple data en-

hancement method for micro-Doppler radar-based human 

activity identification (HAR) was described. Their method for 

adding to the training dataset works well because it keeps the 

kinematic information in the spectrograms. The proposed 

technique can be seamlessly included into the training process 

of the DNNs without necessitating any pretraining phase. By 

mitigating the overfitting issue resulting from inadequate data, 

radar-based human activity recognition can employ larger 

networks with deeper architectures. Their investigations re-

vealed that the augmentation strategy enhances generalization 

to previously unencountered data, which is crucial for prac-

tical applications, and also exhibits robustness across many 

contexts. The research in [18] mostly examines the imple-
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mentation of continuous HAR technology. Their research is 

mostly about finding the best order and window for the frac-

tional order domain of radar data. Utilizing the multi-input 

multi-task (MIMT) recognition network, the characteristics of 

each domain are concurrently evaluated, and various input 

representations are merged to achieve continuous activity 

categorization results with high accuracy. They compare the 

segmentation efficacy of the activity detector using 

VW-STA/LTA with two other segmentation methods to ex-

amine its impact. This article suggests the CMDN, which 

effectively gets around the problems with current methods 

that rely on single-domain data and fixes the issue of how to 

accurately separate and find ongoing human activities. The 

authors in reference [21] developed a real-time radar-based 

gesture recognition system implemented on an 

edge-computing platform. Their proposed multi-feature en-

coder might effectively store the gesture profile as a feature 

cube, which can then be fed into a shallow CNN for gesture 

classification. They used a variety of inputs to get continuous 

activity classification results with a high level of 98.47% 

precision and an average level of 93.11% accuracy, using 

gestures from people who were told what to do and people 

who weren't told what to do. Their suggested radar-based 

gesture recognition system could be used for many things, like 

mobile and wearable tech, because it works well at detecting 

gestures and doesn't require a lot of processing power. Future 

projects will require the creation of diverse gesture datasets 

tailored to specific applications. Also, the proposed system 

might not be able to accurately classify things when the radar 

is not fixed in relation to the user. Table 1 below depict 

summarized literature review on related work. 

Table 1. Radar-Based HAR. 

Research Description Methodology Efficiency 
Research Gaps/ Recom-

mendation 

Refer-

ence 

Radar-Based Human 

Activity Recognition 

Combining 

Range-Time-Doppler Maps 

and 

Range-Distributed-Convolu

tional Neural Networks 

Tests were done using the "radar 

signatures of human activities" 

dataset from the University of 

Glasgow 

The proposed model did 

better at identifying things 

Recognition errors less fre-

quent compared to CNNs 

with the same number of 

parameters. 

[12] 

Radar Data Cube Processing 

for Human Activity Recog-

nition Using Multi subspace 

Learning 

Mult subspace Learning, PCA 

Multidimensional PCA 

method is better than those 

that use predefined fea-

tures 

For 1D-PCA, pre-defined 

features, 2D-PCA, CNN, and 

MPCA, the average classifi-

cation accuracy is 65.32%, 

73.65%, 83.10%, 84.54%, 

and 91.4%, in that order. 

[16] 

RadarSpecAugment: A 

Simple Data Augmentation 

Method for Radar-Based 

Human Activity Recogni-

tion 

Augmentation method 
Exhibits robustness across 

many contexts. 

Their investigations revealed 

that the augmentation strat-

egy enhances generalization 

to previously unencountered 

data, which is crucial for 

practical applications 

[17] 

CMDN: Continuous Human 

Activity Recognition Based 

on Multi-domain Radar 

Data Fusion 

short-time fractional Fourier 

transform (STFrFT) to map 

radar data into the fractional 

domain 

Utilizing the multi-input 

multi-task (MIMT) 

recognition network, the 

characteristics of each 

domain are concurrently 

evaluated, and various 

input representations are 

merged to achieve con-

tinuous activity categori-

zation results with high 

accuracy. 

This article suggests the 

CMDN, which effectively 

gets around the problems 

with current methods 

[18] 

HAROOD: Classifying 

Human Activity and De-

tecting Out-of-Distribution 

using short-range FMCW 

Suggested a two-stage network 

for classification that combines 

triplet loss, contrastive loss, and 

intermediate reconstruction loss 

For out-of-distribution 

detection, an average 

AUROC of 95.04% and 

an average classification 

Future research could ex-

amine how this approach 

performs in more compli-

cated settings and how it can 

[19] 
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Research Description Methodology Efficiency 
Research Gaps/ Recom-

mendation 

Refer-

ence 

radar in the first stage, and 

cross-entropy loss in the sec-

ond. 

accuracy of 96.51% were 

obtained. 

be used to a wider variety of 

tasks. 

A metric learning method 

for activity recognition 

based on MIMO radar 

Used a metric learning tech-

nique for categorization after 

capturing micro-doppler and 

angular velocity signatures 

using a MIMO radar. 

88.9% classification ac-

curacy was attained for 

eight activities; 86.42% 

accuracy was attained for 

10 activities using 

few-shot learning. 

In order to improve model 

resilience, future research 

might concentrate on ex-

panding the dataset's size 

and diversity and investigat-

ing how this method might 

be applied in practical situa-

tions. 

[20] 

Real-time gesture recogni-

tion and detection using 

radar integrated into an 

edge computing platform 

Created a framework for re-

al-time data processing with a 

60 GHz FMCW radar system, 

extracting detailed hand profiles 

and utilizing a shallow CNN to 

recognize gestures. 

Displayed the capacity to 

accurately classify 12 

gestures in real time while 

maintaining a high 

F1-score. 

Future research could ex-

amine how this system can 

be integrated into multiple 

applications and evaluate 

how well it performs in var-

ious real-world situations. 

[21] 

Human Activity Recogni-

tion (HAR) using millimeter 

wave radar for a medical 

monitoring robot 

For real-time monitoring, a 

lightweight deep neural network 

system with a light-PointNet 

backbone and a bidirectional 

lightweight LSTM model was 

proposed for a moveable ro-

bot-mounted mmWave radar 

system. 

Beat prior research on 

both continuous and dis-

crete HAR tasks by a 

significant margin. 

Future studies could exam-

ine how this approach is 

implemented in different 

healthcare environments and 

evaluate how well it func-

tions in practical situations. 

[22] 

Recognizing radar-based 

activities with CNN-LSTM 

network architecture 

Used convolutional layers to 

train features and LSTM layers 

to improve temporal infor-

mation in a CNN-LSTM archi-

tecture for radar micro-doppler 

signature picture classification. 

Accuracy for training and 

testing data was 96.8% 

and 93.5%, respectively. 

Future research could ex-

amine how well this archi-

tecture performs with vari-

ous radar systems and inves-

tigate its application to a 

broader range of activities. 

[23] 

Radar HAR with a Deep 

Learning Network based on 

attention 

Suggested a deep learning net-

work for radar HAR that is 

based on attention, with an 

emphasis on improving feature 

extraction utilizing attention 

mechanisms. 

Showed higher recogni-

tion accuracy as com-

pared to conventional 

methods. 

Future studies could exam-

ine how attention mecha-

nisms can be applied to dif-

ferent kinds of radar data 

and how well they work in 

various HAR tasks. 

[24] 

HAR based on DenseNet 

and frequency-modulated 

continuous waves 

Gathered FMCW radar point 

clouds, then using a DenseNet 

neural network to identify hu-

man activity from these read-

ings. 

For five tasks, 100% 

recognition accuracy was 

attained. 

In order to evaluate the sys-

tem's resilience and general-

izability, future research 

might concentrate on testing 

it in increasingly complicat-

ed settings and with a wider 

range of tasks. 

[25] 

mmWave radar-based atten-

tion-based vision trans-

former for classifying hu-

man activities 

Used a slice segment technique 

and time-frequency feature 

representation of the mi-

cro-Doppler map to create a 

modified vision transformer 

network for radar-based HAR. 

Demonstrated improved 

performance over con-

ventional methods. 

Future studies should exam-

ine how vision transformers 

can be applied to other kinds 

of radar data and how well 

they work in various HAR 

tasks. 

[26] 

Continuous classification of 

human activity using 

Bi-LSTM networks from 

FMCW radar 

Classified continuous human 

activities from FMCW radar 

data using Bi-LSTM networks, 

paying particular attention to 

High categorization accu-

racy was attained for a 

number of activities. 

Bi-LSTM networks may be 

used to additional kinds of 

radar data in future research, 

and their performance in 

[27] 
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Research Description Methodology Efficiency 
Research Gaps/ Recom-

mendation 

Refer-

ence 

temporal dependencies in the 

data. 

various HAR tasks may be 

examined. 

Classification of human 

activity using Deep Convo-

lutional Neural Networks 

based on micro-Doppler 

signatures 

Used deep convolutional neural 

networks to categorize human 

activity using radar-captured 

micro-Doppler signals. 

Showed remarkable clas-

sification accuracy across 

a range of tasks. 

Future studies could concen-

trate on enhancing the mod-

el's resistance to data fluctu-

ations and investigating how 

it might be used in practical 

situations. 

[28] 

 

4. Methodology 

This section thoroughly investigated human activity 

recognition using radar-based radio frequency (RF) signals. 

The aim of the system is to classify various human activities 

based on the RF signal pattern, which enables real-time and 

batch classification. 

4.1. Dataset Description 

This investigation utilized public datasets available by 

University of Glasgow, United Kingdom. The dataset link: 

https://researchdata.gla.ac.uk/view/author/39488.html. The 

Radar Dataset used in this paper was divided into six distinct 

folders: A, E, I, O, U, and Empty. The dataset comprises 

several activities collected by the UWB Radar sensor (Xethru 

X4M03). The radar utilizes Novelda's X4 system-on-chip 

(SoC), with an integrated receiver and transmitter antenna, 

providing very precise distance and motion measurements. 

The target was located 0.45 meters from the radar at the time 

of data collection. Every task required 6 seconds for comple-

tion. We linked Radar to a PC with Intel(R) Core (TM) 

i7-7700 3.60 GHz processors and 16 GB RAM using the 

modular connection XEP. We employed the experimental 

configuration to obtain the data [15]. 

Table 2. Details of the Data Set (Folders, Files, Description, and Number of Samples) [15]. 

Number of 

Subjects 
Folder Name Technology Description 

Number of Samples 

per Class 

1 

Subject1(M)_With Mask 

Radar 

Male subject pronounced the vowel and 

Empty Data using Mask 
300 

Subject1(M)_Without Mask 
Male subject pronounced the vowel and 

Empty Data using Without Mask 
300 

2 

Subject2(F1) _With Mask 

Radar 

Female subject pronounced the vowel and 

Empty Data using Mask 
300 

Subject2(F1) _Without Mask 
Female subject pronounced the vowel and 

Empty Data using Without Mask 
300 

3 

Subject2(F2) _With Mask 

Radar 

Female subject pronounced the vowel and 

Empty Data using Mask 
300 

Subject2(F2) _Without Mask 
Female subject pronounced the vowel and 

Empty Data using Without Mask 300 

The features are derived from images along with the main categories which include: 

1) Pixel-level Feature (Raw Image Data) 

2) Convolutional Features (Learned Features) 

3) This investigation adopts the letters derived from metadata labelling as its target feature known as Class Labels (Target Fea-

ture). 
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Figure 1. Target feature known as Class Labels. 

4.2. Data Acquisition 

The first stage of radar based human activity identification 

through deep learning involves data acquisition. Various envi-

ronmental and operational frequency events and antenna con-

figuration patterns affect the quality profile of data acquisition. 

The Authors in [16] selected commercially available FMCW 

radars because of their compact physical design and Doppler 

distance information together with time and range capabilities. 

They also used a multilinear subspace learning method to anal-

yses radar data cubes that combine slow-time, fast-time and 

Doppler frequency elements to improve HAR effectiveness. 

4.3. Data Acquisition and Segmentation 

Similar to the mathematical normalization of a dataset, data 

preprocessing can have a substantial effect on the accuracy of 

feature extraction and picture analysis results. The initial data 

collected by radar systems normally carries both unwanted 

noise levels and superfluous data elements, hence require 

process of fine-tuning involves to modify the parameters of 

the previously trained model to better suit the features of the 

target dataset. The primary functions of preprocessing steps 

involve signal quality improvement while extracting relevant 

features from data. The three main preprocessing techniques 

include clutter removal and normalization procedures and 

transferring the data into time-frequency forms that appear as 

spectrograms. Radar Spec Augment represents an impressive 

technique which executes data augmentation procedures di-

rectly on radar spectrograms by implementing time shifts as 

well as frequency masking to enhance neural network capa-

bilities during restricted training processes [17]. During 

segmentation, continuous radar data are broken into distinct 

segments which corresponds to individual activities. In [18], 

Short-Time Fractional Fourier Transform (STFrFT) tech-

niques were utilised to convert radar data into fractional fields 

for extracting precise motion features for continuous HAR. 

5. Implementation Result 

5.1. Confusion Matrix 

In Figure 2, we plotted confusion matrix of proposed 

system for the subject labelled as A, E, I, O, U, and Empty. A 

confusion matrix displays classification performance 

through its depiction of actual labels on the y-axis and pre-

dicted labels on the x-axis. The confusion matrix contains 

cells which present the number of predicted samples that fall 

under specific labels. Higher values in the data correspond 

with dark color blocks while lower values appear as light 

colors. Model performance analysis starts with the confusion 

matrix because it reveals vital information regarding which 

classes have better or worse prediction results. Correct 

classifications appear in the diagonal cells when predicted 

labels match the true labels. True label "A" along with other 

labels result in misclassifications appearing in cells located 

outside the main diagonal of the confusion matrix. The 

model shows complete ability to identify "Em" class data 

points while facing challenges when classifying "A" and "E" 

cases which produces non-zero readings outside its diagonal 

values. The graphical display provides insights into specific 

performance areas of individual classes to help developers 

improve modeling effectiveness (for example through 

weight modifications or increased training examples for 

specific classes). The matrix helps analysts understand both 

false categorization percentages and measures for model 

quality enhancement. 

 
Figure 2. Confusion matrix of proposed system. 
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5.2. True Against Predicted Label Plot 

In Figure 3, we plotted True against Predicted Label. The 

given scatter plot illustrates both actual blue dots representing 

true labels along with predictive red crosses for different 

samples. The y-axis shows the label values from 0 to 6 while 

the x-axis displays the sample indexes. This display shows 

what degree the model matches its predicted tags with true 

label values. The correct predictions are shown through the 

overlapping of matching blue dots with red crosses in the plot. 

Non-overlapping points indicate misclassifications. A mis-

match will appear in this plot when the model predicts value 2 

for a sample with actual label 3. The model struggles most to 

predict correctly based on how the red crosses deviate from 

the actual labels. 

 
Figure 3. True against Predicted Label plot. 

5.3. Training Loss and Accuracy Plot 

In Figure 4, we plotted Training Loss and Accuracy. Two 

lines represent the data points in the graph where loss is 

shown in blue and accuracy appears in red while both axes 

display values against epochs. The horizontal axis displays 

epochs whereas the vertical axis represents values for both 

loss and accuracy. The model performs error reduction suc-

cessfully during training which loss measurements demon-

strate. The blue line demonstrates that the loss remains at a 

low steady state throughout all epochs thus indicating the 

model has reached a point of stability in loss minimization. 

The accuracy measurement exhibits growth through each 

epoch cycle that is visible on the red line. Accuracy increases 

steadily throughout the epochs until it reaches an optimal 

point where it shows minor improvements. This pattern shows 

that the model converges to an optimal accuracy level after 

which more training probably would not enhance its perfor-

mance significantly. 

 
Figure 4. Training loss and accuracy. 
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5.4. Velocity against Time Plot 

In Figure 5, we plotted Velocity against Time Plot. The 

presented graph displays velocity values (red line) that change 

according to each epoch (period of time). The velocity data 

points stand on the y-axis alongside epoch numbers located 

across the x-axis. The speed of model learning or change across 

epochs represents velocity for this purpose. Changes in learning 

dynamics become visible through variations in the velocity 

measurement. Model learning speed accelerates during inter-

vals of significant velocity changes between epochs but veloc-

ity reduction suggests learning stagnation occurs. The large 

differences between velocities show that learning patterns are 

unstable during this process. The model requires better learning 

rate adjustments possibly due to data-related fluctuations in 

training efficiency throughout different epochs. Academic 

research shows that a flat velocity graph indicates the best 

training conditions because it represents system stability and 

learning consistency during the process. 

 
Figure 5. Velocity against Time Plot. 

6. Performance Evaluation 

There are four main ways to measure how well the pro-

posed radar domain and CNN models work: accuracy, preci-

sion, recall, and F1 score in this paper. The metrics are derived 

by juxtaposing projected outcomes with actual findings, 

yielding four potential returns: true positive (TP), true nega-

tive (TN), false positive (FP), and false negative (FN) [13]. 

6.1. Accuracy 

Accuracy denotes the comprehensive efficacy of the model. 

It is defined as the ratio of accurate forecasts, encompassing 

both true positives and true negatives, to the total predictions 

produced. [13]. 

Accuracy (%) = 
TP+TN

 TP + FP + TN +FN
 100 

6.2. Precision 

Precision assesses the model's reliability in categorizing an 

incident as positive. It emphasizes the ratio of true positives (TP) 

to the total number of positive predictions, encompassing both 

true positives and false positives (FP). Precision is crucial for 

reducing Type-1 errors (false positives) [13]. 

Precision is computed as TP divided by TP plus FP. 

Precision (%) = 100
TP

TP + FP 
 

6.3. Sensitivity 

In machine learning, sensitivity or recall, quantifies the 

ability of a model to correctly identify positive events. It is the 

ratio of true positives accurately identified as positive [13]. 

Sensitivity (%) = 100
TP

TP + FN 
 

6.4. F1 score 

In order to offer a balanced assessment of a system's per-

formance, the F1 score takes into account both precision and 

recall. The F1 score is a harmonic mean of recall and precision, 

offering a balanced assessment of both measurements [13]. 

Mathematically, 

F1 = 
2+ (Precision + Recall)

Precision + Recall
 

F1 is the weighted average of Precision and Recall. 

The model's performance is analyzed using accuracy scores, 

loss curves, and validation performance. Result includes: 

Epoch 1, Loss: 2.0473, Accuracy: 29.10% 

Epoch 2, Loss: 1.4396, Accuracy: 37.29% 

Epoch 3, Loss: 1.2930, Accuracy: 46.81% 

Epoch 4, Loss: 1.1545, Accuracy: 54.31% 

Epoch 5, Loss: 1.0486, Accuracy: 57.99% 

Epoch 6, Loss: 0.9264, Accuracy: 61.67% 

Epoch 7, Loss: 0.8400, Accuracy: 68.06% 

Epoch 8, Loss: 0.7548, Accuracy: 72.01% 

Epoch 9, Loss: 0.6214, Accuracy: 77.22% 

Epoch 10, Loss: 0.5053, Accuracy: 81.25% 

Epoch 11, Loss: 0.4302, Accuracy: 84.58% 

Epoch 12, Loss: 0.4121, Accuracy: 83.75% 

Epoch 13, Loss: 0.3744, Accuracy: 85.90% 

Epoch 14, Loss: 0.3806, Accuracy: 86.32% 

Epoch 15, Loss: 0.3195, Accuracy: 88.26% 

Epoch 16, Loss: 0.2843, Accuracy: 89.86% 

Epoch 17, Loss: 0.2447, Accuracy: 90.97% 

Epoch 18, Loss: 0.2649, Accuracy: 89.72% 

Epoch 19, Loss: 0.2595, Accuracy: 89.93% 

Epoch 20, Loss: 0.2314, Accuracy: 91.74% 
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7. Conclusion 

Human activity recognition is an essential task with several 

applications in the entertainment, security, and medical sectors. 

In recent decades, the discipline of Human Activity Recogni-

tion has seen a revolution thanks to machine learning tech-

niques, especially deep learning algorithms. This paper mainly 

investigated human activity recognition based on a convolu-

tional neural network. The classification of the subsections 

reflects the researchers' primary focus on specific stages and 

highlights the primary contributions of this study. Analyzing 

individual sample predictions becomes easier through inspec-

tion of the true versus predicted plot. The training loss and 

accuracy plot demonstrates how the model learns during its 

entire process. A confusion matrix provides detailed perfor-

mance assessment by examining model success or failure ac-

cording to each classification category. The velocity-time plot 

enables observers to assess training dynamics while helping 

detect abnormal patterns during the process. The trained deep 

learning system achieves high performance for detecting hu-

man activities by processing radar-based RF image data. An 

improvement in model results would require larger datasets that 

have been appropriately annotated. 
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CNN Convolutional Neural Network 
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