
Journal of Electrical and Electronic Engineering 

2025, Vol. 13, No. 1, pp. 46-58 

https://doi.org/10.11648/j.jeee.20251301.15  

 

 

*Corresponding author:  

Received: 9 January 2025; Accepted: 27 January 2025; Published: 17 February 2025 

 

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed 

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. 
 

 

Research Article 

Three-State Non-Stationary Hidden Markov Model for an 

Improved Spectrum Inference in Cognitive Radio Networks 

Emmanuel Oluwatosin Rabiu1, * , Damilare Oluwole Akande1 ,  

Zachaeus Kayode Adeyemo1 , Ayobami Olatunde Fawole2 ,  

Job Adedamola Adeleke3  

1Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria 

2Department of Electrical Engineering, The Polytechnic, Ibadan, Nigeria 

3Department of Electrical Engineering (Telecommunication Option), Pan African University, Institute for Basic Sciences, 

Technology and Innovation, Nairobi, Kenya 

 

Abstract 

Spectrum manufacturers, operators and regulators are faced with the challenge of meeting the astronomical increase in demand by 

spectrum users due to the limited available radio spectrum already fixed for licensed or Primary Users (PUs). The emergence of 

Cognitive Radio Network (CRN) allows unlicensed or Secondary Users (SUs) to opportunistically access spectrum holes left 

unused by the PUs through spectrum sensing, management, sharing and mobility functionalities with the aid of algorithms and 

protocols. However, CRN suffers prolonged delay with negative impact on spectral efficiency. In order to improve the spectral 

efficiency, spectrum inference was introduced. Yet, inaccurate spectrum inference by existing mechanisms could not solve 

spectrum underutilization effectively due to persistent false alarm, interference and missed detection of PUs. Two-state 

Non-Stationary Hidden Markov Model (NSHMM) focused only on idle and busy states of PUs while previous work on three-state 

Stationary Hidden Markov Model (SHMM) did not consider the time-varying property of channel states obtainable in real scenarios 

where the state transition probability of a PU is time-varying. This work has proposed three-state NSHMM for spectrum inference 

in CRNs by formulating its parameters and modelling PU's dwell time distributions to realize the time-varying property of the 

stochastic PU behavior apart from the fuzzy state that takes care of noisy effects and undetermined or incomplete observations in the 

existing mechanisms where only idle and busy states were mostly recognized. The performance of the proposed mechanism was 

evaluated using Probability of Detection (PD), Prediction Accuracy (PA) and Spectrum Utilization Efficiency (SUE). The results 

were compared to the performance metrics obtained from spectrum inference of existing 2-state NSHMM and 3-state SHMM. The 

simulation results obtained revealed that the proposed three-state NSHMM spectrum inference mechanism gave the best 

performance with the highest PD, PA and SUE which curtailed PU collision because of its least possible chances of incorrect 

detection of primary users and least false alarm. The outstanding performance of the proposed NSHMM was due to its 

non-stationarity as well as the fuzzy state incorporated in the development of the mechanism. Therefore, the proposed three-state 

NSHMM for an improved spectrum inference in CRNs has grossly abated PU collision, false alarm and spectrum underutilization. 
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1. Introduction 

With the current astronomical increase in the demand for 

interconnection of devices globally and extreme scarcity of 

spectrum, it has become important to develop a robust spec-

trum inference mechanism in Cognitive Radio Networks 

(CRNs) that can efficiently utilize all the available licensed 

frequency bands. The primary functionalities of CRNs are 

spectrum sensing, spectrum management, spectrum sharing 

and spectrum mobility [1-3]. Spectrum inference was devel-

oped to alleviate the processing delays introduced by the four 

modules in CRNs and to improve the efficiency of spectrum 

utilization [1, 4-6]. 

Spectrum inference is also known as "Spectrum Occupancy 

Prediction (SOP)" or simply "Spectrum Prediction". It is a 

way of inferring or predicting the PU occupancy state of radio 

spectrum from already known or measured spectrum occu-

pancy statistics by effectively exploiting the inherent correla-

tions among them in a proactive manner [7]. Such inference is 

used by the unlicensed or Secondary Users (SUs) to decide 

where and when to carry out transmissions without affecting 

PUs. It ensures minimal fluctuation between channels, energy 

reduction and increase in Quality of Service (QoS). The use-

fulness of spectrum inference when applied to each function-

ality of CRN is illustrated diagrammatically in Figure 1 [7, 8]. 

 
Figure 1. The Usefulness of Spectrum Inference in CRNs. 

Hidden Markov Model (HMM) is the most widely used 

spectrum inference mechanism to determine the true status of 

a licensed user by employing its statistical properties and 

historical characteristics. It is particularly used when energy 

efficiency is a major factor to be considered [9-11]. A major 

weakness of conventional HMM is its inflexibility in the 

modelling of channel states. Hence, the Non-Stationary Hid-

den Markov Model (NSHMM) is a variant that addresses the 

weakness by modelling state transitions of PU's as a function 

of time for better prediction accuracy, improved spectrum 

utilization efficiency and robustness [12]. Its application cut 

across predicting spectrum occupancies, modelling sequential 

data, part-of-speech tagging and networking [13]. However, 

the limitations of previous works on two-state NSHMM and 

three-state conventional or stationary HMM (SHMM) 

mechanisms characterized by the PU's spectrum being idle or 

busy and non-consideration of the time-varying nature of PU's, 

respectively, inspire this research interest [6, 14, 15]. 

The existence of Markov chain in spectrum occupancy of 

PUs was validated by [16] from real-time measurements. The 

work used maximum likelihood (MLH) method for predicting 

idle or busy state and formulated spectrum sensing problem 

into a HMM paradigm. However, the PU's behavior pattern 

could not be well represented by stationary HMM and two 

states alone. Introduction of a learning-based hidden Markov 

model (HMM) by [17] was done to predict the channel activ-

ities such that channel selection is prioritized. The work 

showed that the proposed stationary HMM could predict the 

channel activities with good accuracy after sufficient training 

but limited to 2-state spectrum inference. 

A channel quality prediction based on Bayesian inference 

in cognitive radio networks using a novel two-state 

Non-Stationary Hidden Markov Model (NSHMM) was pre-

sented by [1]. The work designed a channel quality metric 

which accounted for the spectrum sensing accuracy and the 

expected channel idle duration time. The approach provided 

more high-quality transmission opportunities and higher 

successful transmission rates at shorter waiting times for 

dynamic spectrum access than stationary HMM. However, the 

work could not resolve false alarm and interference to PU due 

to the two-state spectrum inference adopted. Two-state spec-

trum occupancy prediction was presented by [18] using sta-

tionary HMM. The work simulated the performance of mean 

prediction error against the model parameters in terms of 

channel sensing errors and channel occupancy transitions. 

The work proved HMM to be a viable spectrum inference 

technique but did not consider time-varying property of PU 

and was limited to two states only. 

Spectrum inference based on advanced High-order Hidden 

Bivariate Markov Model for CRN was proposed by [19]. The 

approach applied two-dimensional parameters (hidden pro-

cess and underlying process) to describe the channel behavior 

and fully explored the hidden correlation of previous states for 

spectrum inference. The method achieved remarkably higher 

prediction accuracy in a mobile environment based on the 

results of the extensive simulations carried out. However, 

there was computational complexity due to high order of 
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HMM variant employed and only two states of spectrum 

occupancy were considered which faulted the approach with 

false alarm and imperfect detection of PUs. In [20], two-state 

Non-Stationary Hidden Markov Model (NSHMM) and Hid-

den Bivariate Markov Model (HBMM) was employed for 

spectrum inference in CRNs through simulations and re-

al-time application. Algorithms for parameter estimation of 

proposed approach were compared in this work but good 

performance was obtained with a windowed version of the 

Baum algorithm and 2-state NSHMM. However, the proposed 

approach had increased complexities associated with high 

order 50 employed which adversely degraded the Spectrum 

Utilization Efficiency (SUE). The work also failed to resolve 

collisions with the PUs because of the limitation of 2-state 

NSHMM employed. 

The impact of busy and idle states prediction errors on the 

spectrum and energy efficiency of Cooperative Spectrum 

Prediction (CSP) in CRNs was studied by [21] using station-

ary HMM and Multilayer Perceptron (MLP) neural network. 

The results showed significant improvement in the spectrum 

efficiency of SU's CSP at the cost of a small degradation in 

energy efficiency compared to Single Spectrum Prediction 

(SSP). However, only the busy and idle states were considered 

neglecting also the time-varying property of the channel states. 

A novel three-state SHMM for spectrum prediction in CRNs 

was proposed by [15]. The three hidden states identified by 

the work as in practical scenarios were "idle", "busy" and 

"fuzzy" states. The results obtained revealed that the 3-state 

spectrum prediction technique gave a better performance with 

improved prediction accuracy, probability of detection and 

spectrum utilization efficiency over the 2-state HMM. How-

ever, the major structural weakness of the HMM mechanism 

was its fixed geometrical distribution of the channel states 

which limits its wide range of applications. 

The inaccuracies of the two-state spectrum inference 

mechanisms were aggravated when an idle channel is pre-

dicted busy leading to false alarm or when busy channel is 

predicted idle leading to missed detection and subsequent 

interference with the PU. More importantly, how long a 

channel has been occupied by the licensed PU's, or otherwise, 

would be a major determinant to be considered in order to 

grossly improve spectrum utilization. Hence, a three-state 

non-stationary Hidden Markov Model for spectrum inference 

becomes imperative to effectively and accurately sense, pre-

dict and authorize unused/idle frequency band through the 

consideration of the time-varying property of PU's for an 

effective spectrum utilization and resource management in 

CRNs. 

In this paper, three-state Non-Stationary Hidden Markov 

Model (NSHMM) for an improved spectrum inference 

mechanism in CRNs has been proposed to attain enhanced 

prediction accuracy, and better utilization of the spectrum 

with less complexity and reduction of interference to primary 

users. Forward algorithm, Viterbi algorithm and the 

Baum-Welch algorithm were employed for the three canoni-

cal problems of evaluation, decoding, and learning in HMM 

variants to be solved. The proposed mechanism was simulated 

using MATLAB R2020a. The performance of the proposed 

mechanism was evaluated using Probability of Detection (PD), 

Prediction Accuracy (PA) and Spectrum Utilization Effi-

ciency (SUE). The results were compared to the performance 

metrics obtained from spectrum inference of existing 3-state 

SHMM and 2-state NSHMM while varying Probability of 

False Alarm (PFA) and Signal-to-Noise Ratio (SNR). 

2. The System Mechanism 

The three-state NSHMM was proposed in this paper as a 

mechanism for spectrum inference in CRNs by modelling the 

PU's dwell time distributions not captured in SHMM mecha-

nism aside incorporating fuzzy state with the busy and idle 

states of two-state NSHMM spectrum inference mechanism in 

Cognitive Radio Networks. 

2.1. PU's Dwell Time Modelling 

The dwell time of a Primary User (PU) is the time duration 

expended by the PU at a particular state before its transition. 

The duration of a channel in idle, busy or fuzzy state is proven 

to be exponentially distributed [22, 23]. If the PU's varying 

time while at the state 𝑠𝑖 is denoted by 𝓉, then the probabil-

ity density function, 𝑓(𝓉), is given by Equation (1). 

𝑓(𝓉)  = 𝜆𝑒−𝜆𝓉                (1) 

where, 𝜆 is the rate parameter of the exponential distribution 

and the expected value of the varying time, 𝐸[𝓉], is given by 

Equation (2): 

𝐸[𝓉]  =  1/𝜆                 (2) 

The allocated time slot length for a PU is denoted by 𝑡𝑠, in 

order to compute the self-transition probabilities ' 𝑎𝑖𝑖(𝜏) ' 

which are the probabilities of channel being in the same state 

during the whole duration, 𝜏. 

Hence, 

𝑎𝑖𝑖(𝜏)  =  1 −  ∫ 𝑓(𝓉)𝑑𝓉
𝜏𝑡𝑠

𝓉=0
          (3) 

𝑎𝑖𝑖(𝜏) =  𝑒−𝜆𝜏𝑡𝑠               (4) 

Since transition can only take place between two states at a 

go, the outward state transition probabilities 𝑎𝑖𝑗(𝜏) is ex-

pressed as in Equation (5). 

𝑎𝑖𝑗(𝜏)  = 1 − 𝑎𝑖𝑖(𝜏) = 1 −  𝑒−𝜆𝜏𝑡𝑠       (5) 

where, 𝑖 ≠ 𝑗 at any point in time but both 𝑖 and 𝑗 could be 1, 

2, 3 at different times representing idle, busy and fuzzy states 
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respectively. 

Figure 2 illustrates PU's dwell time of the proposed 

three-state NSHMM spectrum inference mechanism. Three 

PU channels are represented in the illustration of a Cognitive 

Radio Network at varying time slots, 𝑡𝑠. 

 
Figure 2. Illustration of PU's Dwell Time of the proposed three-State 

NSHMM Spectrum Inference. 

At the first time slot, 𝑡𝑠=1, the proposed mechanism's pre-

diction of Channel 3 indicated it to be idle straight off, hence, 

no need for further prediction of next possible available 

channel and the SU would launch for transmission immedi-

ately provided that the true channel state is idle. At the second 

time slot, 𝑡𝑠=2, the first prediction of Channel 3 turned out 

busy signal, hence the second prediction was initiated. The 

second attempt also predicted Channel 2 to be busy which 

prompted another search for possibility of an available 

channel again. The third prediction was fuzzy and transmis-

sion was withheld by the SU in order to avoid interference 

with the PU. At 𝑡𝑠=3, the mechanism predicted Channel 2 

with idle signal of the PU channel which is a green clearance 

for the SU to utilize the unused spectrum. At 𝑡𝑠=4, the first 

prediction of Channel 1 was fuzzy which necessitated another 

prediction attempt. The second prediction confirmed Channel 

2 to be busy, hence, there's a good reason to relaunch the 

NSHMM spectrum mechanism. The third attempt eventually 

predicted Channel 3 to be idle whereby the SU could proceed 

with its transmission. This process could go on and on until 

the whole duration of allotted time slots, 𝜏 for the licensed 

spectrum users is exhausted. 

2.2. The Hypothesis and Formulation of 

Three-State NSHMM Parameters 

The proposed three-state NSHMM prediction mechanism 

based on the SU spectrum inference outcome which is de-

pendent on the true outcome of the PU transmission activities. 

An additional state named "fuzzy" was introduced in the 

previous work by [15] to enhance the existing two-state 

SHMM spectrum prediction model of the PU in busy or idle 

states. 

Let the received signal be denoted by 𝒴[𝑡] and expressed 

as follows: 

𝐻1 : 𝒴[𝑡] =  𝓌[𝑡]              (6) 

𝐻2: 𝒴[𝑡]  =  𝑥[𝑡]  +  𝓌[𝑡]           (7) 

𝐻3: 𝒴[𝑡] =  Ü[𝑡]              (8) 

where; 𝒴[𝑡] is the received signal, 

𝑥[𝑡] is the primary signal, 

𝓌[𝑡] is noise, 

Ü[𝑡] is the undetermined signal 

𝐻1: 1 → 𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑏𝑠𝑒𝑛𝑡 (𝑖𝑑𝑙𝑒) 

𝐻2: 2 → 𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑏𝑢𝑠𝑦) 

𝐻3 : 3 → 𝑃𝑈 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑢𝑛determined (𝑓𝑢𝑧𝑧𝑦) 

 
Figure 3. Illustration of Two-State Mechanism. 

 
Figure 4. Illustration of Three-State Mechanism. 

This can be illustrated diagrammatically as shown in Fig-

ures 3 and 4. In Figure 3, the two states are identified as idle 

and busy which have not truly represented the real Cognitive 

Radio Network because situations where the PU presence is 

undetermined was not distinctly identified. The undetermined 

status would then be classified as either idle or busy which 

results into PU collision or false alarm. Hence, Figure 4 shows 

the Venn diagram where the fuzzy state represents the inter-

section between the idle and busy states in uncertain situations 
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of unknown PU presence. This takes into cognizance the 

undetermined status separately such that the idle and busy 

states are clearly identified free of any uncertainty thereby 

reducing the PU collision as well as false alarm. 

The parameters of the proposed three-state NSHMM are 

initial state probability vector, transmission probability dis-

tribution and emission probability distribution which are 

derived as follows. 

NSHMM '𝜆𝑁𝑆 ' is formulated in Equation (9) as follows: 

𝜆𝑁𝑆  =  (𝜋, 𝐴𝑁𝑆, 𝐵)              (9) 

where; 𝜋  is the initial state probability vector and is 

expressed as: 

𝜋 =  [𝜋𝑖] =  𝑃(𝑞𝑡 = 𝑠𝑖), 1 ≤ 𝑖 ≤ 3        (10) 

where; 𝑞𝑡 ∈ 𝑆 represents the state at time instant, t 

𝑠𝑖 = {𝑠1, 𝑠2, 𝑠3} = 𝑆            (11) 

The summation of the initial state probabilities of each state 

is given as: 

∑ 𝜋𝑖  =  13
𝑖=1 , ∀ 0 ≤ 𝜋𝑖 ≤ 1         (12) 

This approach involves a hidden process (𝑞𝑡)  and an 

observable process (𝑜𝑡) both making up a doubly stochastic 

process which allows observation symbols to be emitted from 

each state with a finite probability distribution. 

Non-Stationary Hidden Markov Model (NSHMM) considers 

how long a channel stays in a certain state before transiting to 

another which is represented as 𝜏. This is well obtainable in 

real network where the transition probability of the proposed 

three-state NSHMM, 𝐴𝑁𝑆 is a function of 𝜏. Hence, 𝐴𝑁𝑆 is 

defined as the probability that the channel changes from state 

𝑠𝑖 to state 𝑠𝑗 with the consideration that it has been on state 

𝑠𝑖  for 𝜏  consecutive time slots. Therefore, the transition 

probability, 𝐴𝑁𝑆 , of the parameters of a NSHMM, 𝜆𝑁𝑆 =

(𝜋, 𝐴𝑁𝑆, 𝐵), is formulated as: 

𝐴𝑁𝑆 = 𝑎𝑖𝑗(𝜏)               (13) 

𝐴𝑁𝑆 = 𝑃(𝑞𝑡 = 𝑠𝑗|𝑞𝑡−1 = 𝑞𝑡−2 = ⋯ 𝑞𝑡−𝜏 = 𝑠𝑖)    (14) 

where, 1 ≤ 𝑖, 𝑗 ≤ 3  

The emission probability matrix or observation symbol 

probability distribution B in each state is the probability that 

symbol 𝑣𝑘 is emitted in state 𝑠𝑗 

𝐵 = 𝑏𝑗𝑘 = 𝑃(𝑜𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑠𝑗) ∀ 1 ≤ 𝑗 ≤ 3, ∀ 1 ≤ 𝑘 ≤ 3 (15) 

where, 

𝑣𝑘 = {𝑣1, 𝑣2, 𝑣3} = 𝑉             (16) 

V represents the space containing observable symbols per 

state and 𝑜𝑡 is the observable value at time instant t. 

𝑂 = 𝑜𝑡 ∈ 𝑉                (17) 

The summation of the emission probabilities of each state is 

given as: 

∑ 𝑏𝑗𝑘  =  13
𝑘=1 , 0 ≤ 𝑏𝑗𝑘 ≤ 1         (18) 

3. The Proposed Three-State NSHMM 

Spectrum Inference Mechanism 

The proposed approach makes it possible for a channel to 

transit to any state in a single transition process as illustrated 

in Figure 5. The output observation (ot) at time t is dependent 

only on the current state and not dependent on the previous 

states or observations. The time-duration (τ) expended by a 

channel in a particular state was considered in the 

computation of the transition probability aij(τ), where 1 ≤

𝑖, 𝑗 ≤ 3. 

The new optimal model parameter of NSHMM, λNS*=(π*, 

ANS*, B*), was computed for the proposed model in CRNs. 

The states of the channel Si of NSHMM have values of "1" for 

idle state, "2" for busy state, and "3" for fuzzy state. The past 

observation sequence in T consecutive slots remains as 𝑂 =

𝑜1, 𝑜2, 𝑜3 … , 𝑜𝑇  

 
Figure 5. Three-State Non-Stationary Hidden Markov Mechanism. 

3.1. The Prediction Process of the Proposed 

Mechanism 

The proposed spectrum inference mechanism predicts the 

channel state at (T+1)st slot in the following procedural steps: 

Step 1: Initialization: Set the initial parameters of the 

proposed model 𝜆𝑁𝑆0
= (𝜋0, 𝐴𝑁𝑆0

, 𝐵0) 

Step 2: Observation: The observed data sequence 𝑂 =

𝑜1, 𝑜2, . . . , 𝑜𝑇  was collected by the CRN 

Step 3: Estimation: The optimal parameter of the proposed 
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model, 𝜆𝑁𝑆
∗ , was estimated here. 

Step 4: Training: Given the observed sequence, the 

parameters of the model was trained using the Baum-Welch 

algorithm for maximizing the likelihood associated with the 

model and compute 𝑃(𝑂|𝜆𝑁𝑆
∗ ) 

Step 5: Decoding: Computed joint probabilities 𝑃(𝑂, 𝑞𝑡 =

𝑠𝑖|𝜆𝑁𝑆
∗ ) for 1 ≤ 𝑖 ≤ 3 

Step 6: Prediction: The NSHMM future state '𝑜(𝑇+1)𝑁𝑆
' at 

time (T+1) was predicted by Equation (19) where; 

𝑃(𝑂, 1|𝜆𝑁𝑆
∗ ) , 𝑃(𝑂, 2|𝜆𝑁𝑆

∗ )  and 𝑃(𝑂, 3|𝜆𝑁𝑆
∗ )  are the joint 

probabilities that an observation sequence 𝑜𝑇  in a three-state 

NSHMM will be followed by idle, busy and fuzzy channel 

state at a future time (T+1), respectively. 

Step 7: Transmission. SU's transmit if 𝑜(𝑇+1)𝑁𝑆
= 1 , 

otherwise repeat step 4. 

The overview of the proposed Three-State NSHMM 

Spectrum Mechanism is presented in Figure 6. 

𝑜(𝑇+1)𝑁𝑆
= {

1, 𝑖𝑓 𝑃(𝑂, 1|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 2|𝜆𝑁𝑆

∗ ) 𝑎𝑛𝑑 𝑃(𝑂, 1|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 3|𝜆𝑁𝑆

∗ )

2, 𝑖𝑓 𝑃(𝑂, 2|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 1|𝜆𝑁𝑆

∗ ) 𝑎𝑛𝑑 𝑃(𝑂, 2|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 3|𝜆𝑁𝑆

∗ )

3, 𝑖𝑓 𝑃(𝑂, 3|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 1|𝜆𝑁𝑆

∗ ) 𝑎𝑛𝑑 𝑃(𝑂, 3|𝜆𝑁𝑆
∗ ) > 𝑃(𝑂, 2|𝜆𝑁𝑆

∗ )
                  (19) 

3.2. Simulation of the Three-state Spectrum 

Inference Mechanism NSHMM 

The channel or source nodes in the primary network of the 

proposed mechanism is in the proposed three states namely - 

idle, busy or fuzzy. When in idle state, the channel is availa-

ble for source nodes among the SUs of the CRN to transmit 

information. When a source node is in a busy state, it indi-

cates that there is an already established connection in the 

primary network. Hence, the channel is unavailable for the 

SUs. Meanwhile, in a situation of unknown availability of 

the channel being introduced as fuzzy state, SUs are unde-

termined as regards transmitting any information thereby 

preventing unforeseen interference with the PUs. The simu-

lation of the proposed mechanisms was done using 

MATLAB R2020a. The performance a newly proposed 

communication system in the presence of real noise is re-

flected by deliberately generating and sending some amounts 

of noise through it. Hence, Additive White Gaussian Noise 

(AWGN) was added during the simulation being the basic 

and generally accepted noise model which imitates various 

random processes present in nature [24, 25]. The Rayleigh 

fading channel was used to statistically model the faded sig-

nal envelope because no direct line of sight (NLOS) compo-

nent was involved which makes the measurements over the 

NLOS paths accurate. An important parameter in communi-

cation system design is the maximum bandwidth which is set 

at 20 MHz in the simulation to suitably allow the frequency 

spacing of the channels [26]. MQAM was preferred among 

other modulation schemes because of its high data throughput 

and eminent usage in a variety of radio communications or 

data transmission applications as it combines the properties of 

Amplitude Shift keying (ASK) and Phase Shift Keying (PSK) 

[27, 28]. 

The Non-Stationary Hidden Markov Model (NSHMM) 

considers the time duration that a channel was used at a state 

prior to transition. Hence, the transition probability of the 

proposed mechanism is a function of time 𝑎𝑖𝑗(𝜏) which is 

the main distinction of this model from that of three-state 

spectrum inference mechanism of SHMM. The hidden 

channel occupancy states considered for the proposed 

mechanism remain idle, busy and fuzzy. Simulation of the 

model presented in Figure 6 was done by first setting the 

initial probability as 𝜆𝑁𝑆0
= (𝜋0, 𝐴𝑁𝑆0

∗ , 𝐵∗). The same ob-

servable sequence was collected as those of the previous 

work done on three-state stationary HMM. However, a dif-

ferent optimal model parameter, 𝜆𝑁𝑆
∗ , was estimated then 

training was required to maximize 𝑃(𝑂|𝜆𝑁𝑆
∗ ). Computation 

of the joint probabilities at the decoding stage of the simula-

tion derived 𝑃(𝑂, 𝑠𝑖|𝜆𝑁𝑆
∗ ). Hence, the prediction decision 

which determines the future channel state followed the rule 

as stated in Equation (19). The proposed spectrum inference 

mechanisms were simulated using MATLAB R2020a and the 

simulation model parameters are given in Table 1. Future 

research could investigate the practical hardware constraints, 

such as sensor accuracy or energy efficiency, that might af-

fect the implementation of the proposed mechanism in real 

CRNs. 

Table 1. Simulation parameters for the proposed mechanism. 

Parameters Type 

Modulation scheme MQAM 

Constellation size 128 

Fading Channel Rayleigh 

Noise AWGN 

Bandwidth 20 MHz 

Signal to Noise Ratio (0:2:20) 

Detector Energy Detector 

Detector Threshold 3 dB 

Detection Mode Root Mean Square 

Probability of False Alarm (0:0.01:0.1) 
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Figure 6. Overview of the Proposed Three-State NSHMM Spectrum Inference Mechanism for CRN. 

3.3. Performance Metrics of the Proposed 

Mechanism 

The performance metrics used in evaluating the perfor-

mance of the proposed spectrum inference mechanism are 

presented in this section. These include probability of detec-

tion, probability of missing, prediction accuracy, and spec-

trum utilization efficiency which are indicators of the ro-

bustness and adaptability of the mechanisms for an efficient 

spectrum utilization. The performance metrics were compared 

with those of two-state SHMM and three-state NSHMM 

simulated with ten thousand (10,000) prediction outcomes 

obtained from each model while varying SNR, Probability of 

False Alarm (PFA). M-ary QAM was the modulation of 

choice in the interest of this research because of its ability to 

carry higher data rates than ordinary amplitude or phase 

modulated schemes and it is mostly used for digital trans-

mission in radio communication applications. 

Probability of False Alarm, 𝑃𝐹𝐴, is the rate of detection 

failures that occur in relation to the presence of PU. In cog-

nitive radio, PFA is an important performance metric that 

expresses the chances of wrongly detecting the presence of 

PU when the spectrum is not actually occupied. The higher 

the 𝑃𝐹𝐴 , the more the amount of wrong detection of PU 

which leads to wastage of spectrum. Hence, low 𝑃𝐹𝐴 limits 

spectrum underutilization and at the same time increases PU 

protection [29, 30]. As documented by [31] for practical ap-

plications, the IEEE 802.22 recommends PFA of not more 

than 0.1 which this work has complied with. 

3.3.1. Probability of Detection 

Probability of detection, 𝑃𝐷 , is the probability that the 

proposed mechanism accurately detects the presence of PU in 

the channel. It indicates the rate of correct PU signal detec-

tions in the channel. PD is the metric used to define the cor-

rectness of PU detection. 

PD over a Rayleigh Fading channel has been formulated 

and expressed mathematically by [1] as given in Equation 

(20). 

𝑃𝐷 = 𝑒−
𝜒

2 ∑
1

𝑡𝑠!
(

𝜒

2
)

𝑡𝑠
+ (

1+𝜉̅

𝜉̅
)

𝑚−1

[𝑒
−

𝜒

2(1+𝜉̅) − 𝑒−
𝜒

2 ∑
1

𝑡𝑠!
(

𝜒𝜉̅

2(1+𝜉̅)
)

𝑡𝑠
𝑚−2
𝑡𝑠=0 ]𝑚−2

𝑡𝑠=0                      (20) 

where, 𝑡𝑠 is the allotted time slots, the threshold of the En- ergy Detector is denoted by 𝜒 and the time bandwidth prod-
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uct is denoted by 𝑚, while 𝜉  ̅ represents the average SNR of 

the SU on the primary channel. 

3.3.2. Prediction Accuracy 

Prediction accuracy, 𝑃𝐴, is the rate of correct predictions 

achieved by the proposed spectrum inference mechanism. The 

Receiver Operation Characteristics (ROC) and the confusion 

matrix table are veritable tools used to reveal the accuracy of 

prediction of the spectrum inference mechanism [32-34]. PA 

was derived by the ratio of the true outcomes to the total 

outcomes of the proposed mechanism as expressed in Equa-

tion (21). 

𝑃𝐴 =  
𝑇𝑟𝑢𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
             (21) 

3.3.3. Spectrum Utilization Efficiency 

In cognitive radio, the available spectrum for data trans-

mission is non-contiguous which implies that the transmitter 

is required to transmit over several non-adjacent bands. It is 

generalized that multiple non-contiguous bands in CRNs are 

equivalent to a continuous band in traditional wireless com-

munication systems having the same total bandwidth [35, 36]. 

Hence, the ratio of channel capacities of non-contiguous 

spectrum to those of contiguous spectrum with same total 

bandwidth has been identified as the Spectrum Utilization 

Efficiency. This work has derived the idle Spectrum Utiliza-

tion Efficiency (SUE) as the fraction or percentage of the 

number of idle slots predicted by the proposed mechanism to 

the total number of actual idle slots available in the system 

over a particular period of time. This is expressed in Equation 

(22). 

𝑆𝑈𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑙𝑒 𝑠𝑙𝑜𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑑𝑙𝑒 𝑠𝑙𝑜𝑡𝑠
        (22) 

4. Performance Evaluation of the 

Proposed Three-State NSHMM 

Mechanism 

The proposed Three-State NSHMM for Spectrum Infer-

ence Mechanism in CRN was evaluated using PD, PA and 

SUE and the results were compared with those of two-state 

NSHMM and three-state SHMM. The PFA values of 0.05 and 

0.1 and SNR values of 10 dB and 20 dB were chosen for the 

comparison purposes because of their notable significances at 

mid-way and extreme end of the Performance Metrics with no 

bias to tradeoff that maintains a balance between PU protec-

tion and minimizing spectrum wastages. 

4.1. Results of Probability of Detection 

Figures 7 and 8 show the Probability of Detection (PD) 

versus Probability of False Alarm (PFA) for the proposed 

three-state NSHMM and the existing two-state NSHMM and 

three-state SHMM at SNRs of 10dB and 20dB respectively. 

The SNR values of 10 dB and 20 dB were chosen for the 

comparison purpose due to their notable significances on the 

PD. In Figure 7, PD values of 0.7521, 0.5571 and 0.4493 were 

obtained at PFA of 0.05 for the proposed 3-State NSHMM, 

existing 3-State SHMM and 2-State NSHMM, respectively, 

while the corresponding PD values at PFA of 0.1 were 0.9024, 

0.6684 and 0.5391, respectively. 

 
Figure 7. PD versus PFA for the Proposed 3-State NSHMM and 

Existing Mechanisms at SNR of 10 dB. 

In like manner, Figure 8 represents PD versus PFA for the 

proposed 3-State NHMM, the existing 3-State SHMM and 

2-State NSHMM at SNR of 20 dB. 0.9783, 0.7247 and 0.5844 

were the PD values gotten at PFA of 0.05 for proposed 3-State 

NSHMM, existing 3-State SHMM and 2-State NSHMM, 

respectively, while the corresponding values at PFA of 0.1 

were 0.9990, 0.8696 and 0.7013. 

Consequently, the results obtained reveal that irrespective 

of the SNR considered, the proposed three-state NSHMM for 

spectrum inference mechanism in CRN gave higher Proba-

bility of Detection than the existing three-state SHMM and 

two-state NSHMM because of the consideration of the 

time-varying stochastic PU property aside identification of 

fuzzy state. It can be confirmed that PD increases as PFA 

increases for the three mechanisms at the expense of poor 

spectrum management. More importantly, the proposed 

mechanism complies with IEEE 802 standard where 10% or 

less of PFA is recommended and minimum PD of 90% is 

required for an efficient system. The proposed mechanism 

already attained PD of 97.83% at PFA of only 5% and PD of 

99.9% at PFA of 10% which is very commendable as an 

highly efficient spectrum inference mechanism. 
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Figure 8. PD versus PFA for the Proposed 3-State NSHMM and 

Existing Mechanisms at SNR of 20 dB. 

4.2. Results of Prediction Accuracy 

Figures 9 and 10 show the values of prediction accuracy 

obtained from the proposed mechanism of three-state 

NSHMM plotted against varying SNR of 0 dB to 20 dB along 

with those of existing three-state SHMM and two-state 

NSHMM at different PFA. The PFA values of 0.05 and 0.1 

were chosen for the comparison purpose due to their notable 

significances on the PA. Figure 9 is the PA versus SNR for the 

proposed 3-State NSHMM in comparison with the existing 

2-State NSHMM and 3-State SHMM at PFA of 0.05. PA 

values of 0.8012, 0.6449 and 0.5584 were obtained at SNR of 

10 dB for the proposed 3-State NSHMM, existing 3-State 

SHMM and 2-State NSHMM, respectively, while the corre-

sponding PA values at SNR of 20 dB were 0.9827, 0.7793 and 

0.6668, respectively. 

 
Figure 9. PA versus SNR for the Proposed 3-State NSHMM and 

Existing Mechanisms at PFA of 0.05. 

Also, Figure 10 depicts PA versus SNR for the proposed 

3-State NSHMM in comparison with the existing 2-State 

NSHMM and 3-State SHMM at PFA of 0.1. The PA values 

obtained at SNR of 10 dB were 0.9181, 0.7215 and 0.6128 for 

the proposed 3-State NSHMM, existing 3-State SHMM and 

2-State NSHMM, respectively, while 0.9991, 0.8904 and 

0.7491 were the corresponding PA values obtained at SNR of 

20 dB for the proposed 3-State NSHMM, existing 3-State 

SHMM and 2-State NSHMM, respectively. The results ob-

tained revealed PA increases as SNR increases for the mech-

anisms due to ratio of maximum to minimum eigenvalue that 

increases as signal strength increases. More importantly, the 

results revealed that the proposed three-state NSHMM for 

spectrum inference mechanism in CRN gave better prediction 

accuracy than the existing three-state SHMM and two-state 

NSHMM due to the non-stationarity property of the PU 

channel considered along with the fuzzy state which prevents 

interference to PU and reduces false alarm. 

 
Figure 10. PA versus SNR for the Proposed 3-State NSHMM and 

Existing Mechanisms at PFA of 0.1. 

4.3. Results of Spectrum Utilization Efficiency 

Figures 11 and 12 display the Spectrum Utilization Effi-

ciency (SUE) versus SNR of the proposed mechanism of 

three-state NSHMM plotted against varying SNR of 0 dB to 

20 dB along with those of existing three-state SHMM and 

two-state NSHMM at PFA 0.05 and 0.1. Figure 11 shows SUE 

versus SNR at PFA of 0.05 for the proposed 3-State NSHMM 

in comparison with the existing 2-State NSHMM and 3-State 

SHMM. 

The SUE values obtained at SNR of 10 dB were 0.7270, 

0.5180 and 0.5180 for the proposed 3-State NSHMM, exist-

ing 3-State SHMM and 2-State NSHMM, respectively, while 

the corresponding values at SNR of 20 dB were 0.8908, 

0.5923 and 0.5410, respectively. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P robability of False A larm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
il
it
y
 o
f 
D
e
te
c
ti
o
n

P D  vs P FA  C om parison @ S N R =20, 128-Q A M

E xisting 2-S tate N S H M M

E xisting 3-S tate S H M M

P roposed 3-S tate N S H M M

0 2 4 6 8 10 12 14 16 18 20

S N R  (dB )

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re
d
ic
ti
o
n
 A

c
c
u
ra
c
y

P A  vs S N R  C om parison @ P FA =0.05, 128-Q A M

E xisting 2-S tate N S H M M

E xisting 3-S tate S H M M

P roposed 3-S tate N S H M M

0 2 4 6 8 10 12 14 16 18 20

S N R  (dB )

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re
d
ic
ti
o
n
 A

c
c
u
ra
c
y

P A  vs S N R  C om parison @ P FA =0.1, 128-Q A M

E xisting 2-S tate N S H M M

E xisting 3-S tate S H M M

P roposed 3-S tate N S H M M

http://www.sciencepg.com/journal/jeee


Journal of Electrical and Electronic Engineering http://www.sciencepg.com/journal/jeee 

 

55 

 
Figure 11. SUE versus SNR for the Proposed 3-State NSHMM and 

Existing Mechanisms at PFA of 0.05. 

Similarly, Figure 12 depicts SUE versus SNR for the pro-

posed 3-State NSHMM in comparison with the existing 

2-State NSHMM and 3-State SHMM at PFA of 0.1. The SUE 

values obtained at SNR of 10 dB were 0.8202, 0.5412 and 

0.4692 for the proposed 3-State NSHMM, existing 3-State 

SHMM and 2-State NSHMM, respectively, while the corre-

sponding SUE values obtained at SNR of 20 dB were 0.9084, 

0.6608 and 0.5145. 

 
Figure 12. SUE versus SNR for the Proposed 3-State NSHMM and 

Existing Mechanisms at PFA of 0.1. 

The results showed that at low SNR of 4 dB and below, the 

SUE values of the existing 2-State NSHMM were higher than 

those of the proposed NSHMM and even the existing 3-State 

SHMM due to low signal strength. This means transmission 

was not encouraged for the CR user with low signal strength 

because information should be sent as quickly as possible 

over the channel before the licensed user regain its ownership. 

The SUE of the existing 2-State NSHMM was almost inde-

pendent of SNR because there was no provision for the fuzzy 

state as a result of some noisy observations in the mechanism. 

On the contrary, the SUE of the proposed 3-State NSHMM 

mechanism increased as the signal strength increased and was 

much higher than the corresponding values of the existing 

2-State NSHMM and 3-State SHMM from any SNR above 4 

dB at considerably suitable PFA of 0.05 for an efficient spec-

trum management. Therefore, at high SNR, the combination 

of the non-stationarity property and the fuzzy state are ad-

vantageous for high SUE in the proposed mechanism because 

the magnitude of the signal has suppressed that of the noise 

and transmission rate is encouragingly faster. 

Hence, the non-stationarity factor and the fuzzy state in-

corporated in the proposed mechanism improved its SUE 

values as the PFA and SNR were increased which was not 

achievable by the existing 3-State SHMM and 2-State 

NSHMM where the SUE values were low and almost static or 

independent of the signal strength in terms of the SNR. 

5. Conclusions 

This work has proposed three-state Non-Stationary Hidden 

Markov Model (NSHMM) for spectrum inference mechanism in 

Cognitive Radio Networks (CRNs). The three-state NSHMM 

were formulated from the existing two-state Non-Stationary 

Hidden Markov Model (NSHMM) and three-state Stationary 

Hidden Markov Model (SHMM). Using the formulated 

three-state NSHMM, the optimal model parameters were com-

puted for the proposed spectrum inference mechanism in CRNs. 

The "fuzzy" state introduced in the Non-Stationary Hidden 

Markov Model provided a clear distinction between the pro-

posed mechanism and the existing spectrum prediction models 

where channel's undetermined state due to noisy or incomplete 

observations was not recognized. The two assumptions of 

HMMs which are Markov and Independence assumptions gov-

erned the proposed mechanisms wherein it was possible for a 

channel to transit to any state in a single transition process. The 

proposed mechanisms predicted the next channel state as appli-

cable from the past observation sequence in consecutive time 

slots by following the prescribed procedural steps. 

The proposed three-state spectrum inference mechanism 

and the existing counterparts were simulated using 

MATLAB R2020a. The NSHMM considered how long a 

channel has been in a state before its transition to another. 

Hence, the state transition probabilities of the proposed 

mechanism considered the non-stationarity property of 

primary channels which had effect on the outcomes of the 

performances. The performances of the mechanism were 

evaluated and compared using Probability of Detection (PD), 

Prediction Accuracy (PA) and Spectrum Utilization Effi-

ciency (SUE) while varying Probability of False Alarm 

(PFA), Signal-to-Noise Ratio (SNR). 

The results obtained revealed that the proposed three-state 

NSHMM for spectrum inference mechanism gave the best 
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performance with the highest Probability of Detection (PD), 

Prediction Accuracy (PA), Spectrum Utilization Efficiency 

(SUE) which curtailed PU collision because of the least possi-

ble chances of incorrect detection of primary users and least 

false alarm. At PFA of 0.05 and SNR of 10 dB chosen as 

tradeoff in order to maintain a balance between PU protection 

and minimizing spectrum wastages, the proposed mechanism 

improved the Probability of Detection by 35.00% over 

three-state SHMM and 67.39% over two-state NSHMM; the 

Prediction Accuracy increased by 24.24% and 43.48% over 

three-state SHMM and two-state NSHMM, respectively while 

the Spectrum Utilization Efficiency of the proposed mechanism 

achieved 40.35% increment over both the existing three-state 

SHMM and two-state SHMM. The outstanding performance of 

the proposed NSHMM was due to its non-stationarity nature as 

well as fuzzy state incorporated in the development of the 

mechanism. Therefore, the proposed three-state NSHMM for 

spectrum inference mechanisms in CRNs has grossly abated 

PU collision, false alarm and spectrum underutilization. 
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