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Abstract 

Stationary rainfall intensity duration frequency curves have historically influenced urban infrastructure designs. In contrast to 

the stationary model, which takes constant parameters into account throughout the observation periods, the non-stationary 

method takes into account changes in the extreme parameters that determine the distribution of precipitation over time. The 

parameters were estimated using maximum likelihood estimator method. The best model were computed using the R-studio 

software by comparing information criteria then model parameters, return levels, rainfall intensity are computed. The National 

Meteorological Agency, situated in Addis Ababa, Ethiopia, provided the essential historical rainfall data of the Debre Tabor 

rainfall station for this study, Tests and trends were looked for in the rainfall data. Due to its ability to produce the lowest 

Akaike, corrected Akaike information criteria, and diagnosis test of goodness of fitness Model Type-MV was chosen for Debre 

Tabor stations. The parameters of the best models were used to forecast the return levels for each of the following return 

periods: 2, 5, 10, 25, 50, and 100 years. Because the non-stationary technique has varied intensity levels over time, the annual 

maximum rainfall from the best appropriate model was calculated using its exceedance probability. Using the 95% of 

exceedance of the return level, the highest rainfall in each fit was determined. In comparison to the stationary model, the non-

stationary model produced higher rainfall intensity values. Therefore, when developing IDF curves, the non-stationary 

approach should be taken into consideration. 
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1. Introduction 

Instead of being developing for every town or area, Ethio-

pia is geographically divided into different distinct rainfall 

regions. The current design standards for rainfall intensity 

duration frequency curves developed by regional intensity 

duration frequency curves (ERA) for Debre Tabor did not 

consider changes in the country's climate or the effects of 

urbanization into account [3, 39]. Therefore, the likelihood of 

floods and infrastructure damage is high because Debre Ta-
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bor’s topography is exposed to flooding and its rainfall inten-

sity patterns are significantly underestimated. However 

Thanks to modern statistical method, the town is now better 

prepared for extreme weather events like flooding, even with 

inadequate rainfall data. An improved modeling of rainfall 

that takes account to climatic changes, effect of urbanization 

and rainfall change patterns of the town is essential, to de-

sign a more efficient and effective water management system. 

Therefore a method that incorporates probabilistic models to 

better account different duration of rainfall variability, and 

design a system that can estimate extreme events became 

mandatory choice. These are the reasons to study different 

days, hourly and sub-hourly IDF curves for Debre Tabor 

town using non-stationary method of IDF curves develop-

ment in order to control flooding of the town and nearby area 

by constructing different hydraulic and hydrologic structures. 

Developing intensity duration frequency curves from daily, 

hourly and sub hourly rainfall data is a good way of quanti-

fying rainfall intensity for Debre Tabor’s town by using dif-

ferent durations and return periods of the design flood. Short 

duration IDF curves have advantages than regional IDF and 

daily IDF curves to design the drainage and other water 

structures in the Debre Tabor town and nearby areas. 

These days to design hydraulic and hydrologic Structures 

at Debre Tabor town, Engineers must use the regional inten-

sity duration frequency curves developed from different 

towns but rainfall intensities vary with location and altitude 

this results miss consideration of different characteristics of 

rainfall. This interns results flooding of roads due to under 

design of rainfall computed from regional IDF [37]. With the 

help of this research, we can better understand how Debre 

Tabor's rainfall characteristics are changing. This knowledge 

will help engineers and planners create more robust infra-

structure and efficiently manage water resources. Determin-

ing that flooding is a significant and persistent issue that has 

impacted the town's ecology is therefore a necessary endeav-

or. Flooding has damaged the town's infrastructure and 

caused property losses, but it has also affected social stability 

and the town's economy. 

Therefore, intensity duration frequency curves should be 

developed by using non-stationary methods of intensity de-

velopment method in order to regulate floods over streets, 

parking footpaths, and other payment structures. 

2. Materials and Methods 

2.1. Study Area 

The town of Debre Tabor is situated in Ethiopia's Amhara 

region. It serves as South Gonder's administrative center. The 

approximate geographic coordinates of Debre Tabor town are 

10°0’0’’ to 15°0’0’N latitudes and 35°0’0’’ to 40’0’0’’ E lon-

gitudes. On average it gets roughly 1300 mm of rainfall; 

most of the time in June and September [1, 5]. The 20015 G. 

C (2007 E. C) national population census indicates that 

Debre Tabor town is home to about 46,000 people [4] and 

has been the subject of several hydrological research, 

including those that examine rainfall intensity duration 

frequency (IDF) curves, which are essential for managing 

water resources and building hydraulic infrastructure [3]. 

 
Figure 1. Location of study area. 

2.2. Data Collection 

The Ethiopian Meteorological Agency (EMA), which is 

located in Addis Ababa, Ethiopia, provided the daily rainfall 

statistical data. The Central Statistical Agency of Ethiopia 

was also the source of the geographic data, meaning that the 

information came from many offices. The GPS positions of 

the station are included in the geographic data, which can be 

used for many other rainfall data adjustment works, includ-

ing the calculation of missing data, if the inverse distance 

method of missing data filing is approved by criteria. The 

rainfall station was chosen based on a number of criteria, 

such as its ability to have automatically record rainfall, the 

length of its record for a particular year, and its environmen-

tal resemblance to the research area. Following the sorting of 

the daily rainfall records, the matching rainfall data were 

converted into annual maximum daily rainfall values for use 

in particular procedures and needs. The rainfall amounts in 

millimeters were also noted. Prior to the subsequent study, 

the daily annual maximum series for chosen station, from the 

year 1988-2022 years were retrieved on a daily basis for all 

years. Other subsequent process followed the extraction of 

annual maximum daily rainfall data. 
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Figure 2. Overall Structure of the Research. 

2.3. Disaggregation of Annual Maximum Daily 

Rainfall Data into Shorter Durations 

After calibration, the modified Chodhury Indian Methodo-

logical Department equation was used to disaggregate the 

sorted annual maximum daily rainfall values with time scale 

less than 24 hours. This reduction was initially achieved us-

ing the equation originally intended by the Indian Methodo-

logical Department [7, 28, 33, 34, 40]. 

Rt = 𝑅24(
𝑡

24
)𝑛                          (1) 

The Original Indian meteorological Equation, Where n=
1

3
 

Rt = The required rainfall in millimeters less than a day 

t= the required time in hours 

R24 = Rainfall depth per day, measured in millimeters 

Modified Indian Methodological Department of Chodhury 

After the initial equation, another equation appeared [7]. 

Rt = 𝑅24(
𝑡

24
)𝑛 + 𝐶                         (2) 

It is an adjustment to the equation mentioned above. 

Where n is an exponential and C is the calibrated constants. 

This research was conducted using 35 years of rainfall data 

from a nearby station by using modified Indian Methodolog-

ical Department of Chodhury equation. 

2.4. Different Tests on Rainfall Data 

In order to ensure the quality and completeness including 

its representativeness of the rainfall data in the advance of 

the subsequent steps necessary to construct IDF curves, a 

number of tests were carried out after the rainfall data was 

collected, estimation of missing values was made, maximum 

annual daily rainfall data series was extracted to the corre-

sponding years, Disaggregation of annual maximum daily 

rainfall values to smaller durations was done, and then rain-

fall data quality check was performed using various methods. 

2.4.1. Von-Neumann’s Independent Test 

If the occurrence of one event has no relationship on the 

occurrence of other event, then the two events are said to be 

independent. The Probability that events A and B would oc-

cur equally is provided by the following equation [14]. 

Pr(AՈB) = Pr(A) ∗ Pr(B)                          (3) 

If the series X1, X2….Xn are independent and normally 

distributed the value of the function P(x) will be two [17]. 

𝑃(𝑥) =
∑ (Xi+1−Xi)2𝑛−1

𝑖=1

∑ (Xi−Xavg)2𝑛
𝑖=1

=2                         (4) 

Where Xavg=average value of the series Xi…Xn 

2.4.2. Mann-Whitney’s Homogeneity Test 

Using Mann-Whitney technique, one can verify that every 

component of the data series came from the same population 

and can follow the same probability distribution. Two ranked 

portions are created from the data series using this procedure; 

in such a way that 𝑞 + 𝑝 = 𝑛, p ≤ q 
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Next, the smaller of V and W will be the value of U and 

calculated with the following formula: 

𝑉 = 𝑆 −
𝑃∗(𝑃+1)

2
          𝑊 = 𝑞 ∗ 𝑝 − 𝑉    (5) 

S =Sum of ranks that are common for total series (N) and 

the first group ranks (p) that are highlighted by colors in 

chapter four. The values of Ū and Var (U) are competed as 

follow as 

Ū =
p∗q

2
,Var(U) = [

𝑃∗𝑞

𝑁∗(𝑁−1)
] [

𝑁3−𝑁

12
] + ∑ Ti𝑛

𝐼=0      (6) 

𝑢 = 
U−Ū

var(U)(
1

2
)
                               (7) 

Where Ti, refers ties in the groups 

In Mann-Whitney U test, ties refer to situations where two 

or more observations from different groups have the same 

value. When encountering ties; the average rank is assigned 

to each tied observation. The presence of ties affects the cal-

culation of the expected value and variance of U. Special 

formulas are used to account for ties in these calculations [9, 

17, 37]. 

2.4.3. Outliers Tests 

Outlier indicates the deviation of an observation from the 

rest of rainfall data because of different reasons such as er-

rors in data collection, recording and measurement, and oc-

casional event from a single population. This problem results 

in difficulties when fitting the distribution to the data. There 

are different methods to test the outliers including: Z-score 

method, Box Plot method, Quality control test, Stedinger 

method and Grubbs-Beck (G-B) methods. High and low out-

liers have different effects on the analysis of rain fall data [8, 

10, 17, 37]. The following formulas are used to determine the 

XH and XL values. 

𝑋𝐻 = 𝐸𝑋𝑃(𝑋̅ + 𝐾𝑁 ∗ 𝑆)                    (8) 

𝑋𝐿 = 𝐸𝑋𝑃(𝑋̅ − 𝐾𝑁 ∗ 𝑆)                     (9) 

Where, XH =Upper outlier, XL =Lower outlier, X̅ and S de-

note the sample's natural logarithm mean and standard devia-

tion, respectively. At 10% significant level KN is determined 

by the following formula. 

𝐾𝑁 = −3.62201 + 6.28446𝑁1/4 − 2.49835𝑁1/2 +

0.491436𝑁3/4  − 0.037911𝑁           (10) 

Where N=Sample size and 5≤N≤150 in this research case 

N=35, Higher outliers are defined as samples with values 

larger than XH, and lower outliers are defined as samples 

with values less than XL. Therefor data series bigger than XH 

and smaller than XL are flagged as an outlier data. 

2.5. Parameter Estimation Techniques 

Parameter estimation is the process of finding the values 

of the parameters of a model that best fit the observed data. It 

is a fundamental problem in statistics, and there are many 

different parameter estimation methods, each method has its 

own advantages and disadvantages. Some of the most com-

monly used methods include: 

2.5.1. Least Square Method 

This is the most common parameter estimation technique. 

It minimizes the sum of the squared errors between the ob-

served data and the model predictions. It is used to study the 

relationship between two variables. A more accurate way of 

finding the line of best fit is the least square method. The 

least square method is used to find the parameters of x and y 

for the development of empirical equations correlating with 

intensity and duration of rainfall. The correlation coefficient 

(R) is used to know the best-fit intensity duration frequency 

empirical equation. For the specific return period, the equa-

tion that gives an R value near 1 is the best fit and a line of 

best fit is a straight line that is the best approximation of the 

given set of data [17]. 

𝑦 = 𝑎𝑥 + 𝑏                                  (11) 

𝑎 =
𝑟𝑠𝑥

𝑠𝑦
 

b=y̅+ax̅ 

Where, r=correlation coefficient 

y=least square Regression line 

a=the slope of the regression lone 

b=the intercept point of the regression line and the y-axis 

x̅=mean of x value 

y̅=mean of y value 

Sx=standard deviation of x 

Sy=standard deviation of y value 

2.5.2. Root Mean Squared Deviation (RMSD) 

To determine the root mean square deviation (RMSD), one 

takes the square root of the sum of the squared deviations 

between the actual and projected amounts of rainfall, divided 

by the total number of observations [30]. The prediction is 

more accurate the smaller the RMSD value. 

RMSE =
√(∑(observed − predicted)2)

𝑛
                (12) 

Where: Observed is the actual rainfall amount, predicted is 

the predicted rainfall amount, and n is the number of obser-

vations 
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2.5.3. Methods of Moments 

When the moments of the probability density function 

about the origin equal the corresponding moments of the 

sample data, those moments are estimated as the parameters 

of a probability distribution. If the data value are each as-

signed a hypothetical mass equal to their relative frequency 

of occurrence (
1

𝑛
) it is imagined that this system of mass is 

rotated about the origin x=0, then the first moment of each 

observation xi about the origin is equal to the product of its 

moment arm xi and its mass 
1

𝑛
, and the sum of these moments 

overall the data is given below [11, 14]. 

∑
𝑥𝑖

𝑛

𝑛
𝑖=  =

1

𝑛
∑ 𝑥𝑖𝑛

𝑖=1 = X̅                              (13) 

The initial moment regarding the origin =∑ (
𝑥𝑖

𝑛
) = X̅ 

∞

𝑛=1
. 

The method of moments select values for the parameters of 

the probability density function so that its moments are equal 

to these of sample data. The corresponding centroid of prob-

ability density function is equal to:  

𝜇 = ∫ 𝑥 𝑓(𝑥)𝑑𝑥
∞

−∞
                            (14) 

2.5.4. Method of Maximum Likelihood 

The parameter in the probability distribution function that 

maximizes the joint probability of the observed sample's 

occurrence is the best value and should be used. The proba-

bility density function X=xi is equal to f(x) if the sample 

space is divided into intervals of length dx and a sample of 

independent and identically distributed observations x1, 

x2,..., xn is taken. The probability that the random variable 

will occur in the interval including xi is equal to f(x) dx. 

Since the observations are independent, the product of f1(x) 

dx f2(x) dx….f (xn) dx=∏ 𝑓(𝑥𝑖)𝑑𝑥𝑛𝑛
𝑖=1 , determines the joint 

probability of occurrence of the observations. Since the in-

terval size dx is fixed, maximizing the joint probability of the 

observed sample is equal to maximizing the likelihood func-

tion [11]. 

𝐿 = ∏ 𝑓(𝑥𝑖)𝑛
𝑖                                 (15) 

It is sometimes more convenient to work with the log like-

lihood function because a lot of probability functions are 

exponential.  

ln 𝐿 = ∑ ln [𝑓(𝑥𝑖)]𝑛
𝑖=1                                  (16) 

2.5.5. The L-moments 

It is used to calculate the parameters of GEV distribution 

and fit to the annual maximum series. L-moments are the 

modifications of probability weighted moments and use it to 

estimate the parameters that are easy to interpret. The L-

moment, which is a linear combination of the order of statis-

tics of the annual maximum rainfall quantity, is a potent sub-

stitute for the moments of distributions. The following equa-

tion is used to estimate the probability weighted moments 

[10]: 

wo = 𝑛−1 ∑ xj𝑛
𝑗=1                            (17) 

𝑤1 = 𝑛−1 ∑ (
𝑗−1

𝑛−1
)𝑥𝑗

𝑛

𝑛=2
                  (18) 

𝑤2 = 𝑛−1 ∑
(𝑗−1)(𝑗−2)𝑥𝑗

(𝑛−1)(𝑛−2

𝑛

𝑛=2
               (19) 

Where, wi is the initial probability weighted moments and 

xj is the ordered sample of the annual maximum series. The 

following equations can then be used to compute the sample 

moments. 

m1=w0                                      (20) 

m2=2w1-w0                                   (21) 

m3=6w2-6w1+w0                             (22) 

The location (µ), scale (δ), and shape (𝜉) of the GEV pa-

rameters are calculated as follows: 

ξ = 2.9554𝑟𝑐2 + 7.8590𝑐               (23) 

𝑐 =
2

3+
m3

m2

−
mn(2)

mn(3)                       (24) 

δ =
m2ξ

(1−2−ξ).Γ(1+ξ)
                        (25) 

µ = m1 − δ
((1−Γ(1+ξ))

ξ
                    (26) 

Where Γ(. ) the gamma function m1, m2, m3 are the first 

third moments and location (µ), scale (δ), and shape (𝜉) are 

parameters of the GEV distribution. 

2.6. Checking Climate Trend Tests in Rainfall 

Data 

Mann-Kendall Trend Test 

The alternative hypothesis (Ha) and the null hypothesis 

(Ho) are the foundations of the MK-test, which is used to 

perform statistically significant rising or falling trends in 

long span temporal data. Whereas Ha indicates if there is a 

rising or decreasing trend in the rainfall data, Ho displays the 

absence of any trend [10, 14, 17, 18]. 

The following formula is given as: 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑖)
𝑛

𝑘=𝑖+1

𝑛−1

𝑖=1
            (27) 
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Where Xj and Xi represent the rainfall values in years J 

and I, and n denotes the number of data points so that J>1 

𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑖) is calculated by the equation under here. 

𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑖) = −1 𝑓𝑜𝑟(𝑋𝑗 − 𝑋𝑖) < 0,  

= 0 𝑓𝑜𝑟 (𝑋𝑗 − 𝑋𝑖) = 0,  

=  1 𝑓𝑜𝑟 (𝑋𝑗 − 𝑋𝑖) > 0  

2.7. Generalized Extreme Value Distribution 

(GEV) 

In extreme value analysis, the Generalized Extreme Value 

Distribution (GEV) is a continuous probability distribution 

function that is commonly used. The distribution of extreme 

values, such as the highest or lowest value within a set of 

data, is modeled using this approach [12, 13]. The probabil-

ity density function (PDF) of the GEV distribution is shown 

in the equation below. 

𝑓(𝑥) =
1

𝜎
[1 + 𝜉((

𝑥−µ

σ
))]

((−
1

𝜉
)−1)

∗ exp [−[1 + 𝜉((
𝑥−µ

σ
)]

(−
1

𝜉
)
] (28) 

The Generalized Extreme value of the distribution is com-

posed of continuous probability distributions and is based on 

the limit theorems for blocking minimal or annual maximum 

[27]. Generalized extreme value distribution (GEV) is the 

term used to describe the combining of these three distribu-

tions, such as Gumbel, Frechet, and Weibull, into a single 

family. The General extreme value cumulative distribution 

function F(x) is given by the following equations. 

F(X) = 𝑒𝑥𝑝{−[1 +
𝜉(𝑋−µ)

𝛿
]

−(
1

𝜉
)
}, for 𝛿 >  0.1 +

𝜉(𝑋−µ).

𝛿
} 𝜉 ≠0   (29) 

𝐹(𝑥) = exp {−exp [−(
𝑋−µ

𝛿
)]}, δ> 0, 𝜉 = 0)              (30) 

The shape parameter is represented by ξ, the mean by µ, 

the standard deviation by σ, the cumulative distribution func-

tion by F(x), and the annual extreme value of rainfall by X in 

this case. The maximum likelihood estimator is the statistical 

technique used to estimate the distribution parameters since 

it can be extended to non-stationary evaluation. The extreme 

value theory allows for the incorporation of non-stationary 

behavior into the general extreme value model by specifying 

one or more of the parameters as functions of time as a co-

variate. Empirical study suggests that it is preferable to ex-

press the non-stationary model both in terms of location and 

scale factors. Attempting to model ξ as a smooth function of 

time is unrealistic since it is often hard to estimate the shape 

parameter correctly [36]. 

The Generalized Extreme Value Distribution is flexible 

for modeling different characters of extremes with three 

distribution parameters location parameter (µ), which spe-

cies the center of the distribution; the scale parameter (σ) 

indicates the size of deviation around the location parame-

ter; and the shape parameter (ξ) governs the tail behavior of 

the Generalized extreme value distribution. The shape pa-

rameter selects the appropriate distribution type among the 

three GEV distributions. A value of ξ→0 indicates the 

Gumbel distribution, a value of ξ<0 indicates the Weibull 

distribution, and a value of ν>0 indicates the Frechet distri-

bution [6, 7, 12, 13]. 

2.8. Non-Stationary Generalized Extreme Value 

Models 

The parameters of the GEV are stated as a function of co-

variates inside the extreme value modeling formats. Extreme 

rainfall behavior described in terms of many variables, often 

known as covariates. When one or more of the GEV distribu-

tion's parameters are expressed as a function of time, it is 

considered non-stationary [24]. Non-stationary models better 

fit data sequences when working with a single model that has 

a well-defined functional relation between the length of the 

rainfall and the return period [2, 7]. The distribution's proper-

ties exhibit time-varying behavior due to the time depend-

ence of the underlying distribution function's parameters. 

The location and/or scale parameter are thought of as linear, 

quadratic, or exponential functions of time if the shape pa-

rameters remain constant [25-27]. The maximum likelihood 

estimator approach can be used to describe the location, scale, 

and shape of the GEV parameters as a linear or quadratic 

approximation of the time constraints. The fundamental dis-

tribution function's parameters in a non-stationary process 

have time-varying characteristics and are reliant on time. The 

location and scale partners are considered to be functions of 

time in order to account for non-stationary, while the shape 

parameter is kept constant, in order to reflect a dynamic dis-

tribution [7]. 

µ (t)  =  µ1t +  µ0                                (31) 

𝜎 (𝑡) =  𝜎1𝑡 +  𝜎0                                (32) 

The process uses a log function since the scale parameter 

stays positive. 

ln σ (t)  =  σ1t +  σo                         (33) 

That is, σ (t)  =  Exp (σ1t +  σo)                 (34) 

Here, ν, σ1, σo, ε is the regression parameter and t is the 

time in years. Given the conditions, the following is the log 

likelihood function for the stationary scenario that was de-

rived: 

𝐿𝑜𝑔 𝐿(µ, 𝜎, 𝜉|𝑋) = −𝑛 ∗ 𝑙𝑜𝑔𝜎 − [1 +
1

𝜉
] ∑ (log (1 +

𝑛

𝑖=1

𝜉(
𝑥𝑖−µ

𝜎
)) − [∑ 1 +𝑛

𝑖=1 𝜉(
(𝑥𝑖−µ)

𝜎

−
1

𝜉
]                       (35) 

http://www.sciencepg.com/journal/jccee


Journal of Civil, Construction and Environmental Engineering http://www.sciencepg.com/journal/jccee 

 

157 

For 𝜉 ≠ 0 and 1 + 𝜉
(𝑥𝑖−µ)

𝜎
> 0 

In the non-stationary case, this formula can be extended to 

the universal extreme value distribution whose parameters 

depend on time. The maximum likelihood estimator uses the 

minimization of the negative log-likelihood function as an 

alternative to the direct maximization method. Based on the 

non-stationary setting that meets the predetermined condi-

tions, the non-stationary situations, scale, and location pa-

rameters in the previously described equations are replaced. 

R-studio was used to fit general extreme parameters to the 

data based on the maximum likelihood estimator for both the 

stationary and non-stationary models because the models 

equations are complex. The function has to be solved by iter-

ative numerical procedures. One may efficiently choose the 

best general extreme value model and construct the rainfall 

quintile by using the maximum likelihood estimator ap-

proach. 

The general extreme values and the parameters of the ex-

treme distribution will be obtained by an iterative numerical 

approach by minimizing the negative log-likelihood function. 

Table 1. Examined GEV Non-stationary Parameter Models. 

Model Type Parameter Combination Remark 

GEV Type -0 µ (t) = µ, σ (t) = σ, ξ(t) = ξ0 Model with stationary parameters 

GEV Type- µ (t) = µ0+ µ1t, σ (t) = σ0, ξ(t)= ξ0 Model with non-stationary parameters 

GEV Type-∏ µ (t) = µ0, σ (t) = σ0+ σ1t, ξ(t)= ξ0 Model with non-stationary parameters 

GEV Type-∏ µ (t) = µ0+ µ1t, σ (t) = σ0+ σ1t, ξ(t)= ξ0 Model with non-stationary parameters 

GEV Type-IV µ (t)= µ0+ µ1t, σ (t)= 𝑒(σ0+ σ1t), ξ(t)= ξ0 Model with non-stationary parameters 

GEV Type-V μ = μ0 + μ1(t) + μ2(t
2), σ = σ0, ξ(t)= ξ0 Model with non-stationary parameters 

 

2.9. Selection of Best GEV Distribution  

Non-Stationary Parameter Models 

After the non-stationary model is developed, a critical step 

is selecting the model that most accurately depicts the origi-

nal data. Adding new criterion to Akaike's information crite-

ria, such AICC was done to choose the best GEV model 

among all options. It penalizes the minimized negative log-

likelihood function (-log L) for each estimated model param-

eter. Akaike's Information Criterion is influenced by the rela-

tionship between the sample size (n) and the number of pa-

rameters (k) in a practical application. To avoid over fitting 

of the data, the Corrected Akaike's Information Criterion 

(AICC) is suggested when 
𝑛 

𝑘
>40. When n values are greater, 

AICC converges to AIC [36]. 

The expressions for AIC and AICC are as follows: 

AIC = −2𝑙𝑜𝑔𝐿 + 2𝐾                   (36) 

AICc = AIC(k) + 
2k(k+1)

𝑛−𝑘−1
              (37) 

𝐵𝐼𝐶 = 𝐾 ∗ ln(𝑛) − 2 ∗ ln (𝐿)             (38) 

The influence of the number of parameters, k, on AICc is 

higher than that on its rescaling form. The sample size de-

termines the change in Δi, which is used to rank the GEV 

model. 

Δi = AICc − min (AICc)                    (39) 

Where: min (AICc) is the smallest model value from all 

models of values. The model with Δi zero value is best model 

and the model which has Δi ≤ 2 is considered as good choice 

[7]. 

By contrasting the p-values of the non-stationary model 

with the chi square distribution, one can determine the statis-

tical significance of the model [31]. If the p-value, or 95% 

confidence level, is less than 0.05, the best non-stationary 

model is considered statistically significant when compared 

to the stationary model. 

2.10. Development of GEV Intensity Duration 

Frequency Curves 

In this work, rainfall intensity duration frequency curves 

were created using R-studio software. The model parameters 

are used to estimate precipitation intensities based on the 

GEV distribution return periods and return levels of extremes, 

as well as the formulation of the function of return level as 

the return period. 

T =
1

1−𝑃
                                    (40) 

In the stationary model, p represents the non-exceedance 
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probability of occurrence in a given year since it is regarded 

as constant. The intensity of the stationary rainfall extreme 

value is computed using the following formula [36] 

XT = µ −
𝜎

𝜉
[1 − {− ln (1 −

1

𝑇
)}−𝜉] for 𝜉 ≠ 0            (41) 

Since it is thought to be constant, p in the stationary model 

stands for the non-exceedance probability of occurrence in a 

specific year. The following formula is utilized to calculate 

the intensity of the stationary rainfall extreme value [7, 27] 

𝑋𝑇 = µ̅ +
𝜎

𝜉
[(−

1

ln 𝑝
)𝜉 − 1], 𝜉 ≠ 0                      (42) 

µ̅ = 𝑄𝑘(µ𝑡1, µ𝑡2, µ𝑡3 … . µ𝑡𝑚), (µ(𝑡) = µ1𝑡 + µ𝑜)      (43) 

In this case, Qk is the parameter's kth quantile, T is the re-

turn time, and XT is the rainfall intensity exceedance value. 

3. Results and Discussion 

3.1. Disaggregation of Daily Rainfall Data into 

Shorter Durations 

In order to adjust with observed rainfall data and take into 

account short duration rainfall intensity based infrastructures, 

Debre Tabor's 35 years of annual maximum daily rainfall 

data series were also downscaled into shorter durations of 10 

minutes15 minutes, 30 minutes, 45 minutes, 60 minutes, 120 

minutes, and 180 minutes. The formula below, which was 

originally intended by the Indian Methodological Depart-

ment, was used to reduce the sorted annual maximum daily 

rainfall values with minute’s interval into time scales of 24 

hours and shorter durations. After calibration, the modified 

Chodhury Indian Methodological Department equation was 

used. 

Rt = 𝑅24(
𝑡

24
)𝑛                     (44) 

The original Indian weather equation, Where n=
1

3
 

Rt = The required rainfall in millimeters less than a day 

t= required time in hours 

R24 = The modified Chodhury Indian methodological de-

partment, the amount of rainfall per day in millimeters the 

first equation was followed by another equation. 

Rt = 𝑅24(
𝑡

24
)𝑛 + 𝐶                 (45) 

The amount of rainfall in millimeters per day on the modi-

fied Chodhury Indian Methodological Department There was 

an additional equation after the first one [7]. 

In this study C=10 and n=
1

9
 

Table 2. Disaggregated Rainfall Values. 

Year ANMS 10 Min 15 Min 30 Min 45 Min 1 hr 2 hr 3hr 

1988 60.60 39.14 40.47 42.91 44.43 45.55 48.39 50.16 

1989 57.00 37.06 38.30 40.57 41.98 43.02 45.66 47.30 

1990 43.13 29.08 29.95 31.55 32.54 33.28 35.14 36.30 

1991 40.90 27.79 28.61 30.10 31.02 31.71 33.44 34.53 

1992 55.10 35.97 37.16 39.33 40.69 41.68 44.22 45.80 

1993 55.10 35.97 37.16 39.33 40.69 41.68 44.22 45.80 

1994 79.90 50.25 52.09 55.46 57.56 59.10 63.04 65.48 

1995 67.40 43.05 44.57 47.33 49.05 50.32 53.55 55.56 

1996 54.60 35.68 36.86 39.01 40.35 41.33 43.84 45.40 

1997 114.30 70.06 72.81 77.84 80.97 83.27 89.14 92.78 

1998 77.70 48.98 50.77 54.03 56.06 57.56 61.37 63.73 

1999 65.50 41.96 43.42 46.10 47.76 48.99 52.11 54.05 

2000 57.30 37.24 38.48 40.76 42.18 43.23 45.89 47.54 

2001 72.70 46.10 47.76 50.78 52.66 54.05 57.57 59.77 

2002 91.30 56.81 58.96 62.88 65.32 67.11 71.69 74.53 

2003 90.60 56.41 58.54 62.42 64.84 66.62 71.15 73.97 
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Year ANMS 10 Min 15 Min 30 Min 45 Min 1 hr 2 hr 3hr 

2004 52.00 34.18 35.29 37.32 38.58 39.50 41.87 43.34 

2005 79.40 49.96 51.79 55.14 57.22 58.75 62.66 65.08 

2006 70.00 44.55 46.13 49.03 50.82 52.15 55.52 57.62 

2007 65.50 41.96 43.42 46.10 47.76 48.99 52.11 54.05 

2008 69.50 44.26 45.83 48.70 50.48 51.80 55.14 57.23 

2009 59.40 38.44 39.75 42.13 43.61 44.70 47.48 49.21 

2010 52.00 34.18 35.29 37.32 38.58 39.50 41.87 43.34 

2011 70.20 44.66 46.25 49.16 50.96 52.29 55.68 57.78 

2012 54.20 35.45 36.62 38.75 40.07 41.05 43.54 45.08 

2013 85.60 53.53 55.53 59.17 61.44 63.11 67.36 70.00 

2014 76.20 48.12 49.87 53.06 55.04 56.51 60.23 62.54 

2015 51.30 33.78 34.87 36.86 38.10 39.01 41.34 42.78 

2016 54.70 35.74 36.92 39.07 40.41 41.40 43.92 45.48 

2017 157.10 94.70 98.59 105.68 110.09 113.34 121.61 126.75 

2018 85.20 53.30 55.29 58.91 61.17 62.83 67.06 69.69 

2019 97.90 60.61 62.93 67.17 69.81 71.75 76.69 79.77 

2020 42.35 28.63 29.48 31.04 32.01 32.73 34.55 35.68 

2021 64.60 41.44 42.88 45.51 47.15 48.36 51.43 53.34 

2022 73.60 46.62 48.30 51.37 53.27 54.68 58.26 60.48 

 

3.2. Different Tests on Rainfall Data 

In order to ensure the quality and completeness including 

its representativeness of the rainfall data in the advance of 

the subsequent steps necessary to construct IDF curves, a 

number of tests were carried out after the rainfall data was 

collected, estimation of missing values was made, maximum 

annual daily rainfall data series was extracted to the corre-

sponding years, Disaggregation of annual maximum daily 

rainfall values to smaller durations was done, and then rain-

fall data quality check was performed using various methods.  

3.2.1. Von-Neumann’s Independent Test 

If the series X1, X2….Xn are independent and normally 

distributed the value of the function P(x) will be two [14]. 

𝑃(𝑥) =
∑ (Xi+1−Xi)2𝑛−1

𝑖=1

∑ (Xi−Xavg)2𝑛
𝑖=1

=2 

Where Xavg=average value of the series Xi…X 

Table 3. Von-Neumann’s Independent Test. 

Year Max RF 
Arithmetic 

Mean 
(Xi-Xavg)

2
 (Xi+1-Xi)

2
 

1988 60.6 69.83 85.2 12.96 

1989 57 69.83 164.61 192.38 

1990 43.13 69.83 712.89 4.97 

1991 40.9 69.83 836.95 201.64 

1992 55.1 69.83 216.97 0 

1993 55.1 69.83 216.97 615.04 

1994 79.9 69.83 101.41 156.25 

1995 67.4 69.83 5.91 163.84 

1996 54.6 69.83 231.95 3564.09 

1997 114.3 69.83 1977.58 1339.56 

1998 77.7 69.83 61.94 148.84 

1999 65.5 69.83 18.75 67.24 

2000 57.3 69.83 157.00 237.16 

2001 72.7 69.83 8.24 345.96 

2002 91.3 69.83 460.96 0.49 
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Year Max RF 
Arithmetic 

Mean 
(Xi-Xavg)

2
 (Xi+1-Xi)

2
 

2003 90.6 69.83 431.39 1489.96 

2004 52 69.83 317.91 750.76 

2005 79.4 69.83 91.59 88.36 

2006 70 69.83 0.03 20.25 

2007 65.5 69.83 18.75 16 

2008 69.5 69.83 0.11 102.01 

2009 59.4 69.83 108.79 54.76 

2010 52 69.83 317.92 331.24 

2011 70.2 69.83 0.14 256 

2012 54.2 69.83 244.30 985.96 

2013 85.6 69.83 248.69 88.36 

2014 76.2 69.83 40.58 620.01 

2015 51.3 69.83 343.36 11.56 

2016 54.7 69.83 228.92 10485.76 

2017 157.1 69.83 7616.05 5169.61 

Year Max RF 
Arithmetic 

Mean 
(Xi-Xavg)

2
 (Xi+1-Xi)

2
 

2018 85.2 69.83 236.24 161.29 

2019 97.9 69.83 787.93 3085.80 

2020 42.35 69.83 755.15 495.06 

2021 64.6 69.83 27.35 81 

2022 73.6 69.83 14.21 5416.96 

Sum 17086.69 36761.16 

𝑃(𝑥) =
∑ (Xi+1−Xi)2𝑛−1

𝑖=1

∑ (Xi−Xavg)2𝑛
𝑖=1

 =
36761.1348

17086.6901
=2 the result shows 

that according to Von-Neumann’s criteria the rainfall data are 

independent. 

3.2.2. Mann-Whitney’s Homogeneity Test Method 

This method is used to verify whether every component of 

the data series is derived from the same population and can 

follows the same probability distribution.  

Table 4. Mann-Whitney’s Homogeneity Test Method. 

P Annual Max daily RF q Annual Max daily RF N=P+q Annual Max daily RF 

1 60.6 1 79.4 1 40.9 

2 57 2 70 2 42.35 

3 43.13 3 65.5 3 43.13 

4 40.9 4 69.5 4 51.3 

5 55.1 5 59.4 5 52 

6 55.1 6 52 6 52 

7 79.9 7 70.2 7 54.2 

8 67.4 8 54.2 8 54.6 

9 54.6 9 85.6 9 54.7 

10 114.3 10 76.2 10 55.1 

11 77.7 11 51.3 11 55.1 

12 65.5 12 54.7 12 57 

13 57.3 13 157.1 13 57.3 

14 72.7 14 85.2 14 59.4 

15 91.3 15 97.9 15 60.6 

16 90.6 16 42.35 16 64.6 

17 52 17 64.6 17 65.5 

  
18 73.6 18 65.5 

    
19 67.4 

http://www.sciencepg.com/journal/jccee


Journal of Civil, Construction and Environmental Engineering http://www.sciencepg.com/journal/jccee 

 

161 

P Annual Max daily RF q Annual Max daily RF N=P+q Annual Max daily RF 

    
20 69.5 

    
21 70 

    
22 70.2 

    
23 72.7 

    
24 73.6 

    
25 76.2 

    
26 77.7 

    
27 79.4 

    
28 79.9 

    
29 85.2 

    30 85.6 

    31 90.6 

    32 91.3 

    33 97.9 

    34 114.5 

    35 157.1 

 

After arranging the data series into two ranked portions as 

p=17 and q=18 and sorting the total series in descending 

orders the value of S was calculating as follow as: 

𝑆 = 1 + 3 + 5 + 10 + 11 + 12 + 15 + 17 + 18 + 19 +

23 + 26 + 28 + 31 + 32 + 34 = 286  

S =Sum of ranks that are common for both the total series 

(N) and the first group ranks (p) that are represented by 

N=P+q. 

The value of V and W are competed as follow as 

𝑉 = 𝑆 −
𝑃∗(𝑃+1)

2
  

𝑉 = 285 −
17∗(17+1)

2
= 285 − 153 =132 

And the value of W calculated by the formula: 

𝑊 = 𝑞 ∗ 𝑝 − 𝑉 

𝑊 = 17 ∗ 18 − 153 = 306 − 153 = 153 

The smaller of V or W is the value of U. 

U=132 

Ū =
p∗q

2
=

17∗18

2
=153 

Var(U) = [
𝑃∗𝑞

𝑁∗(𝑁−1)
] [

𝑁3−𝑁

12
] + ∑ T𝑛

𝐼=0   

Where T, refers ties in the groups 

In Mann-Whitney U test, ties refer to situations where two 

or more observations from different groups have the same 

value. When encountering ties; the average rank is assigned 

to each tied observation. The presence of ties affects the cal-

culation of the expected value and variance of U. Special 

formulas are used to account for ties in these calculations. 

But in in this research case the number is from one group and 

∑ T43
𝐼=1 =0, Var(U) = [

17∗18

35∗(35−1)
] [

353−35

12
] + ∑ 035

𝐼=1  

Var(U) = 0.257 ∗ 3570 + ∑ 0 = 918𝑛
𝐼=1   

Var(U) = 918 

Finally the parameter, u is commuted using the formal 

𝑢 = 
U−Ū

var(U)(
1

2
)
 

u= 
132−153

(918)(
1

2
)
=-0.693 

Since at 5 % level of significance Pcritical is 1.96 

|u|=|-0.693| ≤1.96 
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The result verify that the calculated value is less than the 

critical value indicating that annual daily maximum rainfall 

is homogeneous at 5 % level of significance.  

3.2.3. Outliers Tests 

Grubbs-Beck (G-B) Test 

The following formulas are used to determine the upper 

outlier and XH and lower outlier XL values. 

𝑋𝐻 = 𝐸𝑋𝑃(𝑋̅ + 𝐾𝑁 ∗ 𝑆) 

𝑋𝐿 = 𝐸𝑋𝑃(𝑋̅ − 𝐾𝑁 ∗ 𝑆) 

KN= −3.62201 + 6.28446𝑁1/4 − 2.49835𝑁1/2 +

0.491436𝑁3/4  − 0.037911𝑁 

Where N=Sample size and 5≤N≤150 in this research case 

N=35 

𝐾𝑁 = −3.62201 + 6.28446 ∗ 35
1

4 − 2.49835 ∗ 35
1

2 +

0.491436 ∗ 35
3

4  − 0.037911 ∗ 35 = 2.63  

KN=2.63  

Table 5. Grubbs-Beck (G-B) Outlier Test method calculations for 

Debre Tabor Town Station Rainfall. 

Year 
P=Max An-

nual Daily RF 
lnP 

Mean of 

lnP 

St. devia-

tion lnP 

1988 60.6 4.10 4.20 0.28 

1989 57 4.04 4.20 0.28 

1990 43.13 3.76 4.20 0.28 

1991 40.9 3.71 4.20 0.28 

1992 55.1 4.01 4.20 0.28 

1993 55.1 4.01 4.20 0.28 

1994 79.9 4.38 4.20 0.28 

1995 67.4 4.21 4.20 0.28 

1996 54.6 4.00 4.20 0.28 

1997 114.3 4.74 4.20 0.28 

1998 77.7 4.35 4.20 0.28 

1999 65.5 4.18 4.20 0.28 

2000 57.3 4.05 4.20 0.28 

2001 72.7 4.29 4.20 0.28 

2002 91.3 4.51 4.20 0.28 

2003 90.6 4.51 4.20 0.28 

2004 52 3.95 4.20 0.28 

Year 
P=Max An-

nual Daily RF 
lnP 

Mean of 

lnP 

St. devia-

tion lnP 

2005 79.4 4.37 4.20 0.28 

2006 70 4.25 4.20 0.28 

2007 65.5 4.18 4.20 0.28 

2008 69.5 4.24 4.20 0.28 

2009 59.4 4.08 4.20 0.28 

2010 52 3.95 4.20 0.28 

2011 70.2 4.25 4.20 0.28 

2012 54.2 3.99 4.20 0.28 

2013 85.6 4.45 4.20 0.28 

2014 76.2 4.33 4.20 0.28 

2015 51.3 3.94 4.20 0.28 

2016 54.7 4.00 4.20 0.28 

2017 157.1 5.06 4.20 0.28 

2018 85.2 4.45 4.20 0.28 

2019 97.9 4.58 4.20 0.28 

2020 42.35 3.75 4.20 0.28 

2021 64.6 4.17 4.20 0.28 

2022 73.6 4.30 4.20 0.28 

Where: lnP and St.deviation.S are the sample's natural logarithms of 

annual maximum daily disaggregated rainfall data and the standard 

deviations of the natural logarithms of annual maximum daily dis-

aggregated rainfall data respectively. Mean lnP also represents the 

arithmetic mean of natural logarithms of annual maximum daily 

disaggregated rainfall data. Mean lnR=4.2; St. Deviation. S=0.28 

After computing statistical parameters the other steps is 

determining upper and lower limits. KN=2.63 

Upper Limit 

XH= 𝐸𝑋𝑃(𝑋̅ + 𝐾𝑁 ∗ 𝑆) 

XH= 𝐸𝑋𝑃(4.2 + 2.63 ∗ 0.28) 

XH = 𝐸𝑋𝑃(4.936) =139.27 mm 

Lower 

XL= 𝐸𝑋𝑃(𝑋̅ − 𝐾𝑁 ∗ 𝑆)  

XL= 𝐸𝑋𝑃(4.2 − 2.63 ∗ 0.28)  

XL = 𝐸𝑋𝑃(3.464) =31.93mm 

The results show that for annual maximum daily rainfall 

data 31.53 mm is the smallest and 139.27 mm is the largest 
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value, which indicate that there was upper outlier in the year 

2017 with the rainfall value amount 157.1 mm but there was 

no lower outlier. The upper outlier value indicate that unusu-

al value was observed from other years of rainfall values 

verifying that there was flooding or highest rainfall in the 

year 2017which should need further investigation.  

3.3. Deriving Two, Three and Five Days 

Rainfall from Annual Maximum Daily 

Rainfall 

It should be required to drive rainfall from the previous day 

for each day in order to create IDF curves for two, three, and 

five days. There are several techniques, such rolling aggrega-

tion and moving average methods, to estimate data for use in 

the future from the historical data. Because the moving aver-

age method is simple to use, effective at handling outliers, and 

allows for the calculation of future values from prior values, it 

was employed to extract rainfall data for two, three, and five 

days from daily rainfall data. It calculates the unknown values 

by taking sum of two, three and five day’s consecutive values 

and divide the sum by Two, Three, and five respectively. 

Table 6. Deriving Two, Three, and Five Day Rainfall from Annual 

Maximum Daily Rainfall. 

Year 1 Day 2 Days 3 Days 5 Days 

1988 60.6 #N/A #N/A #N/A 

1989 57.0 58.8 #N/A #N/A 

1990 43.1 50.1 53.6 #N/A 

1991 40.9 42.0 47.0 #N/A 

1992 55.1 48.0 46.4 51.3 

1993 55.1 55.1 50.4 50.2 

1994 79.9 67.5 63.4 54.8 

1995 67.4 73.7 67.5 59.7 

1996 54.6 61.0 67.3 62.4 

1997 114.3 84.5 78.8 74.3 

1998 77.7 96.0 82.2 78.8 

1999 65.5 71.6 85.8 75.9 

2000 57.3 61.4 66.8 73.9 

2001 72.7 65.0 65.2 77.5 

2002 91.3 82.0 73.8 72.9 

2003 90.6 91.0 84.9 75.5 

2004 52.0 71.3 78.0 72.8 

2005 79.4 65.7 74.0 77.2 

2006 70.0 74.7 67.1 76.7 

Year 1 Day 2 Days 3 Days 5 Days 

2007 65.5 67.8 71.6 71.5 

2008 69.5 67.5 68.3 67.3 

2009 59.4 64.5 64.8 68.8 

2010 52.0 55.7 60.3 63.3 

2011 70.2 61.1 60.5 63.3 

2012 54.2 62.2 58.8 61.1 

2013 85.6 69.9 70.0 64.3 

2014 76.2 80.9 72.0 67.6 

2015 51.3 63.8 71.0 67.5 

2016 54.7 53.0 60.7 64.4 

2017 157.1 105.9 87.7 85.0 

2018 85.2 121.2 99.0 84.9 

2019 97.9 91.6 113.4 89.2 

2020 42.4 70.1 75.2 87.5 

2021 64.6 53.5 68.3 89.4 

2022 73.6 69.1 60.2 72.7 

The two and three-day moving averages are more accurate 

at predicting future values because, as the plot illustrates, they 

vary more quickly depending on past days than the five-day 

morning average, which is smoother and didn't fluctuate as 

much. The standard errors of the two- and three-day moving 

averages are less than those of the five-day moving average. 
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Figure 3. Moving Average Plots for Different Days. 

3.4. Evaluation of Parameter Model Comparing 

Criteria 

The statistical technique used to calculate the distribution 

parameters is called the maximum likelihood estimator. Next, 

one or more GEV distribution parameters are expressed as a 

function of time in order to indicate the non-stationarity. The 

R-Studio program was used to estimate a variety of parame-

ters by merging pertinent functions with corresponding pack-

ages. The maximum likelihood estimator approach was uti-

lized to estimate the parameters of the GEV distribution. 

While the parameters of non-stationary models exhibit time-

varying properties, the parameters of stationary models re-

main unaffected by time. It is therefore easy to deduce from 

the above table that all MO models are stationary because 

they are all utilized to calculate their respective return levels, 

and that all other models are non-stationary because all of 

their parameters vary on time. 

Table 7. Assessing GEV Parameter Models using Two Criterion. 

Duration (min) Model Type AIC AICC 

10 

MO 268.98 269.76 

MI 270.09 270.87 

MII 270.92 271.69 

MIII 270.22 270.99 

MIV 269.98 270.75 

MV 269.53 270.30 

15 

MO 272.12 272.90 

MI 273.23 274.01 

MII 274.05 274.83 

MIII 273.36 274.13 

MIV 273.12 273.89 

MV 272.66 273.44 

30 

MO 277.51 278.29 

MI 278.62 279.40 

MII 279.44 280.22 

Duration (min) Model Type AIC AICC 

MIII 278.75 279.52 

MIV 278.51 279.28 

MV 278.06 278.83 

45 

MO 280.67 281.44 

MI 281.78 282.55 

MII 282.60 283.37 

MIII 281.90 282.67 

MIV 281.66 282.43 

MV 281.21 281.98 

60 

MO 282.90 283.68 

MI 284.01 284.79 

MII 284.84 285.61 

MIII 284.14 284.91 

MIV 283.90 284.67 

MV 283.45 284.22 

120 

MO 288.29 289.07 

MI 289.41 290.18 

MII 290.23 291.00 

MIII 289.53 290.30 

MIV 289.29 290.06 

MV 288.84 289.61 

180 

MO 296.84 297.61 

MI 297.95 298.72 

MII 298.77 299.55 

MIII 298.07 298.85 

MIV 297.83 298.61 

MV 297.38 298.16 

Considered Days 

1 day 

MO 307.62 308.40 

MI 308.73 309.51 

MII 309.55 310.33 

MIII 308.86 309.63 

MIV 308.62 309.39 

MV 308.16 308.94 

2 days 

MO 286.41 287.18 

MI 284.28 285.06 

MII 287.96 288.74 

MIII 285.44 286.22 

MIV 285.29 286.07 
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Duration (min) Model Type AIC AICC 

MV 281.41 282.18 

3 day 

MO 269.26 270.04 

MI 263.65 264.42 

MII 269.60 270.37 

MIII 265.41 266.19 

MIV 265.35 266.13 

MV 261.36 262.14 

Because they have the minimum AIC and AICC values, 

the shaded numbers are R-studio outputs, which indicate the 

best parameters model for all durations. The best models 

were chosen after evaluating smaller numbers in the above 

table and making a judgment based on criteria for GEV 

models. Apart from AIC, the optimal model was ascertained 

by employing a statistical method called the corrected 

Akaike's information criterion. The following formulas were 

used in the process: 

AIC = −2𝑙𝑜𝑔𝐿 + 2𝐾  

AICc = AIC(k) + 
2k(k+1)

𝑛−𝑘−1
  

In a given mode, k represents the total number of parame-

ters [36]. 

In this study using the previously indicated equations, 

computations were performed for all model duration. For 

fifteen minutes, for instance, the non-stationary GEV model 

type-MV computation was completed as blow. Analogous 

work was completed for other non-stationary GEV model 

types, and provisions were made for stationary models. The 

outcomes were then summed up in the ways listed below. 

With R-Studio, the previous table shows us 

AIC=261.36 

K=3 

n=35 

AICc = AIC(k) + 
2k(k+1)

𝑛−𝑘−1
  

AICc = 261.36 + 
2∗3∗(3+1)

35−3−1
= 261.36 + 0.774 = 262.13  

Five different candidate models were considered for con-

sideration in the computation, as the aforementioned tables 

showed. To determine which model was the winner, the AIC 

and AICC values were compared with the corresponding 

values for the same duration. The winner would be the model 

with the lowest value as determined by the updated Akaike's 

information criteria. This logic indicates that the GEV Type-

MV is the best model for all durations since, for the same 

length, its AIC and AICC are the lowest of all the models. It 

was surprising to find that the GEV model Type MV is the 

best model for all non-stationary models because all AIC and 

AICC values are the lowest. But in the case of the stationary 

model, it became necessary to use the representative of all 

durations to compute return levels for all stationary models. 

In contrast to stationary models, non-stationary models uti-

lized a single optimal model selected for all duration to de-

termine return levels for all duration. The GEV non-

stationary model is ranked using the change (Δi). 

Δi = AICc − min (AICc)  

Given that min (AICc) = 256.26, the remaining values of 

Δi are calculated using the formula Δi=AICc-262.14. To ob-

tain the matching AICC value, replace the corresponding row 

value of AIC. The ideal model is one with Δi = 0, and choos-

ing a value less than 2 is recommended. It was determined 

that GEV Type-MV is the best model and a wise choice 

among the models based on this criterion and the information 

in the above table. The following phase involves utilizing 

RStudio software to determine rainfall intensity or return 

levels based on the stationary and non-stationary model for-

mula. 

3.5. Goodness of Fit Test 

In order to determine which GEV distribution model best 

fits the sample rainfall data, a graphic diagnostic test was 

employed. The distribution can be fitted using a variety of 

graphical and numerical techniques; the degree to which the 

fitted model fits the sample data should be assessed based on 

the models and functions that were employed. 

If every scatter follows the 1-1 axis, a better match is as-

sured, as indicated by the graphical diagnosis plotted above. 

To assess the quality of the model fitting, the Q-Q plot of the 

models was also utilized. In all models, the scatters fall be-

tween the upper and lower bounds of the 95% conference 

band, but in models M-I and MV, the scatters appear to fol-

low the 1-1 line quite well. There is also a closer relationship 

between the regression line and the 1-1 line. However, out of 

all the model types, the MV model turned out to be the best 

one due to its smaller AIC and AICC information criterion. 

The return levels for each time frame of the return periods of 

2, 5, 10, 25, 50, and 100 years were predicted using the pa-

rameters of the best-fit GEV model. The projected return 

levels were compared as percentages of variances across the 

six time periods in order to monitor trends in extreme events. 

The greatest yearly rainfall from the best appropriate model 

was determined using its exceedance probability because 

non-stationary models have fluctuating return levels over 

time. The highest rainfall in each fit was determined using 

the 95% exceedance of the return level. 
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Figure 4. Rainfall Quantile Plots at Debre Tabor Station for Various Models. 
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Figure 5. Density Plot of Debre Tabor Station for Fit and Simulated Rainfall Data. 

Because of these factors, M-Ѵ  is the best fit model, and 

M-I, M-II, M-II, and M-IV are also eliminated by the AIC 

and AICC criteria. The M-̴ model is primarily similar in 

shape to the fitted sample rainfall data, and the regression 

line of M-Ѵ  converged to the 1-1 line of the quantile plot of 

the model. As can be seen from the density plot figure above, 

M-0 is eliminated from the best fitting models since it is over 

fit and the simulated model's shape differs from the shape of 

the observed rainfall data. As a result, model M-Ѵ  has sur-

passed all other models as the best density plot model. 

3.6. Development of GEV Models IDF Curves 

Statistical modeling, rigorous data analysis, and considera-

tion of the changing characteristics of rainfall events over 

time were all necessary for the development of GEV-based 

IDF curves, whether for stationary or non-stationary models 

The highest daily rainfall data for various years were re-

trieved and broken down to smeller durations from the rain-

fall data records that were gathered for Debre Tabor town 

over suitably long periods of time. By applying a statistical 

technique known as maximum likelihood estimation, the 

GEV distribution was fitted to the annual maximum rainfall 

data. The required GEV distribution parameters, such as µ, σ, 

and ξ that best characterized the extreme rainfall events seen 

in the sample data were estimated using the fitted procedure. 

Using the estimated GEV values, rainfall intensities were 

calculated for different durations and return times. The aver-

age recurrence interval of an event of a given amount is de-

scribed by the return period. The return periods used in this 

research are 2-years, 5-years, 10-years, 25-years, 50-years, 

and 100 years. The GEV stationary IDF curves display the 

computed rainfall intensities plotted on the x-y axis for vari-

ous durations and return times. The duration of the rainfall, 

given in time units like minutes or hours, is depicted on the 

x-axis, while the corresponding intensity of the rainfall, ex-

pressed in millimeters per hour, is represented on the y-axis. 

The IDF curves provide an example of how rainfall intensity, 

duration, and return periods are correlated. 
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Table 8. GEV Fitted Stationary Rainfall Intensity (mm/hr). 

Duration (min) 

Return Periods 

2 years 5 years 10 years 25 years 50 years 100years 

15 100.68 144.45 176.73 221.70 258.36 297.83 

30 55.65 79.29 96.72 121.01 140.81 162.12 

45 39.30 55.79 67.94 84.88 98.69 113.55 

60 30.69 43.46 52.87 66.00 76.68 88.19 

120 16.90 23.79 28.87 35.96 41.73 47.95 

180 11.91 16.71 20.26 25.20 29.23 33.56 

 

Considered Days 

Return Periods 

2 years 5 years 10 years 25 years 50 years 100years 

1 2.71 3.47 4.027 4.80 5.44 6.12 

2 1.40 1.70 1.90 2.15 2.34 2.52 

3 0.95 1.12 1.23 1.35 1.44 1.52 

For all the considered portion of durations in minutes the rainfall intensity show an increasing value as the length of return 

periods increase and show decreasing value while the length of duration increase. 

 

 
Figure 6. GEV Distribution Fitted Stationary IDF Curves for Debre Tabor Station. 
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The two IDF figures above revealed that the curves get closer as durations increase and the gaps between the curves get in-

creased as the durations get a decreased. The curve for 2 years of return period is at lowest position and the curve for 100 years 

of return period is the top most position.  

Table 9. GEV Fitted Non-stationary Rainfall Intensity (mm/hr). 

Duration (min) 

Return Periods 

2 years 5 years 10 years 25 years 50 years 100 years 

15 110.26 182.00 240.36 329.34 408.45 480.09 

30 60.81 99.48 130.96 178.95 221.61 261.04 

45 42.89 69.86 91.80 125.25 155.00 182.80 

60 33.48 54.36 71.35 97.27 120.31 147.01 

120 18.40 29.69 38.88 52.90 65.37 88.82 

180 12.96 20.84 27.25 37.02 45.71 55.77 

 

Considered Days 

Return Periods 

2 years 5 years 10 years 25 years 50 years 100 years 

1 2.88 4.12 5.13 6.67 8.04 9.62 

2 1.53 2.12 2.56 3.16 3.65 4.18 

3 1.02 1.32 1.52 1.77 1.95 2.13 

 

 
Figure 7. GEV Distribution Fitted Non-stationary IDF Curves for Debre Tabor Station. 
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The rainfall intensity for non-stationary model show simi-

lar characteristics even though shows greater values than 

stationary model. As comparison the highest rainfall intensity 

value for stationary model is 297.83 mm/hr while that of 

non-stationary model is 480.09 mm/hr. 

3.7. Comparing Stationary and Non-Stationary 

Models IDF Intensities 

A detailed analysis of the GEV fitted distributions of rainfall 

intensities in Debre Tabor Station above and a visual inspec-

tion of graphical plots of the rainfall intensity against duration 

and return period also show a significant difference between 

stationary and non-stationary model intensities at each plotting 

point. The rainfall intensity values calculated for both station-

ary and non-stationary distributions were plotted against dif-

ferent durations for predetermined return periods on the same 

regular graph paper, as can be seen in the graphs below. As 

reported in numerous recent publications, it was verified that 

the stationary model generates IDF curves that understate ex-

ceptional occurrences. Compared to the stationary rainfall 

intensity distribution, the non-stationary rainfall intensity dis-

tribution produced higher values. Using stationary IDF curve 

values would not ensure that the hydraulic and hydrologic 

structural design of such facilities is safe against more hydrau-

lic extreme occurrences projected by non-stationary approach 

for any given return period. For example, a 15-minute down-

pour with a 25-year return period resulted in non-stationary 

rainfall intensity of 329.34 mm/hr; yet, the same rainstorm 

length and return period also produced stationary rainfall in-

tensity of 221.70 mm/hr. This means that the intensity differ-

ence between the two events was 107.64 mm/hr. A 30-minute 

rainstorm, again for a 100-year return period, produced a non-

stationary rainfall intensity of 261.04 mm/hr and a stationary 

rainfall intensity of 162.12 mm/hr. This difference in rainfall 

intensity amounts to 98.92 mm/hr, or 61.02 percent, of the 

rainfall intensity calculated using the stationary method. Addi-

tionally, over a longer length of time the 60-minute rainstorm 

produced a rainfall intensity of 120.31 mm/hr using a non-

stationary technique, and 76.68 mm/hr using a stationary 

method during the 50-year rerun period. There is a slight var-

iation in the rainfall intensity between them of 43.63 mm/hr, or 

56.90 percent, compared to the rainfall intensity determined 

using a stationary approach. This indicates that longer duration 

rainfall events have not altered considerably over the course of 

succeeding years, in contrast to shorter duration rainfall events, 

which intensified more with the corresponding return time. 

Further research showed that during shorter intervals, there 

was a greater disparity in rainfall intensities between non-

stationary and stationary situations. The disparity narrows to 

5.9 mm/hr rainfall intensity. For example, at a 5-year return 

time, a 2-hour rainfall storm produced 29.69 mm/hr rainfall 

intensity in the non-stationary technique and 23.79 mm/hr 

rainfall intensity in the stationary model. 
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Figure 8. GEV Distribution Fitted Stationary against Non-

Stationary IDF Curves. 

3.8. Validation for Rainfall Intensity 

When rainfall intensities calculated from observed rainfall 

are compared to projected rainfall intensities, this process is 

known as intensity validation. Various approaches to valida-

tion can be taken, depending on the particular situation, the 

data at hand, and the intended use of rainfall intensity esti-

mations. The validation procedure requires specialized 

knowledge and comprehension in order to express the results 

and analyze the overall reliability of rainfall intensity esti-

mates. 

 

Table 10. Rainfall Intensity (mm/hr) derived using Hazen standard formula. 

Duration (minutes) 1.2 Years Return Period 2 Years Return Period 6 Years Return Period 

15 61.2 64 75.2 

30 34 48 53.2 

45 24.53 40.53 42.40 

60 19.6 32.5 33.7 

The rainfall intensity for table 10 is obtained by using Hazen method of estimating probability of exceedance. The formula 

used was  

𝑟−0.5

𝑛
∗ 100                                                                                        (46) 

Where n is number of observations and r is rank [37]. 

Table 11. GEV Fitted Non-Stationary Disaggregated Rainfall Intensity (mm/hr). 

Duration (min) 1.2 Years Return period 2 Years Return period 6 Years Return period 

15 95.12 105.64 131.64 

30 52.16 58.4 74.42 

45 36.84 41.41 53.19 

60 28.82 32.5 41.96 

 

The aforementioned tables demonstrate that, for a 1.2 year 

return period and 15-minute duration, observed rainfall pro-

duced an intensity of 61.2 mm/hr. In contrast, the non-

stationary method produced an intensity of 95.12 mm/hr dur-

ing the same return period and duration. This indicates a pos-

itive difference and shows that the non-stationary method did 

not underestimate the rainfall intensity compared to the 

benchmark of observed rainfall intensity. 
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Figure 9. Comparing the Disaggregate and Observed IDF Curves on the Same Plots. 

3.9. Conclusion and Discussion 

The development of intensity-duration -frequency curves 

is very important task in hydrology for the prediction of de-

sign rainfall extreme events. IDF curves have historically 

been using stationary models, which makes the assumption 

those statistical characteristics of precipitation data remains 

constant throughout the time. However, there is growing 

understanding that climate change and other causes may in-

troduce non-stationarity in precipitation patterns, necessitat-

ing the use of non-stationary models. In order to develop 

intensity-duration-frequency curves for Debre Tabor town 

using generalized extreme value distribution models, Debre 

Tabor station of annual maximum of daily rainfall of 35 

years, and 6 years of maximum sub-daily annual (hourly) 

data on rainfall were utilized. Excel software was used to 

apply logical codes to modify the automatically recorded 

rainfall data with the relevant metrological data. The annual 

maximum daily rainfall data is founded generally homoge-

neous, non-stationary, independent and no outliers found. In 

addition to these data tests, the Mann-Kendall test using R 

studio for data trend test analysis was employed to find 

trends in the rainfall data. The generalized extreme value 

distribution function was used to fit the best fitting model of 

the annual maximum daily rainfall data; R-Studio software 

was used to analyze the model fitting processes. Five ex-

pected parameter models integrating time as a covariate was 

compared in order to estimate rainfall intensity for the non-

stationary intensity-duration-frequency models. The predict-

ed rainfall intensities for both the stationary and non-

stationary models showed that the non-stationary intensities 

yielded values greater than the stationary intensities, suggest-

ing that the stationary method underestimates the occurrence 

of intense rainfall occurrences. IDF curves were plotted for 

both stationary and non-stationary model intensities. Precipi-

tation intensities shown different behavior over the two time 

intervals that are [15 minutes, 60 minutes) and [1 hour, 3 

hours], where the values of the rainfall intensity were higher 

for shorter durations of time than longer ones. Practically in 

the rainfall intensity computation the non-stationary models 

produced greater values than stationary models, for example 

for 25 years return period, 15 minutes duration rainstorm 

produced the non-stationary rainfall intensity of 329.34 
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mm/hr, while the same return period and duration produced 

stationary intensity of 221.28 mm/hr. A variation of 107.64 

mm/hr rainfall intensity is observed over this event. Once 

more, over 100 years return period, the 30 minute rain storm 

produced a non-stationary rainfall intensity of 261.04 mm/hr, 

while stationary rainfall intensity produced is 161.12 mm/hr. 

This difference in rainfall intensity amounts to 99.92mm. 

Additionally in a different analysis that was presented for a 

longer length, during a 50-year return period, a downpour 

lasting 1 hour yielded rainfall intensity of 76.68 mm/hr for 

stationary approach and 120.31 mm/hr for the non-stationary 

method.. A variation in rainfall intensity of 43.63 mm/hr, as 

such, the intensity of the rainfall, particularly for shorter du-

rations, may cause the stationary IDF models highly under 

estimate the peak flood. It was verified that for periods rang-

ing from 15 minutes to 30 minutes, the difference in rainfall 

intensities between stationary and non-stationary elements 

showed a discernible rise. However, the values of intensity of 

rainfall decreased with increasing durations, indicating that 

events with shorter durations became more intense with time, 

but events with longer durations did not very much. Because 

shorter-storms are producing higher intensities and sign of a 

greater difference in the extreme values, which could in-

crease the risk of flooding and lead to hydraulic and hydro-

logic infrastructures failure, analysis on these storms should 

be focused on shorter durations for design purposes of differ-

ent structures. Generally, the research work shows how im-

portant and useful GEV distribution models both stationary 

and non-stationary are for comprehending exceptional occur-

rence. These models help in improved risk management and 

decision making across a range of industries by offering in-

sightful information on the behavior of catastrophic occur-

rence.  
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