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1. Introduction and Preliminaries

Throughout this paper, the term group always means a group
of finite order. The letter G always denotes a group. For an
element = of G, o(x) denotes the order of x, and G denotes
the conjugacy class of  in G. |z%| is called the size of the
conjugacy class 2, that is the positive integer |G : Cg(z)].
We write m(G) to denote the set of the prime divisors of the
order |G| of G. For a prime p € 7(G), G, denotes a Sylow
p-subgrou of G, and Gy denotes a p-complement of G. The
further unexplained notations are standard and can be found in
[1].

Let x € G. We say that the element x is primary if o(z)
is a power of a prime; We say that the element x is biprimary
if o(x) is divisible by exactly two distinct primes. A primary
element is also called an element of prime-power order.

Let G be a non-abelian group. We say that G is a Baer-group
if the conjugacy class size of every primary element of G is a
power of a prime (see [2]).

For any group G, we write

T(G) = {x € G — Z(G)|x is primary or biprimary }.

We say that a non-abelian group G is a B-group if [2%] is a
power of a prime for every x € T(G).

By using [3, Corollary 2] and some arguments in its proof,
we can get the following.

Theorem A. Let G be a non-nilpotent group. Suppose that G
is a B-group. Then the following propositions hold:

(1) There exist tow different primes p,q € w(G) such that
G = PQ x A, where A is an abelian {p,q}'-group, P is

an abelian Sylow p-subgroup of G, Q is an abelian Sylow q-
subgroup of G and Q < G.

(2) PN P9 = O,(G) foreach g € G — Ng(P).

(3) Write K = PQ. Then K/Z(K) is a Frobenius group
with the Frobenius kernel QZ(K)/Z(K). In addition, the
following two statements hold:

(3a) If K has no non-trivial ablian direct factors, then
Z(K) = 0,(G).

(3b) Let K1 be minimal such that K1Z(K) = K. Then,
K1/Z(K4) is a Frobenius group with the Frobenius kernel
(K1 N Q)Z(Kl)/Z(Kl) and Z(Kl) = Op(Kl) = Kin
O, (K).

Theorem A is an improvement of [4, Corollary 2.2] and the
necessary part of [4, Theorem 2].

The proof of [3, Corollary 2] uses the structure theorem on
Baer-groups (see [2] and [3, Theorem 3]). The proof of the
structure theorem on Baer groups is long or uses a lot of other
results. So, in this note, we provide an independent proof
of Theorem A without using the structure theorem on Baer
groups in [2] or [3].

By Theorem A, we immediately get the following.

Corollary B. Let G be a non-nilpotent group. Suppose that
|z€| is a prime for every x € T(G). Then there exist two
deferent primes p, q € 7(QG) such that G = PQ x A, where A
is an abelian {p, q}'-group, P is an abelian Sylow p-subgroup
of G, Q is an abelian Sylow q-subgroup of G and @) < G.
Furthermore, G /Z(G) is a Frobenius group of order pq.

Below, we list several elementary lemmas which will be
used in the sequel. The proofs of these lemmas are easy. The
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following Lemma 1.1 and Lemma 1.2 are well known.

Lemma 1.1. Let © € G. Assume that o(x) = pi"*...pJ",
where pi,...,p, are distinct primes and mq,...,m, are
positive integers. Then v = x1...x, with o(x;) = p;*', and
T,Ts = XXy for s,v = 1,...,n. Furthermore, there exist
integers k; such that % = x; fori =1,--- n.

Lemma 1.2[4, Lemma 1.1]. Let G be a group, and let N be
a normal subgroup of G.

(1) For every x € N, |zV|||z%].

(2) For every x € G, |(zN)G/N|||z¢|.

Lemma 1.3[3, Lemma J(i)(1i)]. Let G be a group and
r € G IfK<QGand K £ Cg(x), then p||xC| for some
p € m(K).

Lemma 1.4[3, Remark 2]. Suppose that x1,--- ,xi be the
system of representatives of the noncentral conjugacy classes
of a non-abelian group G. Then G =< x1,--- , T} >.

2. The Proof of Theorem A

By Lemma 1.1 and Lemma 1.2, the following Lemma 2.1
holds.

Lemma 2.1. Let G be a B-group, and let N be a normal
subgroup of G. Then

(1) If N is non-abelian, then N is a B-group.

(2) If G/N is non-abelian, then G /N is a B-group.

Lemma 2.2. Let G be a non-nilpotent B-group. Then G is
solvable and |G : F(G)| is a power of a prime, where F(G) is
the Fitting subgroup of G.

Proof. For a group K, if there exists a non-central element
x of K such that || is a power of a prime, then K is not a
non-abelian simple group (see [1, 15.2 Theorem, p.190]). So,
every B-group is not a non-abelian simple group, and thus by
Lemma 2.1 we conclude that every B-group is solvable. In
particular, G is solvable.

Since G is solvable and non-nilpotent, we have that 1 <
F(G) < @G. Since F(G/®(GQ)) = F(G)/®(G) and
F(G/Z(G)) = F(G)/Z(G), by Lemma 2.1 and induction
on |G|, we can assume that ®(G) = 1 and Z(G) = 1. Tt
follows that F'(G) is abelian (see [5, III. 4.5]) and there exists
a subgroup A of G such that G = AF(G)and AN F(G) =1
(see [5, III. 4.4]). Hence, we have that |G : F(G)| = |A|.

Let N be a non-trivial normal subgroup of A. Set K =
NF(G). Then K < G and F(K) = F(G). By Lemma 2.1
and induction on |G|, we conclude that |K : F'(K)]| is a power
of a prime, and so |N|(= |K : F(G)| = |K : F(K)|)is a
power of a prime. So, we have proved the following statement
(*):

(*) Let N be a non-trivial normal subgroup of A. Then |N|
is a power of a prime.

Let M be a maximal normal subgroup of A. We have that
|A : M| = p, where p is a prime. If M = 1, then we are
done. So, we assume that M # 1, and thus by the above
statement (*) |M| is a power of a prime ¢. If ¢ = p, then
|G : F(G)|(= |A| = p|M]) is a power of the prime p, and
we are done. Hence, we assume that ¢ # p and deduce a
contradiction.

Write M = (. We have that A = P(Q), where P is a p-
group, @ is a g-group, @ < A and |P| = p. We have that
P =< x > with o(z) = p. Then we have that A = PQ =<
x> Q.

Write F' = F(G). Let C' = C4(F,). Clearly, Fj, # 1. We
have that C' < A. Since F(G) is abelian and Z(G) = 1, we
have C' < A. Then, noting that A = P(Q), by statement (*) we
conclude that either |C| = 1 or |C| is a power of p or a power
of q.

Assume that |C| # 1 and |C] is a power of p. Then we
have that P = C' < A. Noting that () < A, we have that
A = PQ = P x Q. Then by statement (*) we conclude
that |Q] = ¢ and @ =< y > with o(y) = ¢. It follows that
A=<z>X<y>.

Assume that |C| is a power of g(including C = 1). Then
P(=<z >) £ C(Fy ), and so by the hypothesis and Lemma
1.3 we conclude that |z is a power of a prime r with r # q.
Noting that A = G//F(G), by Lemma 1.2 we have that |z4|
is a power of a prime r with r # ¢. Therefore, noting that
@ < A, by Lemma 1.3 we conclude that Q < C4(z), and so
A =<z > x@Q. It follows by statement (*) that QQ =< y >
witho(y) =gand A =<z > X <y >.

Clearly, xy is a biprimary element, that is, zy € T(G).
Then by the hypothesis |(zy)®| is a power of a prime ¢. Hence,
by Lemma 1.3 we have that F;y < Cg(zy), and thus by
Lemma 1.1 we have that Fy < Cg(< & > X <y >) =
Cg(A). Noting that F' is abelian, we conclude that Fy <
Ca(AF) = Cg(G), and thus Fyy < Z(G) = 1. It follows that
F=F,and G=AF = AF, = (< x > X < y >)F;. Since
QF =<y > FtS]G = AFt and PF =<z > Ftﬂ(; = AFt,
we have that p #£ ¢t # q. Let z € F; = F. Since F is abelian
and |2%| is a power of a prime by the hypothesis, we conclude
that |2¢| is either a power of p or a power of ¢. It follows
that FF = Cp(x) U Cp(y), and thus either F' = Cp(x) or
F = Cp(y). Then either z € Cq(F) ory € Cg(F'). Noting
that Cq(F) < F (see [5, III. 4.2]), we have that either 2z € F'
ory € F, contradicting the fact that ANF = 1. This completes
the proof.

Lemma 2.3. Let G be a non-nilpotent B-group. Then there
exist two distinct primes p,q € w(Q) such that G = PQ X A,
where A is an abelian {p,q}'-group, P is an abelian Sylow
p-subgroup of G, Q is an abelian Sylow q-subgroup of G and
Q<G

Proof. By Lemma 2.2, G = PF(G), where P is a Sylow
p-subgroup of G for some prime p € w(G). Set F' = F(G).
Then G = PF = PF),.

Step 1. Let ¢ € n(G) — {p}. If F, is non-abelian, then P
centralises F.

We have that F, < G. Letz € F, — Z(F,). |zf]is a
power of ¢, and so by Lemma 1.2 we conclude that |2| is a
power of ¢ because GG is a B-group and z € T'(G). Then, since
G = PF and F is nilpotent, there exists an element ¢ € Fj,
such that P < Cg(z!), and thus by Lemma 1.4 we conclude
that P < C(Fy).

Step 2. Letr,q € m(G) — {p} with r # ¢. Suppose that F,
is abelian and F} is non-abelian. Then P < Cg(F}).

Letx € Fr.andy € F, — Z(F,). We have that F.F, =
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F, x Fy and zy = yz. Since F, is abelian and y ¢ Z(F,),
|(xy)Fr>Fa| is a power of ¢. Clearly, F;. x F, < G. Then by
Lemma 1.2 we conclude that |(zy)®| is a power of ¢ because
G is a B-group and zy € T(G)(xy is a biprime element).
Then, noting that P < C¢/(F,) by Step 1, it is easy to see that
P < C¢(z). Hence, we have that P < Cg(F).

Step 3. I}, is abelian.

Suppose that F}, is non-abelian. Then, by Step 1 and Step 2
we conclude that P < C(F)y ), and thus G = PF = PF, =
P x F,. This implies that G is nilpotent, a contradiction.

Step 4. P is abelian.

Suppose that P is non-abelian. || is power of p for every
x € P — Z(P). Then, since P = G/F,/, by Lemma 1.2 we
conclude that |2¢| is a power of p for every x € P — Z(P)
because || is a power of a prime by the hypotyhesis. Hence,
by Lemma 1.3 we conclude that F), centralises P =< P —
Z(P) >, and thus G = PF), = P X F,,. This implies that G
is nilpotent, a contradiction.

Step 5. There exists a primes ¢ € m(G) — {p} such that
G = PQ x A, where A is an abelian {p, ¢}'-group, @ is an
abelian Sylow g-subgroup of G and @Q < G.

Let x € P. Since P is abelian by Step 4, by the hypothesis
|2¥ | is a power of a prime g with ¢ # p. Lety, z € P withy #
2. Then |y©| is a power of a prime r with r # p, and |2%| is a
power of a prime ¢ with ¢ # p. Suppose that r # ¢. Then by
Lemma 1.3 we conclude that F;, < Cg(y) and F,. < Cg(z).
It follows that F,. £ Cg(yz); otherwise F,, < Cg(y) and
|y| is not a power of 7, a contradiction. Hence, by Lemma
1.3 we conclude that |(yz)¥| is is a power of r, and thus
F, < Cg(yz). It follows that F, < Cg(2) and |2 is not a
power of g, a contradiction. So, for every non-identity element
x of P, |x%| is a power of a same prime ¢, and thus by Lemma
1.3 we have that Fy < Cg(P). Noting that F,/ is abelian by
Step 3, we have that G = PF' = PF,, = PF, x F{p,q}/. Let
Q = Fyand A = Fy, oy Then G = PQ x A, where A is
an abelian {p, ¢}'- group, P is an abelian Sylow p-subgroup of
G, @ is an abelian Sylow g-subgroup of G and Q < G. This
completes the proof.

Lemma 2.4. Let G be a non-nilpotent B-group. Assume that
G = PQ, where P is an abelian Sylow p-subgroup of G, Q
is an abelian Sylow q-subgroup of G and Q < G(p and q are
two distinct primes). Then G/Z(QG) is a Frobenius group with
the Frobenius kernel QZ(G)/Z(QG). In addition, the following
two propositions hold:

(i) If G has no non-trivial abelian direct factors, then
Z(G) = 0,(G).

(ii) Let K be minimal such that KZ(G) = G. Then,
K/Z(K) is a Frobenius group with the Frobenius kernel
(KNQ)Z(K)/Z(K) and Z(K) = O,(K) = K N O,(G).

Proof. Let x € G. We have x = zy = yz, where z is
a p-element and y is a g-element. Since G is a B-group and
7(G) = {p, q}, we have that |2“| is either a power of p or a
power of q. If x| is a power of p, then |2/ is also a power
of p (see Lemma 1.1). Then, since z is a p-element and Sylow

p-subgroups of G are abelian, we have that [z“| = 1, and
thus z € Z(G). By the same argument we conclude that, if
|| is a power of ¢, then y € Z(G). So, either z € Z(G)
ory € Z(G). It follows that the order of every element of
G/Z(G) is a power of a prime. Then, noting that @ is normal
in G, G/Z(@) is a Frobenius group with the Frobenius kernel
QZ(G)/Z(G) (see [6, p.121, Problems (7.1)]).

Next, we prove proposition (i). By Fitting’s Lemma (see
[7, Theorem 2.3, p.177]), we have that Q = [P, Q] x Cq(P).
Clearly, Z(G), = Cg(P). Then, since G has non non-trivial
abelian direct factors, we have that Z(G), = 1, and thus
Z(G) = Z(G)p. Clearly, Z(G), = Op,(G). So, we have
that Z(G) = Z(G), = Op(G). This completes the proof of
proposition (i).

Finally, we prove proposition (ii). Since KZ(G) =
G, we have that Z(K) = K N Z(G) and G/Z(G) =
KZ(G)/Z(G) =2 K/(K N Z(G)) = K/Z(K). Then,
since G/Z(G) is a Frobenius group with the Frobenius kernel
QZ(G)/Z(G) (see proposition (1)), K/Z(K) is a Frobenius
group with the Frobenius kernel (K NQ)Z(K)/Z(K). By the
minimal property of K and by Fitting’s Lemma we conclude
that Z(K), = 1 and Z(K) = Ou(K) = K N O,(G),
completing the proof of proposition (ii). The proof is finished.

Proof of Theorem A. By Lemma 2.3 and Lemma 2.4,
statement (1) and statement (3) of Theorem A are true. By
statement (1) and statement (3) of Theorem A we conclude
that statement (2) of Theorem A holds (see [6,(7.1), p.99] and
[1,16.1, p.196]). This completes the proof of Theorem A.
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