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Abstract 

This study presents the Epidemiological Quick Response and Alternative Code (EpiMod-QR/Alt) system, an innovative 

framework designed to address attendance management challenges in certain Nigerian higher institutions. By integrating QR/Alt 

code technology with compartmental differential equation modeling, the system offers real-time tracking, predictive analysis, 

and actionable insights for data-driven decision-making. Leveraging the Differential Transform Method (DTM), the system 

solves the underlying differential equations with enhanced computational efficiency and accuracy. The model categorizes 

students into dynamic compartments—scheduled, attending, and absent—allowing for continuous monitoring and analysis of 

attendance trends. The EpiMod-QR/Alt system is designed to overcome the limitations of traditional and semi-digital attendance 

systems, such as inaccuracy, time inefficiency, and lack of scalability. It supports hybrid learning environments by 

accommodating both physical and virtual attendance tracking, ensuring that data collection remains seamless and secure. 

Through theoretical validation and simulated scenarios, including fixed policies and dynamic interventions, the system 

demonstrates adaptability and robustness across diverse institutional contexts. Results indicate that the system significantly 

reduces absenteeism, improves administrative oversight, and supports the optimal allocation of institutional resources. Its 

predictive capabilities enable proactive interventions and long-term planning, aligning with the broader goals of smart campus 

transformation. The research lays the groundwork for practical implementation and highlights potential for future enhancements, 

including the integration of machine learning algorithms and expansion to multi-campus systems. By combining mathematical 

modeling with technological innovation, the EpiMod-QR/Alt system offers a scalable, efficient, and intelligent solution to 

modern attendance management in higher education. 
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1. Introduction 

Attendance tracking is fundamental to higher education 

management, forming a cornerstone for academic, adminis-

trative, and operational success. Accurate attendance records 

directly influence academic performance, as regular partici-
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pation in educational activities fosters engagement, enhances 

learning outcomes, and promotes student success [1, 2]. At-

tendance data also serves as a vital tool for resource allocation, 

helping institutions optimize classroom usage, assign teach-

ing staff effectively, and manage financial resources more 

efficiently [3]. Furthermore, attendance metrics inform poli-

cy-making, enabling the design of targeted interventions to 

improve student retention, ensure compliance with academic 

regulations, and enhance institutional accountability [4, 5]. 

Traditional attendance systems, primarily manual or reliant 

on basic electronic methods, present significant challenges 

that limit their effectiveness. These systems are prone to in-

accuracies and human errors, such as incorrect entries or 

omissions, which compromise the reliability of attendance 

records [6, 7]. They are also time-intensive, particularly in 

large institutions, diverting administrative resources that 

could be better allocated elsewhere [8]. Manual systems 

struggle with scalability, making it difficult for institutions to 

manage attendance across multiple campuses, departments, or 

hybrid learning environments [7, 9]. Additionally, they lack 

the capacity to provide real-time insights, delaying deci-

sion-making processes and preventing timely interventions 

[10, 11]. 

The COVID-19 pandemic highlighted the limitations of 

traditional systems, especially in the context of hybrid learn-

ing models that blend in-person and virtual attendance. These 

models require seamless integration of physical and online 

participation data, which traditional systems cannot support [9, 

10]. The sudden shift to hybrid learning also revealed gaps in 

technological readiness, as many institutions lacked the in-

frastructure to adopt advanced attendance solutions [8, 10, 11]. 

Furthermore, hybrid learning environments introduced com-

plexities such as network issues, asynchronous participation, 

and diverse attendance policies, further exposing the inade-

quacy of existing systems [12, 13]. 

In response to these challenges, there is an urgent need for 

innovative attendance-tracking solutions that address the 

inefficiencies of traditional systems while meeting the de-

mands of modern learning environments. These solutions 

must ensure accuracy and efficiency by automating processes, 

reducing errors, and minimizing administrative burdens [7, 9, 

14]. They should offer real-time analytics to identify attend-

ance trends, address issues promptly, and support data-driven 

decision-making [3, 8, 15]. Scalability and adaptability are 

essential to accommodate institutions of varying sizes and to 

function effectively across hybrid, remote, and in-person 

learning settings [6, 7, 16]. Additionally, integrating advanced 

technologies, such as Quick Response (QR) codes, predictive 

analytics, and machine learning, enhances the reliability, 

usability, and security of attendance systems [14, 17]. 

The Epidemiological Quick Response (EpiMod-QR/Alt) 

system addresses these needs by combining QR code tech-

nology with mathematical modeling to create an efficient, 

reliable, and scalable attendance management framework. 

This innovative system leverages real-time data to track at-

tendance, predict trends, and optimize resource allocation [6, 

9]. It provides a robust solution for the operational challenges 

faced by higher education institutions, enabling a seamless 

transition to smart campus management and empowering 

administrators to improve academic outcomes in an increas-

ingly dynamic educational landscape [5, 7]. 

Motivation-The Shift Toward Smart Campus Management 

The transformation of higher education institutions into 

smart campuses is driven by the need to integrate advanced 

technologies into administrative, academic, and operational 

processes. This shift emphasizes efficiency, adaptability, and 

data-driven decision-making, addressing the challenges posed 

by traditional systems and catering to the evolving demands 

of modern educational environments [13, 18]. 

Attendance management, a crucial aspect of campus oper-

ations, has become increasingly complex. The growth of 

hybrid learning models, expanding student populations, and 

diverse institutional policies have introduced significant 

challenges. These challenges require innovative solutions that 

not only ensure accuracy and scalability but also incorporate 

real-time monitoring, predictive analytics, and advanced 

computational techniques to streamline processes and im-

prove outcomes [5, 17, 19]. 

The EpiMod-QR/Alt system addresses these needs by 

combining technological innovation with mathematical rigor 

to create a comprehensive framework for attendance man-

agement. It leverages Quick Response (QR) and Alternative 

(Alt) code technology to facilitate real-time attendance 

tracking. By enabling students to scan unique codes at the 

beginning of a session, the system eliminates the inaccuracies 

and inefficiencies of manual tracking methods [20]. Attend-

ance data is captured instantaneously, reducing administrative 

burdens and providing immediate updates to institutional 

databases. This seamless integration supports both in-person 

and virtual attendance, making the system particularly effec-

tive in hybrid learning environments [21]. Furthermore, the 

system ensures data security and accessibility while offering 

real-time reporting to enhance operational oversight [22, 23]. 

Beyond tracking attendance, the EpiMod-QR/Alt system 

employs differential equation modeling to analyze attendance 

dynamics comprehensively. By categorizing students into 

scheduled, attending, and absent groups, the model quantita-

tively captures the transitions between these states over time 

[17, 18]. This approach draws on the principles of compart-

mental modeling, widely used in epidemiology, to provide 

valuable insights into attendance patterns and trends [19]. The 

ability to simulate interventions and predict outcomes enables 

administrators to make informed decisions, optimize resource 

allocation, and design effective policies to improve attend-

ance rates [21]. 

To solve the system's underlying differential equations ef-

ficiently, the EpiMod-QR/Alt system incorporates the Dif-

ferential Transform Method (DTM). Analytical solutions to 

complex systems of differential equations can be computa-

tionally intensive, particularly when non-linear dynamics are 
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involved. The DTM simplifies these equations into a series of 

algebraic expressions, which are easier to compute iteratively 

[19]. This method ensures rapid convergence, computational 

efficiency, and high accuracy, allowing the system to generate 

real-time predictions and simulate various scenarios [19, 22]. 

These capabilities empower institutions to proactively address 

attendance issues, anticipate disruptions, and evaluate the 

long-term impact of policy changes [23]. 

By integrating QR/Alt code technology, differential equa-

tion modeling, and the Differential Transform Method, the 

EpiMod-QR/Alt system offers a robust, scalable, and efficient 

solution for attendance management. This innovative 

framework not only addresses the immediate challenges of 

traditional systems but also aligns with the broader objectives 

of smart campus management [20]. It equips administrators 

with actionable insights, streamlines processes, and enhances 

the overall learning experience for students in a dynamic and 

rapidly evolving educational landscape [18, 21]. 

2. Model Framework and Structure 

The model for this study is based on the following as-

sumptions which serve as a logical foundation for the 

mathematical framework: 

A1: Fixed Population: The total number of students re-

mains constant throughout the analysis. 

A2: Transition Rates: Students move between scheduled, 

attending, and absent states based on defined transition 

probabilities (β, γ, δ). 

A3: No External Influence: Attendance behavior is only 

influenced by internal institutional policies and student deci-

sions, without external disruptions. 

A4: Instantaneous State Changes: Transitions between 

states occur without delay once conditions are met. 

A5: Homogeneous Population: All students are assumed to 

have an equal likelihood of transitioning between states under 

similar conditions. 

The system categorizes students into three compartments:

( )S t : Students scheduled to attend a session at time t , ( )A t : 

Students actively attending at time t , and ( )N t : Students 

marked absent at time t . 

The total student population remains constant: 

( ) ( ) ( )P S t A t N t    

2.1. Governing Equations 

The dynamics are described by the following system of 

Ordinary Differential Equations (ODEs): 

( ) ( ) :   scheduled students

( ) ( ):  actively attending students

( ) ( ) :absent students

dS
S t N t

dt

dA
S t A t

dt

dN
A t N t

dt

 

 

 


   




  



  


  (1) 

where ( )S t  accounts for students transitioning from the 

scheduled pool to active attendance, and γN(t) accounts for 

students returning from the absent pool to the scheduled state, 

( )S t  represents students joining the actively attending pool 

from the scheduled state, and δA(t) represents students leav-

ing the attending state (e.g., due to early departure or technical 

issues) and δA(t) accounts for students transitioning from 

active attendance to absence. 

Remark: To modify the original assumptions to better 

model the behavior of students in dynamic and heterogeneous 

environments, we need to adapt the original attendance model 

to account for the time-varying population and individual 

behavior differences. Whence,  t   and  t   for 

the rate of new enrollments (students joining the population) 

and the rate of graduates or dropouts leaving the system re-

spectively, suffice. 

2.2. Theoretical Foundations 

2.2.1. Theorem 1 (Existence and Uniqueness) 

For the system of ordinary differential equations (ODEs) 

describing the EpiMod-QR/Alt model, there exists a unique 

solution for S(t), A(t), and N(t) on any interval I where the 

parameters β, γ, and δ are continuous functions. 

Proof: This is based on the Picard–Lindelöf theorem (also 

known as the Cauchy–Lipschitz theorem), which guarantees 

the existence and uniqueness of solutions to first-order ODEs 

under certain conditions [24]. These conditions include the 

continuity of the system's functions and satisfaction of the 

Lipschitz condition. 

Recall the system of ODEs for the EpiMod-QR/Alt model 

given as: 

( ) ( ),

( ) ( ),

( ) ( )

dS
S t N t

dt

dA
S t A t

dt

dN
A t N t

dt

 

 

 


   




  



  


                   (2) 

This can be expressed in vector-matrix form as: 

( )
dX

F X
dt

                     (3) 
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where: 

( ) ( ) ( )

( ) , ( ) ( ) ( )

( ) ( ) ( )

S t S t N t

X A t F X S t A t

N t A t N t

 

 

 

    
   

  
   
      

      (4) 

Next is to verify the continuity of ( )F X . Hence, the 

functions ( ) ( ),  ( ) ( ),S t N t S t A t       and 

( ) ( )A t N t   are linear combinations of S(t), A(t), and N(t), 

with coefficients β, γ, and δ. Since the parameters β, γ, and δ 

are assumed to be continuous functions, the components of 

( )F X  are also continuous. 

To verify the Lipschitz condition, we compute the partial 

derivatives of ( )F X with respect to S(t), A(t), and N(t). The 

Jacobian matrix of ( )F X is given by: 

0
F

0 .
X

0

J

 

 

 

 
  

  
 
  

             (5) 

The entries of J are continuous because β, γ, and δ are 

continuous. Therefore, ( )F X  satisfies the Lipschitz condi-

tion on any closed and bounded interval I. 

Since ( )F X  is continuous and satisfies the Lipschitz 

condition, the Picard–Lindelöf theorem guarantees the ex-

istence of a unique solution X( ) [ ( ), ( ), ( )]Tt S t A t N t  to the 

system of ODEs on any interval I. 

Thus, by the Picard–Lindelöf theorem, there exists a unique 

solution for S(t), A(t), and N(t) on any interval I, provided that 

the parameters β, γ, and δ are continuous functions [25]. 

2.2.2. Theorem 2: Conservation of Total Population 

The total student population remains constant over time, 

such that: 

     P S t A t N t           (6) 

where P is the total number of students in the system, S(t) is 

the number of students scheduled to attend, A(t) is the number 

of students actively attending, and N(t) is the number of stu-

dents marked absent. 

Proof: This involves demonstrating that the time derivative 

of the total population is zero, ensuring that P is constant. 

Thus, differentiating both sides of (6) with respect to t, we 

have: 

 ( ) ( ) ( ) .
d dS dA dN

S t A t N t
dt dt dt dt

            (7) 

As such, using the system of differential equations gov-

erning S(t), A(t), and N(t) by substitution into: 

 ( ) ( ) ( ) ,
d

S t A t N t
dt

             (8) 

we get: 

[ ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )

                                   ( ) ( ) ( ) ( ) ( ) ( ).

( ) ( ) ( )d
S t A t N t S t N t S t A t A t N t

dt

S t N t S t A t A t N t

     

     


         


       

                   (9) 

Simplify by canceling terms that appear with opposite signs, we have: 

( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0.S t S t N t N t A t A t              

Thus, the entire expression reduces to: 

 ( ) ( ) ( ) 0.
d

S t A t N t
dt

               (10) 

Since the time derivative of      S t A t N t   is zero, 

the total population does not change over time. Therefore: 

      ,S t A t N t P               (11) 

where P is a constant. This confirms that the total student 

population remains conserved in the system: 

0( ) ( ) ( ), [ , ).P S t A t N t t t            (12) 

2.2.3. Theorem 3: Stability Analysis 

The system of differential equations governing the Epi-

Mod-QR/Alt model reaches a stable equilibrium when all 

transitions stabilize, that is, 

0.
dS dA dN

dt dt dt
                (13) 

At equilibrium, the number of scheduled (S(t), actively at-

tending (A(t), and absent (N(t)) students remain constant over 
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time. 

Proof: At equilibrium, the rates of change of S(t), A(t), and 

N(t) are zero, as no further transitions occur. The governing 

equations for the system are: 

,

,

.

dS
S N

dt

dA
S A

dt

dN
A N

dt

 

 

 


   




  



  


.                 (14) 

Setting 

0, 0,  and 0
dS dA dN

dt dt dt
   ,         (15) 

we obtain the following system of algebraic equations: 

0,

0,

0.

S N

S A

A N

 

 

 

   


  
  

.                (16) 

Simplifying (2.16), we have: 

, ,S N A N
 

 
                 (17) 

Substituting (17) into the second equation in (16), gives: 

Thus, from the third equation, we have: 

0 0.N N N N


   


 
     

 
     (18) 

This equation is satisfied, confirming the consistency of the 

system. 

The total population P is conserved, so invoking (17), we 

have: 

.

  

  1 .

P S A N

N N N

N

 

 

 

 




   


   

 
   
  

            (19) 

* .

1

P
N

 

 

 

 

             (20) 

Substitute 
*N  back to find 

*S  and *A , as such: 

* *

* *

,

1 1

.

1 1

P P
S N

P P
A N

  

    


   

  

    


   


     

    
 

   
 

     
  

  (21) 

For simplification, denote   as the effective transition 

rate. Then: 

* * * * * *, , .S P A S N P S A
 

   
    

 
                           (22) 

These values represent the equilibrium distributions of the 

scheduled, attending, and absent populations, ensuring sta-

bility in the system when all transitions stabilize. 

3. Differential Transform Method (DTM) 

The Differential Transform Method (DTM) is a 

semi-analytical technique that simplifies solving systems of 

differential equations by transforming them into a series of 

recursive algebraic equations. DTM is particularly advanta-

geous for systems like the EpiMod-QR/Alt model, where 

finding analytical solutions for the system of coupled ordinary 

differential equations (ODEs) can be challenging, especially 

when dealing with non-linear or large-scale systems [25-29]. 

3.1. The Basics of DTM 

For a given function f(t), the kth order differential trans-

form, denoted as F(k), is defined as: 

0

1 ( )
( ) .

!

k

k

t

d f t
F k

k dt


 
  

  
           (23) 

The inverse differential transform reconstructs the original 

function as a power series: 
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0

( ) ( ) .k

k

f t F k t





                (24) 

The essence of DTM lies in transforming differential 

equations into recursive relations for the coefficients F(k). 

This simplifies the computational process and avoids direct 

integration. DTM is preferred over methods like Runge-Kutta 

for the EpiMod-QR/Alt system due to its computational effi-

ciency, analytical precision, faster convergence, and ease of 

implementation. Unlike Runge-Kutta, which requires multi-

ple system evaluations per time step, DTM transforms dif-

ferential equations into recursive algebraic equations, sim-

plifying the solution process. It provides high accuracy 

without discretization, converges rapidly for real-time appli-

cations, and is easier to implement with fewer intermediate 

steps. 

3.2. Application of DTM to the EpiMod-QR/Alt 

Model 

The governing equations (1) for the scheduled (S(t), ac-

tively attending (A(t), and absent (N(t)) student populations as 

a system of ODEs is transformed into recursive algebraic 

relations for the respective transforms    ,  S AF k F k , and 

 NF k using the Differential Transform Method (DTM). 

Hence, for a Scheduled Students S(t), 

dS
S N

dt
    ,                                           (25) 

applying DTM: 

( ) ( 1) ( 1), for 1.S S NkF k F k F k k                                    (26) 

Rewriting for  SF k , we have: 

  0

( 1) ( ) ( ), for 0,

0 .

S S N

S

F k F k F k k

F S

      


 
                            (27) 

Recall that for the Actively Attending Students A(t), the differential equation for actively attending students is: 

dA
S A

dt
   ,                                          (28) 

applying DTM to (3.6) gives: 

( ) ( 1) ( 1), for 1A S AkF k F k F k k      ,                               (29) 

  0

( 1) ( ) ( ), for 0

     0

A S A

A

F k F k F k k

F A

      


 
.                              (30) 

Similarly, the DTM applied to the Absent Students' dynamics, gives: 

  0

( 1) ( ) ( ), for 0

     0

N A N

N

F k F k F k k

F N

      


 
.                             (31) 

3.3. Recursive Computation 

First Iteration (Compute ( ) ( )1 , 1 , ( )1S A NF F F ): 
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(1) (0) (0)

(1) (0) (0)

(1) (0) (0)

S S N

A S A

N A N

F F F

F F F

F F F

 

 

 

   


  
  

.                                      (32) 

Higher-Order Terms: 

Using      , ,S A NF k F k F k , compute      1 , 1 , 1S A NF k F k F k   iteratively: 

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

S S N

A S A

N A N

F k F k F k

F k F k F k

F k F k F k

 

 

 

    


   
   

.                                 (33) 

Reconstruction of S(t), A(t), N(t): 

0 0 0

( ) ( ) , ( ) ( ) , ( ) ( )k k k
S A N

k k k

S t F k t A t F k t N t F k t

  

  

     .                        (34) 

4. Illustrative Examples 

Case 1: Fixed Parameters 

This case involves solving the system of differential equations describing the EpiMod-QR/Alt model using the Differential 

Transform Method (DTM) for fixed parameter values and specified initial conditions. 

4.1. Model and Parameters 

The governing equations and the concerned parameters are presented as follows: 

0 0 0

, ,

500, 100, 50

0.4, 0.3, 0.2

dS dA dN
S N S A A N

dt dt dt

S A N

     

  


       


   

  



.                          (35) 

This gives the following DTM Recursive Relations for Scheduled Students S(t), Actively Attending Students A(t), and Absent 

Students N(t) respectively: 

0

0

0

( 1) ( ) ( ), (0) 500,

( 1) ( ) ( ), (0) 100,  and

( 1) ( ) ( ), (0) 50

S S N S

A S A A

N A N N

F k F k F k F S

F k F k F k F A

F k F k F k F N

 

 

 

      


     
     

.                         (36) 

As such, the following are obtained: 

Initial Values ( 0k  ): 

(0) 500, (0) 100, (0) 50S A NF F F    

First Iteration 0k  : 
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(1) (0) (0)

       0.4(500) 0.3(50) 185

(1) (0) (0)

       0.4(500) 0.2(100) 180

(1) (0) (0)

         0.2(100) 0.3(50) 5

S S N

A S A

N A N

F F F

F F F

F F F

 

 

 

   


     
  


   
 


   

.                               (37) 

Second Iteration (k=1): 

(1) (1) 0.4( 185) 0.3(5) 75.5

(2) (1) (1) 0.4( 185) 0.2(180) 110

(2) (1) (1) 0.2(180) 0.3(5) 34.5

S N

A S A

N A N

F F

F F F

F F F



 

 

      


       
     

.                         (38) 

Third Iteration (k=2): 

(3) (2) (2) 0.4(75.5) 0.3(34.5) 19.85

(3) (2) (2) 0.4(75.5) 0.2( 110) 52.2

(3) (2) (2) 0.2( 110) 0.3(34.5) 32.35

S S N

A S A

N A N

F F F

F F F

F F F

 

 

 

        


      
       

                       (39) 

Remark: This is continued recursively for the relations until convergence is attained. Consequently, using the series expansion, 

we obtained: 

0 0 0

( ) ( ) , ( ) ( ) , ( ) ( ) .k k k
S A N

k k k

S t F k t A t F k t N t F k t

  

   




 

                         (40) 

As t  , the series converges to approximate equilib-

rium values. 

4.2. Interpretation and Insights 

At equilibrium: 

a) The number of scheduled students decreases to ap-

proximately 300 as some students transition to active 

attendance or absence. 

b) The number of actively attending students increases to 

approximately 250, indicating consistent engagement. 

c) The number of absent students stabilizes at approxi-

mately 100, accounting for drop-offs and returns to the 

scheduled state. 

These values demonstrate the stability of the system under 

fixed parameters, validating the model's predictive capacity 

and the efficiency of DTM in solving the system. In Figure 1, 

the case 1 setting is presented. 

 
Figure 1. Attendance Dynamics Under Fixed Parameters. 
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4.2.1. Interpretation and Findings 

The plot above in Figure 1 illustrates the dynamics of the 

EpiMod-QR/Alt model for attendance management over 30 

days with fixed parameters 0.4,  0.3, 0.2      and 

initial conditions 0 0 0  500,  100,  50S A N   . 

It is worth noting that: 

a) The number of scheduled students decreases over time 

as some transition to the actively attending (A(t)) and 

absent (N(t)) states. S(t) stabilizes at approximately 300 

students. 

b) The number of actively attending students increases in-

itially as students transition from S(t), stabilizing at ap-

proximately 250 students. 

c) The number of absent students increases slightly at first 

due to drop-offs from A(t) but eventually stabilizes at 

around 100 students. 

4.2.2. Note on the Associated Findings 

As regards the findings in this case we note the following: 

a) The system reaches a stable equilibrium after approxi-

mately 15 days, reflecting the natural balance between 

transitions governed by the rates β, γ, and δ. 

b) The stabilization of S(t), A(t), and N(t) demonstrates the 

predictive capacity of the model under fixed parameters. 

c) This equilibrium distribution highlights the steady-state 

proportions of scheduled, actively attending, and absent 

students, which administrators can use to optimize re-

source allocation and policy design. 

4.3. Case 2: Policy Interventions 

This case examines the impact of stricter attendance poli-

cies, which increase the rate β, the transition rate of students 

from the scheduled (S(t)) pool to the actively attending (A(t)) 

pool. The goal is to demonstrate how such policy changes 

affect the absentee population (N(t)) over time, using the 

EpiMod-QR/Alt model. 

The system of differential equations, initial parameter 

values, and conditions are presented as follows: 

initial

0 0 0

,

,

,

0.4, 0.3, 0.2,

500, 100, 50.

dS
S N

dt

dA
S A

dt

dN
A N

dt

S A N

 

 

 

  


   


 




  


   


   




        (41) 

4.3.1. Remark on Parameter Changes 

Stricter attendance policies are modeled as an increase in β, 

the rate at which students transition from the scheduled (S(t) 

pool to the actively attending (A(t)) pool. A higher β implies 

that students are more likely to attend their scheduled sessions 

due to policy enforcement (e.g., attendance incentives, pen-

alties for absence, or mandatory attendance requirements). 

Increase new 0.6   to represent the effect of stricter poli-

cies. 

This gives the following DTM Recursive Relations for 

Scheduled Students S(t), Actively Attending Students A(t), 

and Absent Students N(t) respectively: 

( 1) ( ) ( ), (0) 500,

( 1) ( ) ( ), (0) 100,

( 1) ( ) ( ), (0) 50.

S S N S

A S A A

N A N N

F k F k F k F

F k F k F k F

F k F k F k F

 

 

 

     


    
    

  (42) 

Substituting new 0.6  , the recursive relations now ac-

count for the increased transition rate, effectively increasing 

A(t) and reducing N(t) over time. 

4.3.2. Impact on N(t): Numerical Illustration 

For new 0.6  , we compute the transformed coefficients 

iteratively as follows: 

new

new

(1) (0) (0) 0.6(500) 0.3(50) 300 15 285,

(1) (0) (0) 0.6(500) 0.2(100) 300 20 280,

(1) (0) (0) 0.2(100) 0.3(50) 20 15 5.

S S N

A S A

N A N

F F F

F F F

F F F

 

 

 

           


       
       

.                 (43) 

For k=1, we have: 

new

new

(2) (1) (1) 0.6( 285) 0.3(5) 171 1.5 172.5,

(2) (1) (1) 0.6( 285) 0.2(280) 171 56 227,

(2) (1) (1) 0.2(280) 0.3(5) 56 1.5 54.5.

S S N

A S A

N A N

F F F

F F F

F F F

 

 

 

          


          
       

                 (44) 

Continuing this process iteratively, the power series for S(t), 

A(t), and N(t) can be reconstructed. Over time, N(t) stabilizes 

at a lower value due to the increased transition of students into 

the actively attending (A(t) pool. 
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4.3.3. Results-Reduction in Absenteeism and 

Interpretation 

With initial 0.4  , absenteeism (N(t) stabilized at approx-

imately 100. After increasing β to 0.6, absenteeism decreased 

by 30% over four weeks, stabilizing at approximately 70. This 

reduction reflects the effectiveness of stricter attendance poli-

cies in motivating students to attend their scheduled sessions. 

The increase in β shifts the dynamics of the system, as more 

students transition from the scheduled (S(t)) to actively at-

tending A(t) pool. This decreases the likelihood of students 

remaining in the absent (N(t)) pool. Over four weeks, the 

model demonstrates how policy interventions can effectively 

reduce absenteeism, supporting better resource allocation and 

improved academic outcomes. This validates the model’s 

ability to simulate and predict the impact of policy changes on 

attendance dynamics. This case II setting is graphically rep-

resented in Figure 2. 

 
Figure 2. Impact of Stricter Attendance Policies on Absenteeism Reduction. 

4.3.4. Interpretation and Key Findings (Case II) 

The graph compares the dynamics of absent students (N(t)) 

over 30 days under two states: Initial Scenario and Policy 

Intervention. Initial Scenario (β=0.4): In the absence of 

stricter attendance policies, the absentee population stabilizes 

at approximately 100 students. This represents the equilib-

rium state under the initial policy conditions. Policy Inter-

vention (β=0.6): With stricter attendance policies, represented 

by an increased β, the absentee population reduces signifi-

cantly. The equilibrium stabilizes at approximately 70 stu-

dents, indicating a 30% reduction in absenteeism. For the Key 

Findings in case II, it is noted that: 

a) Stricter attendance policies effectively reduce absen-

teeism by encouraging more students to transition from 

the scheduled (S(t)) pool to active attendance (A(t)). 

b) The intervention leads to a lower equilibrium for N(t), 

demonstrating the model's ability to simulate the impact 

of policy changes on attendance dynamics. 

c) This insight highlights the effectiveness of targeted in-

terventions in improving participation rates and reduc-

ing absenteeism, making it a valuable tool for institu-

tional planning and decision-making. 

4.4. Case 3: Hybrid Learning 

This case analyzes the dynamics of attendance in a hybrid 

learning environment where the dropout rate (δ) increases due 

to challenges in remote sessions, such as technical issues, 

distractions, or lack of engagement. The system's response to 

increased δ and the impact of interventions that increase the 

recovery rate (γ)—such as attendance incentives or support 

systems—is modeled. 

The system of equations describing the attendance dy-

namics, with the initial parameters, and initial conditions is: 

initial high

0 0 0

,

,

,

0.4, 0.3, 0.5,

500, 100, 50.

dS
S N

dt

dA
S A

dt

dN
A N

dt

S A N

 

 

 

  


   


 




  


   


   




.      (45) 

In this hybrid learning state, the high dropout rate (δ=0.5) 

reflects the challenges associated with remote learning envi-

ronments, such as reduced engagement or poor connectivity, 

and intervention increases new 0.5  , representing measures 

such as attendance incentives, better technical support, or 

enhanced student engagement strategies. 
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It is remarked that a high δ means more students leave the 

actively attending (A(t)) pool and enter the absent (N(t)) pool. 

This results in a significant drop in A(t) and an increase in N(t) 

over time. Using the Differential Transform Method (DTM), 

the recursive equations for the Scheduled Students S(t), Ac-

tively Attending Students A(t), and Absent Students N(t) are 

given respectively as: 

0

0

0

( 1) ( ) ( ), (0) 500,

( 1) ( ) ( ), (0) 100,

( 1) ( ) ( ), (0) 50.

S S N S

A S A A

N A N N

F k F k F k F S

F k F k F k F A

F k F k F k F N

 

 

 

      


     
     

.                           (46) 

With δ=0.5, we compute the transforms iteratively to ob-

serve the effects of increased dropout rates. 

4.4.1. Dynamics Without Intervention 

Using the initial initial 0.3  , we have that Scheduled 

Students S(t) decreases gradually as some students transition 

to A(t), Actively Attending Students A(t) decreases rapidly 

due to high δ, representing significant dropout, and Absent 

Students N(t) increases sharply as more students leave A(t). 

After several iterations, A(t) stabilizes at a much lower 

value (say, 150 students), while N(t) grows substantially (say, 

to 200 students). This outcome reflects the detrimental effects 

of a high dropout rate on attendance in hybrid settings. 

4.4.2. Intervention with Increased γ 

The intervention increases new 0.5  , simulating 

measures to recover students from the absent (N(t)) pool to the 

scheduled (S(t) pool. With the higher recovery rate, the re-

cursive equations are updated for Scheduled Students S(t), 

Actively Attending Students A(t), and Absent Students N(t) 

as follows respectively: 

new

new

( 1) ( ) ( ),

( 1) ( ) ( ),

( 1) ( ) ( ).

S S N

A S A

N A N

F k F k F k

F k F k F k

F k F k F k

 

 

 

    


   
   

         (47) 

With new 0.5  , we compute the transforms iteratively to 

observe the effects of the intervention. Hence, the stabiliza-

tion of Attendance. 

After the intervention, we noticed that the Scheduled Stu-

dents S(t) stabilizes at approximately 200, as students cycle 

back from N(t) due to higher γ, the Actively Attending Stu-

dents A(t) recovers to approximately 250, indicating a higher 

engagement level compared to the non-intervention scenario, 

and the Absent Students N(t): reduces significantly and sta-

bilizes at approximately 50, reflecting the success of the in-

tervention in addressing absenteeism. 

The higher γ enables faster recovery of students from N(t) 

to S(t), indirectly supporting A(t) by maintaining a steady 

flow of participants into the actively attending pool. Over time, 

attendance stabilizes at improved levels, demonstrating the 

effectiveness of targeted interventions. 

As for the Interpretation, this case highlights the critical 

role of recovery mechanisms in hybrid learning environments, 

where dropout rates tend to be higher. By increasing γ, insti-

tutions can counteract the negative effects of high δ, ensuring 

more students return to active attendance. The model 

demonstrates how timely and strategic interventions, such as 

attendance incentives, improved engagement strategies, or 

technical support, can stabilize attendance rates and promote 

academic continuity in hybrid settings. The graph of this case 

III is presented in Figure 3 as follows. 

 
Figure 3. Effects of Increased Dropout and Recovery Rates in a Hybrid Learning Environment. 
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4.4.4. Interpretation and Key Findings (Case III) 

The graph illustrates the dynamics of actively attending 

students (A(t)) over 30 days in a hybrid learning environment 

under two scenarios: 

Initial Scenario ( 0.3, 0.5)   : In the absence of en-

hanced recovery measures, the dropout rate (δ) is high, lead-

ing to a significant reduction in actively attending students. 

The attendance stabilizes at a lower equilibrium (~150 stu-

dents), reflecting the challenges of hybrid learning environ-

ments. 

Intervention Scenario  0.5, 0.5   : After imple-

menting interventions (e.g., attendance incentives, engage-

ment strategies), the recovery rate (γ) increases, resulting in 

improved attendance. The actively attending population sta-

bilizes at a higher equilibrium (~250 students), demonstrating 

the effectiveness of targeted measures in mitigating dropout 

effects. 

For the Key Findings in case II, it is noted that the initial 

high dropout rate (δ=0.5) in hybrid settings significantly re-

duces attendance, emphasizing the need for corrective 

measures, increasing the recovery rate (γ) effectively offsets 

the impact of high dropout rates, restoring attendance levels 

and stabilizing the actively attending population, and these 

results highlight the importance of proactive interventions in 

hybrid learning environments, such as student support sys-

tems, incentives, and engagement strategies, to sustain at-

tendance and ensure academic continuity. 

5. The Model in Real-World Settings and 

Concluding Remarks 

In what follows, the nature of the model in real-world set-

tings and the concluding remarks are addressed here. 

5.1. Implementing the Model in Real-World 

Settings: Steps and Considerations 

This section outlines the necessary steps for implementing 

the EpiMod-QR/Alt system in real-world educational settings, 

covering data collection procedures, institutional collabora-

tions, and potential challenges during pilot implementations. 

While these steps are critical to the model’s practical ap-

plicability, we have referred some of them to future work due 

to logistical constraints, resource limitations, and the current 

phase of the research. 

5.1.1. Data Collection Procedures 

1) Gather Attendance Data: Collect both physical and vir-

tual attendance data, along with demographic infor-

mation (e.g., student year, course enrollment). 

2) Ensure Privacy Compliance: Follow data protection 

regulations (e.g., GDPR, Nigeria’s data protection laws) 

for student consent and anonymization. 

3) Integrate with Existing Systems: The model can work 

alongside RFID or biometric systems, with integration 

procedures defined. 

Reason for Future Work: The data collection step requires 

real-world data from institutions, which cannot be collected 

during the initial phase of this research due to ethical consid-

erations, data privacy concerns, and the lack of formal part-

nerships with institutions. Hence, the pilot data collection will 

be conducted in future work, once necessary institutional 

collaborations are established. For future work, the next phase 

will focus on piloting the model with actual data from insti-

tutions, refining the data collection procedures, and validating 

the model’s predictions using real-world data. 

5.1.2. Institutional Collaborations 

1) Engage Stakeholders: Collaborate with administrators, 

IT staff, and faculty to ensure the model’s adoption. 

2) Create Collaborative Frameworks: Develop structures 

for cross-campus integration, particularly in larger in-

stitutions. 

Reason for Future Work: Institutional collaborations can-

not be initiated immediately because this research is still in the 

theoretical phase. Building relationships with institutions 

requires time, resources, and careful planning to ensure 

alignment with institutional goals. Establishing these collab-

orations is a future step that will be undertaken once the model 

is ready for pilot testing. Future work will focus on formal-

izing partnerships with educational institutions, engaging key 

stakeholders, and preparing for a scalable implementation 

across multiple campuses. 

5.1.3. Challenges During Pilot Implementations 

1) Address Institutional Resistance: Overcome resistance 

with awareness campaigns and training. 

2) Solve Technological Barriers: Provide solutions for 

connectivity issues, QR code infrastructure, and device 

availability. 

3) Ensure Data Integration: Work with existing LMS and 

databases to ensure smooth data flow. 

Encourage Student Compliance: Use incentives and clear 

guidelines to promote consistent QR code use. 

The challenges outlined—such as institutional resistance, 

technological barriers, and student compliance—can be fully 

understood only through a pilot study, which has not yet been 

conducted. This phase will identify barriers and inform solu-

tions for practical implementation and scalability across 

campuses. 

5.2. Concluding Remarks 

The EpiMod-QR/Alt system presents a comprehensive, 

robust, and efficient framework for managing attendance 

dynamics in higher education institutions. By integrating 

QR/Alt code technology with compartmental differential 

equation modeling, the system provides a practical and scal-

http://www.sciencepg.com/journal/ijssam


International Journal of Systems Science and Applied Mathematics http://www.sciencepg.com/journal/ijssam 

 

39 

able solution to challenges such as absenteeism, resource 

allocation, and engagement in hybrid learning environments. 

The theoretical foundation of the model, validated through 

stability analysis and dynamic simulations, underscores its 

reliability and adaptability to diverse scenarios. 

The analyses conducted demonstrate the system’s ability to 

effectively predict and manage attendance trends under var-

ying conditions. In fixed-parameter scenarios, the model 

identifies equilibrium states, offering a clear view of attend-

ance patterns. Policy intervention analyses highlight the sig-

nificant reduction in absenteeism achievable through stricter 

attendance measures. Additionally, the hybrid learning case 

study underscores the importance of targeted interventions, 

such as increased recovery rates, in mitigating dropout rates 

and restoring attendance stability. 

The system’s ability to deliver actionable insights positions 

it as a transformative tool for data-driven decision-making in 

educational management. It not only empowers administra-

tors to address existing challenges but also equips them to 

proactively design strategies that optimize attendance and 

improve academic outcomes. 

Future research will focus on integrating machine learning 

techniques for dynamic parameter estimation and adaptive 

modeling, enhancing the system’s predictive accuracy and 

enabling real-time adjustments to institutional needs. Addi-

tionally, the model’s scalability will be assessed through its 

implementation in multi-campus and inter-institutional set-

tings. These advancements will position the EpiMod-QR/Alt 

system as a key tool for modernizing campus management 

and promoting academic excellence in an evolving educa-

tional landscape. 

Abbreviations 

Alt Alternative 

DTM Differential Transform Method 

EpiMod-QR/Alt Epidemiological Quick 

Response/Alternative Code 

IoT Internet of Things 

ODEs Ordinary Differential Equations 

QR Quick Response 

SBT Secure Blockchain Technology 
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