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Abstract: This paper investigates the stability of the Lanchester Ordinary Differential Equation (ODE) in asymmetric warfare,
where two forces with differing lethality coefficients engage. The system exhibits marginal stability at the equilibrium point
after linearization, characterized by purely imaginary eigenvalues, indicating that the forces are balanced but without a definitive
resolution. An energy-based analysis further supports this by identifying a characteristic frequency associated with the interaction
of the forces. These findings suggest that asymmetric warfare scenarios are inherently prone to sustained oscillations, reflecting
a dynamic equilibrium between the opposing forces. The presence of these oscillations indicates that while the forces may not
decisively defeat one another, a long-term balance persists, preventing either side from achieving a clear victory. The results
imply that asymmetric warfare is likely to lead to prolonged conflicts with no easy resolution, as the dynamics between the
forces result in cyclical patterns of attack and defense. This work highlights the importance of understanding the stability of such
systems, providing insights into the potential for sustained conflict when forces are unequal. The study contributes to the broader
understanding of conflict dynamics, offering valuable perspectives on how these imbalances affect the course of warfare. The
findings could inform military strategy, particularly in planning for engagements where one side holds a clear advantage over the
other but still faces persistent resistance.
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1. Introduction

The nature of combat has interested scholars and
practitioners due to the significant need to analyze and
determine the fighting results. Conventional warfare
management, at one time, was incomprehensible, with a
substantial focus on self-confirmed assumptions. However,
the powerful influence of mathematical models has changed
the situation, as officers now have more systematic and
qualitative approaches to estimating combat results. Prominent
among these was Frederick W. Lanchester, who, right

from the early part of the twentieth century, set down a
structure for the mathematical analysis of war as represented
by Ordinary Differential Equations (ODEs). Lanchester
changed how strategies were considered and decided entirely,
providing a scientific way of examining and analyzing combat
opportunities [1].

In Lanchester’s contributions, the Square Law and Linear
Law describe the rates of attrition and the efficiency of forces
engaged in combat. Taylor discussed how the Square Law
emphasizes that the combat power of a force is proportional
to the square of its size when firepower is concentrated. At
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the same time, the Linear Law highlights that, particularly in
guerrilla warfare, attrition varies directly with the force size
[2]. Rowland further explored these models, emphasizing
their role in providing quantitative insights into key variables
such as resource accumulation and positioning during conflicts
[3]. During the First World War, the introduction of
mechanical and advanced artillery underscored the relevance
of Lanchester’s laws, which effectively explained shifts in
warfare dynamics and remained foundational principles in
military strategy.

Over the decades, Lanchester’s theories have remained
the fundamental weapon in military application. Scholars
such as P. K. Davis and P. J. Bracken have underlined the
role of Lanchester’s laws in providing measurements on the
battlefield’s balance and supporting operational planning [4].
P. K. Davis discussed how operational analysis provides a
logical way to evaluate hypothetical outcomes [4], while P.
J. Bracken provided examples of its practical application in
warfare simulations [5]. These works highlight the importance
of developing Lanchester’s approach as an applied scientific
strategy that institutionalized military art and transformed
it into one based on formal mathematical principles and
quantification. M. Kress made significant contributions to
the application of Lanchester models in combat scenarios
by analyzing operational effectiveness using mathematical
and computational simulations [10]. His foundational work
explored the practical applicability of Lanchester models,
extending their relevance to real-world military operations.
Furthermore, Kress adapted these classical models to irregular
warfare, demonstrating their applicability in asymmetric
conflicts and highlighting their importance in understanding
non-conventional military engagements [14].

Spradlin et al. extended Lanchester’s equations by
incorporating multi-dimensional combat dynamics, providing
deeper insights into the complexity of military engagements
[11]. Similarly, Chen et al. integrated Lanchester attrition
models with command stratagem analysis, showcasing
how mathematical frameworks could be used to optimize
force management and decision-making in warfare [12].
Protopopescu et al. introduced a combat modelling
approach using partial differential equations, presenting a
bi-dimensional case to emphasize the spatial and temporal
dynamics of military conflicts [13]. Finally, Kalloniatis et
al. proposed an innovative, networked Lanchester model
that optimizes fire and manoeuvre strategies through advanced
systems science approaches [15].

However, Current conflicts are not limited to what
Lanchester described as symmetric warfare. Organized in an
irregular conflict where both parties do not possess comparable
fighter strength, tactics, or equipment, the organization of
warfare calls for a reconsideration of models. X. Ji et
al. introduced a game theory approach when applying
Lanchester’s laws to a conflict with UAVs in it [6]. Self-
and remotely-piloted systems were analyzed in this research
to show that Lanchester’s principles remain a valid tool
when analyzing modern technological warfare. Similarly,
I. V. kotlyarovk reviewed how direct resource allocation

affects outcomes in asymmetric conflicts such that shifts in
supply and force distribution matter significantly [7]. Such
research emphasizes the relevance of models that capture the
complexity of engagements as we observe them today.

M. Kress expanded Lanchester’s model to account for multi-
pole scenarios, addressing modern conflicts involving multiple
actors such as alliances, opponents, enemies, and rivals [8].
By introducing three-dimensional models, Kress highlighted
the complexities of multi-actor conflicts, emphasizing the
significance of reserve allocation and shifting allegiances as
critical factors in warfare. These studies demonstrate the
necessity of adapting traditional models to reflect the dynamic
nature of contemporary operational environments.

New efforts have been directed toward ascertaining how
troop dynamics vary over time in the stability analysis
literature. ~ R.O. Fifelola et al. analyzed stability in
symmetric warfare conditions based on Lanchester’s Linear
Law, elaborating on stability in terms of combat effectiveness,
which depends on the interaction of troop lethality coefficients
[9]. Their work demonstrated that marginal stability is
achievable under specific conditions, as troop dynamics exhibit
exponential decrease or increase behaviour. These analyses
emphasize the importance of stability in strategics, particularly
in evaluating scenarios where maintaining or engineering
balance may be the optimal course of action [9].

The equations governing such interactions in asymmetric
scenarios are given as:

e _
dt - y)
dy

E = —k‘x,

Where (x) and (y) represent the troop counts of opposing
forces, and (k) and (1) denote their respective lethality
coefficients. These equations encapsulate the interplay of
disparities in force capabilities, underscoring the need for
robust analytical tools to capture these dynamics.

The present work proposes to extend such an asymptotic
approach to the situation’s stability assessment by analyzing
the stability of an asymmetric warfare scenario.  Since
conflicts change in dynamics in response to new technological
developments and changes in geopolitics, the fine-tuning
of mathematical models remains critical. =~ This research
has aimed at extending Lanchester principles to modern
examples and thereby advancing the extant literature regarding
warfare strategy and tactics while supporting the essence of
mathematical modeling for explaining and comprehending the
complexities of contemporary wars.

2. Methodology

In our study, one core method is Jacobin linearization, which
analyses the stability of asymmetrical warfare dynamics.
According to the Jacobian linearization method, it is possible
to linearize the fight dynamics describing the relations between
combatants. This process also helps to make the system
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comparatively more tractable for analysis. The nonlinear
system may be linearised close to the equilibrium points,
thereby arriving at another system that can be studied.
The system’s behaviour is analyzed by denizens, which
characterizes the stability or instability of the system and its
oscillation based on the eigenvalues of the Jacobian matrix.
Specifically, marginal stability, defined by purely imaginary
eigenvalues, means fluctuations around an equilibrium state
with no tendency to increase or decrease; that is, no decay and
no growth, which means that there is a balance between the
forces of the combatants.

The linearization also allows for an investigation of how
some system parameters, such as the lethality coefficients,
affect the system’s stability. These coefficients characterize
each combatant and influence the system functionality, most
notably when calculating the coefficients. Adjusting these
parameters permits either stable solutions or oscillatory
behaviour, which may explain the possible additional
complexities arising from asymmetric warfare, which
means that lethality coefficients may not be symmetrical.
By considering these parameters, we can draw valuable
conclusions about the dynamics of combat interactions
and the circumstances under which protracted, stochastic
interactions may transpire. = These approaches offer an
improved understanding of the factors underlying asymmetric
warfare, hence a strong base for better decision-making and
resource management.

2.1. Modeling the Dynamics and Linearization

We begin by considering the rates of change of the
combatant populations, x and y, representing the forces A and
B, respectively. The governing equations for the system can be
written as:

T =—ky, y=-—lz,

Where k and [ are the lethality coefficients of forces A and
B, respectively, these coefficients capture the rate at which
each force reduces the strength of the other, highlighting the
competitive nature of their interaction. The negative signs
indicate that an increase in one force leads to a decrease in the
other, reflecting the adversarial nature of the conflict. These
coupled differential equations describe the evolution of the
combatant populations over time.

To simplify the analysis, we express the system in
matrix form, which facilitates a more structured approach to
understanding the behaviour of the system:

i 1% L)

x .
Let X = , representing the vector of the combatant

populations. The system of equations can now be rewritten
as:

X = JX

Where J is the Jacobian matrix given by:

0 -k

7=
This matrix captures the system’s linearized dynamics and
provides a means of analyzing its stability by evaluating the
Jacobian eigenvalues. The stability of the system is determined
by the sign and nature of the eigenvalues, which correspond
to the time-domain behaviour of the system’s solutions. If
the eigenvalues are purely imaginary, the system exhibits
oscillatory behaviour, while real eigenvalues indicate either

exponential growth or decay, depending on their signs.

2.2. Decoupling the Equations and Stability Analysis

To explore the stability further, we differentiate the first

equation £ = —ky concerning time, resulting in:
T =—ky
Substituting y = —lx from the second equation, we obtain:

&= —k(=lz) = kiz

This results in a second-order differential equation for x(t),
which is:

T+ klx=0

This equation indicates that the acceleration of force A
depends linearly on its position, suggesting that the dynamics
of the combatant populations exhibit oscillatory behaviour.
The presence of the term kl governs the frequency and
amplitude of these oscillations, with the magnitude of the
lethality coefficients influencing the rate at which the forces
interact.

The characteristic equation for this second-order differential
equation can be derived by assuming a solution of the form
x(t) = €', where s is a complex variable. Substituting this
into the differential equation yields the characteristic equation:

s24+kl=0

Solving for s, we obtain the roots:

s = +ivkl

The presence of purely imaginary roots (s = =iv/kl)
indicates that the system exhibits purely oscillatory dynamics,
with no exponential growth or decay. This result is consistent
with marginal stability, where the system oscillates indefinitely
without converging to a steady state. The frequency of these
oscillations is determined by the square root of the product of
the lethality coefficients k and [.

The general solution to the system can be written as:

x(t) = Acos(VElt) + Bsin(Vklt)

where A and B are constants to be determined by the initial
conditions. Similarly, the solution for y(¢) can be expressed
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as:

y(t) = (1)

By applying initial conditions z(0) = xo and y(0) = yo, we
can solve for the constants A and B. Att = 0, we have:

z(0) = A=z0, y(0)=yo
Using these initial conditions, we find:
__ I
VEl

Thus, the complete solutions for 2(t) and y(t) are:

x(t) = o cos(VEl t) — lj% sin(Vkl t)

y(t) = —xoﬂsin(Mt) + yo cos(VEL t)

These solutions describe oscillations with constant
amplitude, indicating that the forces A and B will continue
to interact cyclically, with no stabilization or collapse of one
force over time. The dynamics of this system suggest that the
forces exhibit marginal stability, with oscillations dependent
on the initial conditions and the lethality coefficients k£ and
l. This behaviour is typical of systems exhibiting purely
imaginary eigenvalues, where the forces maintain their relative
strengths in an ongoing competition cycle.

2.3. Energy Analysis of the Asymmetric Lanchester
Warfare Model

In this section, we perform an energy analysis for the
asymmetric Lanchester warfare model. The dynamics of two
competing forces, denoted by A and B, are governed by
their respective population sizes, x(t) and y(t), where x(t)
represents the population of force A and y(t) represents the
population of force B. The system of equations describing
their interactions, based on Lanchester’s laws of warfare, is
given by:

T=—-ky, y=-—-lz

Here, k and [ are the lethality coefficients of forces A and
B, respectively, representing the effectiveness of one force’s
units in killing those of the other force. These equations
describe how the population sizes decrease due to each force’s
engagement with the other, per Lanchester’s model.

2.3.1. Kinetic Energy

The kinetic energy of each population is proportional to
its size and the rate at which that size changes. For the
populations A and B, the kinetic energy at time ¢ is given by:

Exin(x) = %kw(t)27 Euin(y) = %ly(t)Z

Thus, the total kinetic energy of the system, representing the

sum of the kinetic energies of both forces, is:

1 1
Frowl(t) = 5lc:z:(t)2 + 5ly(t)2

This expression accounts for the energy associated with
the sizes of the two populations and their respective lethality
coefficients, as defined by Lanchester’s warfare laws.

2.3.2. Energy Evolution and Conservation
To examine how the total energy evolves, we compute the
time derivative of Ei ():

% = ka(t)a(t) + ly(t)j(t)

Substituting the expressions for #(t) and ¢(t) from the
Lanchester equations:

dan
=2 = k() (ky) + ly(H) (- 1)
Simplifying:
dEo
= KR (y(t) — Pa(y()
an
Pl (42 + 2)a(0)a(0)

This result shows that the rate of change of the total energy
depends on the product of the population sizes, x(t) and y(¢).
The negative sign indicates that as the populations interact,
the total energy decreases, signifying the dissipative nature of
the interactions according to Lanchester’s model. This is a
hallmark of competitive systems, where energy is lost through
the destruction of units.

2.3.3. Potential Energy

Next, we introduce the potential energy in the system due
to the interaction between the two populations. A simple
potential energy function for the competitive interaction
between forces A and B is given by:

Ulz,y) = —kz(t)y(t)

This potential energy function captures the interaction
between the two forces, with k representing the strength of
this interaction. The total energy of the system, combining
both kinetic and potential energies, is now expressed as:

Eoal () = %kac(t)2 + %ly(t)2 — ka(t)y(t)

This expression accounts for both the energy due to the
sizes of the populations and the energy due to their mutual
interaction, as Lanchester’s framework prescribes.

ODE Formulation and Energy Conservation

In this subsection, we focus on energy conservation within
the context of the asymmetric Lanchester warfare model. The
system’s total energy consists of kinetic and potential energy
contributions. To ensure the conservation of energy, we require

that the time derivative of the total energy, %, be zero.
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This implies that total energy remains constant over time and
is merely transferred between different forms, kinetic and
potential.

The total energy of the system is the sum of the kinetic and
potential energies, as previously expressed:

Ea(t) = %kaz(t)Q + %ly(t)2 — kx(t)y(t)

where k and [ are the lethality coefficients of forces A and B,
respectively, and z(t), y(t) represent the populations of the
forces. Here, we define the time evolution of the populations
by the Lanchester equations:

Energy Change Rate
We now compute the time derivative of the total energy,
%, by applying the chain rule:

§=—la(t)

dEoal o d

o= <;kx(t)2 + %ly(t)2 - kw@)@/(b‘))

First, differentiating each term:

% <;kx(t)2> k(b ()
% (310?) = oy

d . .
5 (TRe()y(t) = —k (2()y(t) +y(2)(t)

Now, substituting the Lanchester model dynamics &(t) =
—ky(t) and y(t) = —lz(t) into the derivative expression:

dEtolal
dt

—k (2(t)(=l2(t)) + y() (—ky(1)))

Simplifying the terms:

= ka(t)(=ky(t)) + ly(t) (=lz(t))

dL total

o= —k22(t)y(t) — Po(t)yt) + klz(t)* + kly(t)?

Grouping the terms:

dEtotal
dt

Energy Conservation Condition
For the energy to be conserved, the rate of change of the
total energy must be zero, i.e.,

= —(k* + )a(t)y(t)

dEtotal
dt

From the previous result, we see that the condition for
energy conservation is:

=0

—(E2+1®)zt)y(t) =0

This implies that for energy conservation to hold, either
z(t) = 0 or y(t) = 0 at some point in time, or their product
x(t)y(t) must remain constant over time. Since both forces
interact dynamically, the condition z(t)y(t) = C, where C is
a constant, is a requirement for energy to remain conserved.

This behaviour, where the population’s product remains
constant, indicates a system with marginal stability. In
marginally stable systems, energy is not lost entirely or
grows unboundedly. Instead, it oscillates between kinetic
and potential forms, maintaining a balance in the system’s
dynamics. This oscillatory behaviour is typical in competitive
systems where the forces are balanced, and energy is
conserved but constantly exchanged between different energy
reservoirs.

2.4. Stability Analysis

The system’s stability is derived from the differential
equations governing the number of combatants for two forces,
A and B, in an asymmetric warfare scenario. The equations of
motion for the number of combatants x(¢) and y(t) are given
by:

T =—ky
y=—lz

Where x(t) and y(t) represent the combatant populations
of forces A and B at time ¢, respectively, and k and [ are
the lethality coefficients of forces A and B. These equations
describe a two-dimensional linear system with a coupling
between the forces.

The characteristic equation for this system is derived by
assuming a solution of the form e for both x(t) and y(t),
leading to the characteristic equation:

s24+kl=0

Solving for s, we obtain purely imaginary eigenvalues:

s = +ivkl

These imaginary roots indicate that the system exhibits
oscillatory behaviour around the equilibrium point, * =
0,y = 0, rather than converging to a steady state. This
suggests **marginal stability**, where the system oscillates
indefinitely without decaying to zero or growing without
bound.

The general solutions to the system of differential equations
are obtained by solving for z(t) and y(t). The solution for z(t)
is:

x(t) = o cos(Vkl t) — % sin(Vkl t)

And the solution for y(t) is:
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y(t) = —% (—x()\/ﬁsin(\/Ht) - y()\/Hcos(\/Ht))

where zg and yq are the initial conditions at ¢ = 0. These
solutions describe the oscillatory motion of the combatant
populations over time, influenced by the lethality coefficients
k and [. For initial conditions zo = 0 and yo = 0, both
forces remain at equilibrium. However, for non-zero initial
conditions, the populations oscillate in a sinusoidal manner,
with frequencies determined by v/k.

To analyze the nature of the oscillations further, we can
express the solutions in terms of the phase angle 6, where:

0 =kit

Thus, we can rewrite the solutions as follows:

z(t) = Acos(0) + Bsin(6)
y(t) = Ccos(f) + Dsin(6)

where A, B, C, and D are constants determined by the initial
conditions. The time-dependent behaviour of the combatants
is periodic, with the period of oscillation given by:

2
Vi

This result shows that the system exhibits regular
oscillations, and the amplitude of these oscillations is
determined by the initial values of xy and yo. Notably, the
oscillations do not dampen or grow; they remain bounded,
consistent with the idea of marginal stability. The marginal
stability of the system indicates that neither force achieves

permanent dominance over the other. Instead, the forces
continuously adapt in response to each other’s actions,
creating a dynamic balance. This behaviour is characteristic
of Lanchester’s model of asymmetric warfare, where the
interaction between two forces leads to sustained oscillations,
reflecting the ongoing competition and adjustment between
the combatants. The solutions show that the forces remain
in a continuous cycle of attack and defence, never reaching
a stable equilibrium but maintaining an ongoing, oscillatory
interaction. Thus, the stability analysis of the system, through
its oscillatory nature, provides valuable insights into the
dynamics of Lanchester-type models. The interplay between
the forces, influenced by their initial conditions and the
lethality coefficients k& and [, determines the nature of the
oscillations, highlighting the complex and responsive nature
of the combatants’ interactions in asymmetric warfare.

3. Numerical Example and Illustration

To illustrate the dynamics of the Lanchester asymmetric
warfare model, we consider specific initial conditions and
lethality coefficients for two forces. The governing equations
of the system are:

#(t) = —ky(t), y(t) = —lz(t),

where £ = 1.5 and [ = 2.0 are the lethality coefficients, and
the initial conditions are 2(0) = 10 and y(0) = 5.

Using these values, we numerically solve the equations
and analyze the decoupling, energy conservation, and stability
aspects. The time evolution of z(¢) and y(t) is tabulated in
Table 1, and the oscillatory behavior is depicted in Figure 1.

Table 1. Time Evolution of Combatant Numbers x(t) and y(t).

Time (t) Combatant (x(t)) Combatant (y(t))
0.0 10.00 5.00

0.5 8.75 6.05

1.0 6.62 7.19

1.5 3.90 8.29

2.0 0.96 9.32

2.5 -2.17 10.23

3.0 -5.43 11.01

3.5 -8.58 11.62

The oscillatory dynamics of x(¢) and y(t) confirm the
marginal stability of the system, as the amplitudes remain
bounded. The interaction between the two forces ensures
that energy is conserved within the system while being
redistributed between the components. This dynamic is
characteristic of the interplay observed in asymmetric warfare

scenarios.

Figure 1 provides a visual representation of the solutions,
illustrating the alternating dominance of each combatant over
time. The oscillatory nature of the solutions reflects the
continuous adaptation and response dynamics between the
forces.
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Numerical Simulation of Asymmetric Lanchester Dynamics

10r

- x(t): Force A
y(t): Force B

Combatant Count

=10+

—15¢+

Time (t)

Figure 1. Oscillatory Behavior of Combatants x(t) and y(t) in Lanchester’s Asymmetric Warfare Model.

The figure showcases the oscillatory interplay between
the two forces. This behavior underscores the strategic
implications of Lanchester’s laws in asymmetric scenarios,
where neither force decisively dominates due to the balancing
effect of the lethality coefficients. These oscillations provide
insights into the sustainability of conflict and the importance
of initial conditions in determining long-term outcomes.

3.1. Energy Dynamics and Interplay: Numerical
Illustration

The energy dynamics in Lanchester’s combat equations
provide crucial insights into the oscillatory behavior and
stability of the system. For the given numerical example with
initial conditions zo = 10, yo = 8, and lethality coefficients
k = 0.5and [ = 0.4, the total energy of the system is computed
as:

1 1

The evolution of Eiy, over time encapsulates the energy
interplay between the two combatant forces. By substituting
the numerically determined x(¢) and y(t) into the energy
equation, the total energy as a function of time is derived. The
following table summarizes key points of the energy dynamics
over a series of time intervals:

Table 2. Energy Dynamics Over Time.

Time (t) (x(t)) (y(t)) (Eota (t))
0.0 10.00 8.00 49.60
1.0 8.76 7.29 48.85
2.0 6.38 6.10 48.10
3.0 3.94 4.57 47.49
4.0 1.60 2.83 47.12
5.0 0.08 1.11 47.02
6.0 0.79 0.08 47.21
7.0 3.09 0.96 47.68
8.0 5.87 2.60 48.39
9.0 8.53 4.87 49.30
10.0 10.00 8.00 49.60

The oscillations observed in the energy illustrate marginal
stability, where Fi,, remains bounded without converging to
a steady value or diverging to infinity. This bounded energy
behavior signifies the continuous exchange of energy between
the two forces, manifesting in the form of oscillatory dynamics
in the populations z(t) and y(t).

The interplay is further captured visually in the energy
plot (Figure 2), where the cyclic nature of energy evolution
corresponds to the underlying oscillations in combatant
numbers. The figure reveals that while the total energy
does not decay or grow unboundedly, its oscillatory trend
aligns with the marginally stable nature of the system, further
validating the theoretical predictions.
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Energy Dynamics in Lanchester Model

2500 T T T T T T T

2000
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Figure 2. Energy dynamics over time for the numerical example illustrating oscillatory exchange and marginal stability.
In summary, the energy analysis provides a coherent picture " Frequency Spectrum of x(t)
of the system’s dynamics, where lethality coefficients k& and
l govern the interaction strength, and the initial conditions 40 1
determine the amplitude of energy oscillations. The bounded, . ]
oscillatory nature of energy reflects the delicate balance
characteristic of Lanchester’s combat models in asymmetric 30 1
warfare. o
S |
=
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3.2. Analysis of Oscillation Amplitude and Frequency
Spectrum 15 |
10 1

Building on the energy dynamics analysis, the oscillation
amplitudes and frequency spectrum provide further insights 5
into the stability and behavior of the system.
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Figure 4. Frequency spectrum of x(t), showing the dominant oscillatory frequency
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The oscillation amplitudes in Table 3 demonstrate the

Figure 3. Oscillation amplitude of x(t) and y(t) over time, illustrating bounded ~ bounded nature of the system’s dynamics. The frequency
stability. spectrum in Figure 4 confirms a single dominant frequency
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proportional to the lethality coefficients, validating the model’s
harmonic characteristics.

3.3. Advanced Analysis of Stability and Energy Dynamics

Building on the oscillatory and energy dynamics analysis
in the Lanchester model, we extend the discussion to three
key aspects: phase space trajectories, energy dynamics with
damping, and stability assessment via Lyapunov exponents.

Phase Space Analysis.

The phase space trajectory of the system, as depicted in
Figure 5, shows the interplay between the combatant forces
x(t) and y(t). The oscillatory pattern highlights the marginal
stability of the system, where energy is cyclically exchanged
between the two combatants. This behavior corresponds
to bounded yet non-convergent trajectories, indicative of
continuous energy interaction without dissipation in an
idealized case.

Phase Space Trajectory (x vs. y)
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Figure 5. Phase space trajectory illustrating the cyclic dynamics of the combatant forces
x(t) and y(t).

Energy Dynamics with Damping.

To introduce a realistic perspective, we incorporate a
damping factor (0 = 0.05), modeling external influences like
fatigue or resource depletion. The energy evolution, shown
in Figure 6, reveals a gradual decay over time, demonstrating
how damping disrupts the perpetual oscillations observed in
the undamped system. The numerical energy values at key
time intervals are summarized in Table 4.

Table 4. Damped Energy Dynamics Over Time.

Time (t) (Kdampea (t)) (P dampea (t)) (Edampea (t))
0.0 1500.00 720.00 2220.00

5.0 480.30 172.20 652.50

10.0 152.12 41.45 193.57

15.0 48.17 10.00 58.17

20.0 15.26 241 17.67

The damped total energy Fgamped (t) declines monotonically,
transitioning the system from marginal stability to eventual
dissipation of oscillatory behavior. This analysis underscores
the impact of environmental or internal factors on the long-
term stability of combatant dynamics.

Damped Energy Dynamics
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Figure 6. Damped energy dynamics over time, illustrating energy dissipation due to
damping.

Stability Assessment via Lyapunov Exponents

The Lyapunov exponent quantifies the divergence or
convergence of trajectories in phase space under small
perturbations.  Figure 7 depicts the computed Lyapunov
exponent, which stabilizes around zero, confirming marginal
stability.

This result aligns with the energy dynamics and phase space
analysis, reinforcing the theoretical prediction that the system
neither diverges to instability nor converges to a fixed point but
remains marginally stable. The regime analysis offers a mixed
quantitative and qualitative evaluation of the focal dynamics
in the Lanchester model. The phase space trajectory shows a
bounded oscillation with an indication of the marginal stability
of the System; the plot of energy indicates the system’s
movement from idealized infinitive oscillation to realistic
damping over time. Examining the amplitude of oscillation
brings forth a gradual diminishing with influence from the
damping effects observed in energy dissipation. The analysis
of the carryout frequency bands provides an enhanced view by
pointing out dominant frequencies that define the oscillatory
nature of the system interaction. Outcomes of the stability
analysis with Lyapunov exponents support the theoretical
prediction of marginal stability meaning that the trajectories
are not diverging to instability but also not converging to the
equilibrium. In combination, these considerations highlight
the interconnection between oscillatory behavior, energy
transfer and stability within the combat system and link the
abstract theoretical modeling approach with the more specific
practical concerns regarding amplitude modulation, frequency
responses and any environmental or internal disturbance.
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Figure 7. Lyapunov exponent estimation showing marginal stability (A = 0).

4. Discussion of Findings

The main finding of this work showcases the oscillatory
behaviour in the asymmetric warfare scenario depicted through
the solutions of z(t) and y(t), portraying marginal stability
consecutively. This stability is due to having purely imaginary
eigenvalues, s = +4v/kl, which means limited oscillation
around the equilibrium point. It should be noted that although
the oscillation amplitudes neither decrease nor increase, those
values are realistic and do not reach the infinite level; this
means that, while no force prevails, neither is it substantially
suppressed. This aligns with the observation by R.O. Fifelola
et al., who noted similar stability in symmetric warfare
scenarios with equal lethality coefficients [9]. However,
introducing the asymmetric case complicates this analysis due
to the different parameters.

Analyzing the stability of the given theoretical model
implies that the amplitude of oscillations, with frequency
equal to v/kl, depends on lethality coefficients and initial
values. This observation is consistent with findings presented
by I. V. Kotlyarov, who pointed out that Lanchester-
type models provide insights into long-duration conflicts in
modern warfare [7]. Such fluctuations offer contingencies
for planning, particularly regarding resource allocation in a
conflict. Furthermore, the conclusions resonate with work by
W. H. Taylor, which emphasized the importance of modelling
combative interactions to improve force management and
decision-making [2].

Thus, the connection between the theoretical and numerical
components of the results illustrates the balance between
oscillatory stability and tactical flexibility. This phenomenon
is particularly informative in understanding asymmetric
warfare in terms of lethal interaction coefficients and the
existence of attack-and-defence cycles. The bounded, non-
diverging oscillations highlight the necessity of consistent
strategic adaptations, rendering these findings critical for

military navigation and performance.

5. Conclusion

Therefore, this study contributes to the analysis of
asymmetrical warfare by focusing on the oscillation and
tactical dynamics of the coefficients of lethal encounters and
the cycle of attack and protection. As the outcomes have
been demonstrated in theoretical and numerical investigations,
the necessity of a balanced strategy of fluctuations, which
never increase or decrease endlessly, contains profound
implications for military conflict. =~ These bounded, non-
diverging oscillations indicate the need for flexibility in
military strategies, and as such, these findings have
implications for force application in contemporary warfare and
conflict management.
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