
International Journal of Systems Science and Applied Mathematics 

2024, Vol. 9, No. 3, pp. 37-43 

https://doi.org/10.11648/j.ijssam.20240903.11  

 

 

*Corresponding author:  

Received: 1 October 2024; Accepted: 17 October 2024; Published: 11 November 2024 

 

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed 

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. 
 

 

Research Article 

Bifurcation Analysis and Multiobjective Nonlinear Model 

Predictive Control of Sustainable Ecosystems 

Lakshmi Narayan Sridhar
*
 

Department of Chemical Engineering, University of Puerto Rico, Mayaguez, Puerto Rico 

 

Abstract 

Objective: All optimal control work involving ecological models involves single objective optimization. In this work, we 

perform multiobjective nonlinear model predictive control (MNLMPC) in conjunction with bifurcation analysis on an ecosystem 

model. Methods: Bifurcation analysis was performed using the MATLAB software MATCONT while the multi-objective 

nonlinear model predictive control was performed by using the optimization language PYOMO. Results: Rigorous proof 

showing the existence of bifurcation (branch) points is presented along with computational validation. It is also demonstrated 

(both numerically and analytically) that the presence of the branch points was instrumental in obtaining the Utopia solution when 

the multiobjective nonlinear model prediction calculations were performed. Conclusions: The main conclusions of this work are 

that one can attain the utopia point in MNLMPC calculations because of the branch points that occur in the ecosystem model and 

the presence of the branch point can be proved analytically. The use of rigorous mathematics to enhance sustainability will be a 

significant step in encouraging sustainable development. The main practical implication of this work is that the strategies 

developed here can be used by all researchers involved in maximizing sustainability The future work will involve using these 

mathematical strategies to other ecosystem models and food chain models which will be a huge step in developing strategies to 

address problems involving nutrition. 
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1. Introduction 

Sustainability is a significant factor to be considered in 

almost all physical and chemical phenomena. Beneficial ac-

tivities and situations must be sustained over a considerable 

amount of time. This is especially true in ecosystem man-

agement where the conservation of natural species is essential 

for ensuring a healthy environment for the long-term 

well-being of the human population. The issue of sustaina-

bility should be implemented in optimization and control 

studies of ecosystems. 

Cabezas and co-workers [1-9] have applied the fisher index 

[10] as a sustainability criterion for ecosystems. Specifically, 

the sustainability concept has been applied in the management 

of ecosystems, by controlling the population of various species. 

Shastri and DIwekar [11] and Sorayya et al [12] performed 

single objective optimal control calculations on ecological 

models maximizing the fisher index to ensure maximum 

sustainability. 

This work aims to perform bifurcation analysis and mul-
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tiobjective nonlinear model predictive control calculations. 

The bifurcation analysis reveals the existence of branch points. 

A rigorous mathematical analysis (which is also computa-

tionally validated) demonstrating the existence of branch 

points is presented. It is shown that the presence of the branch 

points makes the multiobjective nonlinear model predictive 

control calculations to reach the utopia solution. This 

demonstrates that one can maximize the conservation of the 

natural habitat and maintain maximum sustainability. 

2. Equations in Ecological Model 

The equations are the following 
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3. Computational Procedures Used  

Bifurcation analysis 

Multiple steady-state solutions are caused by a) Branch 

Points and b) limit points. At these points the Jacobian matrix 

of the steady-state equations has a determinant of 0. At a 

branch point there are 2 distinct tangents while at a limit point, 

there is only one tangent at the singular point CL_MATCONT 

[13, 14] is commonly used to detect branch and limit points. 

Here a continuation procedure implementing the 

Moore-Penrose matrix pseudo-inverse is used. 

CL_MATCONT obtains the branches of the solutions starting 

from the bifurcation points. 

For an ODE system 

( , )
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The matrix A can be written as 
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The tangent surface must satisfy the equation 

0Av                       (6) 

For limit and branch points the matrix B must be singular. 

For a limit point (LP) the 

n+1 th component of the tangent vector 1nv   = 0 and for a 

branch point (BP) the matrix 
T

A

v

 
 
  

 must be singular [15-17]. 

Multiobjective Nonlinear Model Predictive Control Algo-

rithm 

The MNLMPC (multiobjective nonlinear model predictive 

control) strategy [18, 19] used in this work does not involve 

the use of weighting functions or impose additional con-

straints [20]. For a problem that is posed as 

1 2min ( , ) ( , .... )
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dt
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The MNLMPC method first solves dynamic optimization 

problems independently minimizing/maximizing each any 

variable ip  individually. The minimization/maximization of 

ip  will lead to the values *
ip . Then the optimization problem 

that will be solved is 

* 2min{ }
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dx
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This will provide the control values for each time value. 

The first obtained control value is implemented and the re-

maining are discarded. This procedure is repeated until the 

implemented and the first obtained control value are the same. 

Pyomo [21], was used for the calculations. Here the dif-

ferential equations are converted to a Nonlinear Program 

(NLP) using the orthogonal collocation method [22]. The 

Lagrange-Radau quadrature with three collocation points is 

used and 10 finite elements are used to solve the optimal 

control problems. The resulting nonlinear optimization prob-

lem was solved using the solvers IPOPT [23], and confirmed 

as global solutions with BARON [24] The calculations are 

repeated until there is no difference between the implemented 

and the first obtained control values The Utopia point is when 
*

i ip p  for all i. 

Effect of singularities (Limit Point (LP) and Branch Point 

(BP)) on MNLMPC 

If the minimization of the variables 1 2,p p  l result in the 

values 1M  and 2M  the resulting optimization problem will 

be 
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Taking i  is the lagrangian multiplier., the Euler Lagrange equation(costate equations) will be 
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the derivative of the objective function will yield 
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The co-state equation in optimal control is 
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i  is the lagrangian multiplier. The first term in this equa-

tion is 0 and hence 
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If ( , )
dx

g x u
dt

  yields a limit or a branch point, xg  is 

singular. 

This implies that there are two different vectors-values for 

[ ]i  where ( ) 0i

d

dt
   and ( ) 0i

d

dt
  . In between there is 

a vector [ ]i  where ( ) 0i

d

dt
  . This coupled with the 

boundary condition ( ) 0i ft   will lead to [ ] 0i   which 

will cause the problem to become unconstrained. The only 

solution for the unconstrained problem is the Utopia solution. 

This is illustrated numerically in the next few sections. 

4. Results and Discussion 

Bifurcation Analysis of Ecological Model 

In the first case, d3 was the bifurcation parameter while k 

was the bifurcation parameter 

in the second case. Figures 1 and 2 show the bifurcation 

diagrams. 

In both instances, there are branch points from which two 

different branches originate 

The derivatives of 1 2 3, ,f f f  with respect to the variables 

1 2 3, ,x x x  are 
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Computational Validation 
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Figures 1 and 2 show the bifurcation diagrams when d3 and 

K are the bifurcation parameters. 
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Figure 1. Bifurcation diagram with d3 as bifurcation parameter. 

 
Figure 2. Bifurcation diagram with K as bifurcation parameter. 

MNLMPC of the ecological model 

The averaged fisher index (FI) is given by 

2

4

0

3 3
2 2

1 1

3 2

2
1

32

1

1 ( ( ))

( ( ))

( ) ( ) ( )

1
( ) (( )( ))

( )

( ) ( )( )... 1, 2,3

ft

f

i
i

i i

i i

i

i i i
j

jj

a t
FI dt

t v t

dx
v t f

dt

d x dx
a t

v t dtdt

d x df df
f i

dt dt dx

 







 



  



 





        (18) 

The expressions of the functions if  and the derivatives 

i

j

df

dx
 are provided in equation sets 2 and 3. Both d3 and k 

were used as control variables. Both 3

0

ft

x  and the Fisher 

index (FI) were maximized individually. The maximization of 

3

0

ft

x  resulted in a value of 716.534 while the maximization 

of FI resulted in a value of 3.965e-05. For the multiobjective 

nonlinear model predictive calculations, the function mini-

mized was 
2 2

3

0

( 716.534?) ( 3.965 05)

ft

Ix F e    sub-

ject to the equation set 2. The resulting objective function 

value obtained was the utopia point 0. The multiobjective 

nonlinear model control variables obtained were d3 = 0.0274 

and k 680.00. 

Figures 3-6 show the profiles for the MNLMPC calcula-

tions. 

http://www.sciencepg.com/journal/ijssam


International Journal of Systems Science and Applied Mathematics http://www.sciencepg.com/journal/ijssam 

 

42 

 
Figure 3. X1, X2, X3 profiles for MNLMPC calculations. 

 
Figure 4. FI versus t. 

 
Figure 5. d3 versus t. 

 
Figure 6. K versus t. 

5. Conclusions 

The main conclusions of this work are that one can attain 

the utopia point in MNLMPC calculations because of the 

branch points that occur in the ecosystem model and the prese 

nce of the branch point can be proved analytically. The use 

of rigorous mathematics to enhance sustainability will be a 

significant step in encouraging sustainable development. The 

main practical implication of this work is that the strategies 

developed here can be used by all researchers involved in 

maximizing sustainability The future work will involve using 

these mathematical strategies to other ecosystem models and 

food chain models which will be a huge step in developing 

strategies to address problems involving nutrition. 

Nomenclature 

1x
  

Prey Population 

2x
  

Predator Population 

3x
  

Super Predator Population 

r  Prey Growrh Rate 

K  Predator Growth rate 

2 3,a a
  

The Maximum Predation rate of Predator and 

Super Predator 

2 3,b b
  

Half Saturation Constant of Predator and 

Super Predator 

2 3,d d
  

Death of Predator and Super Predator 

FI Fisher Index 

BP Branch Point 

LP Limit Point 

MNLMPC Multi-objective Nonlinear Model Predictive 

Control 
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