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Abstract: I present the continuation of a study on Laplacian Level Kinetic Energy (KE) functionals applied to metallic
nanosystems. The development of novel Kinetic Energy functionals is an important topic in density functional theory (DFT). The
nanoparticles are patterned using gelatin spheres of different sizes, background density and number of electrons. To reproduce
the correct kinetic and potential energy density of the various nanoparticles, the use of semilocal descriptors is necessary. Need
an explicit density functional expression for the kinetic energy of electrons, including the first e second functional derivative,
i.e. the kinetic potential and the kinetic kernel, respectively. The exact explicit form of the non interacting kinetic energy, as a
functional of the electron density, is known only for the homogeneous electron gas (HEG), i.e., the Thomas-Fermi (TF) local
functional and for 1 and 2 electron systems, i.e., the von Weizsacker (VW) functional. In between these two extreme cases,
different semilocal or non local approximations were developed in recent years. Most semilocal KE functionals are based on
modifications of the second-order gradient expansion (GE2) or fourth-order gradient expansion (GE4). I find that the Laplacian
contribute is fundamental for the description of the energy and the potential of nanoparticles. I propose a new LAP2 semilocal
functional which, better than the previous ones, allows us to obtain fewer errors both of energy and potential. More details of the
previous calculations can be found in my 2 previous works which will be cited in the text.
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1. Introduction

Density functional theory (DFT) is one of the most widely
used approaches for theoretical calculations in solid-state
physics and quantum chemistry [1]. In its original orbital-free
(OF) formulation [2, 3], DFT allows one to describe the ground
state of a many-electron system [4] as a function of the electron
density (ρ) alone, through the solution of the Euler equation
[5]. The Euler equation is obtained minimizing the equation
of the ground state energy of a system with N electrons:

E[ρ] = Ts[ρ] + EH [ρ] +

∫
drνext(r)ρ(r) + Exc[ρ] (1)

where Ts[ρ] is the noninteracting kinetic energy (KE); νext(r)
is the external (i.e. nuclear) potential; Exc[ρ] is the exchange
correlation (XC) energy; EH [ρ] is the Hartree energy. If in
Euler equation we put the exact Ts[ρ]:

Ts[ρ] = 〈φminn |T̂ |φminn 〉 =
∫
drφminn (r)T̂ φminn (r) (2)

we obtain the Kohn-Sham self-consistent equations [6]

[
− ~2

2me
∇2 + vKS [ρ](r)

]
φi(r) = εφi(r),

ρ(r) =
N∑
i=1

|φi(r)|2,

vKS [ρ](r) = vext(r) + vH [ρ](r) + vxc[ρ](r)

(3)

If in Euler equation we put an approximate Ts[ρ] we obtain
orbital-free DFT [2, 7–9].

Different semilocal or nonlocal approximations were
developed in recent years for the KE. Non-local KE
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functionals are rather accurate, but they are derived mainly
from the linear response of the homogeneous electron gas
the Lindhard function [2] and are thus only suitable for
solid-state simulations. The GGAs are the most popular KE
approximations also known as semilocal [10–13]:

TGGAs [ρ] =

∫
τTFFs(s(r)) dr (4)

where Fs, called enhancement factor, is an appropriate
function of the reduced gradient:

s =
|∇ρ|

2(3π2)1/3ρ4/3
(5)

and for Fs = 1 get the Thomas-Fermi (TF) KE functional. In
solid-state physics, DFT has always been more popular than
traditional approaches to the Schrödinger equation, because
the Hartree-Fock approximation has unpleasant singularities
for zero-gap materials, i.e., metals. The next logical step
beyond the standard approximations are meta-GGAs, which
include the kinetic energy density as an input, and can yield
accurate ground-state energies simultaneously for molecules,
solids, and surfaces [14]. Another step is obtained including a
new ingredient in the kinetic enhancement factor [15, 16]: the
laplacian of the density yielding the class of Laplacian-Level
meta-GGAs (LL-meta-GGAs) [17]

TLLs [ρ] =

∫
τTFFs(ρ,∇ρ,∇2ρ) dr (6)

Under a uniform scaling of the density

ρλ(r) = λ3ρ(λr), λ ≥ 0 (7)

the exact non-interacting kinetic energy behaves as

Ts[ρλ] = λ2Ts[ρ] (8)

i.e. as the Thomas-Fermi KE. Therefore, to have eq.(6) satisfy
this constraint, Fs(ρ,∇ρ,∇2ρ, ...) must be invariant under
the uniform density scaling. Such a goal can be achieved
by considering the following dimensioneless reduced gradient
and laplacian

p =
|∇ρ|2

4(3π2)2/3ρ8/3
, q =

∇2ρ

4(3π2)2/3ρ5/3
(9)

The enhancement factor becomes therefore

Fs(ρ,∇ρ,∇2ρ) = Fs(p, q) (10)

2. Computational Details
The results of this work were obtained with the same

computational methods used in the two previous works
[18, 19] and so all the required numerical calculations
have been performed using the electronic structure program:

JELLCODE. This program performs DFT simulations, both at
the KS and the OF-DFT level, for spherical systems on a radial
semi-logarithmic grid. A carefull calibration of the quadrature
grid has been performed to ensure that all calculations are well
converged. Varying the external potential, both atoms and
jellium spheres can be considered.

3. Results

The systems I worked on are the same as the two previous
jobs [18]. The uniform electron gas or homogeneous
electron gas (HEG), also known as jellium [20], is one of
the most fundamental models for understanding electronic
properties in simple metals and semiconductors (see Figure
1). Knowledge of its ground state properties and, in particular,
of modifications due to electron correlation is at the heart
of all approximate approaches to the many-electron problem
in realistic models [21]. It can qualitatively reproduce
features of real metals such as screening, plasmons, Wigner
crystallization and Friedel oscillations. At zero temperature,
the properties of jellium depend solely upon the constant
electronic density. This lends it to a treatment within DFT.

Figure 1. Jellium and real metals in a picture take from [22].

The energy studies are exposed in the work [18] and those
on ionization are exposed in the work [19], from these graphs
it can be seen that functionals based on gradient expansions,
e.g. the second-order one (GE2) and above all the fourth-
order (GE4) have been found to work at best; in particular, in
Figure 4 and Figure 5 of my work [18] for noble atoms and for
the jellium spheres, respectively. From Figure 6 of my work
[18] it can see that the GGA approximation is not sufficient
for our purposes but the LL-meta-GGA approximation works
very well. So, considering that the GE4 energy is the best, as
shown in the Figure 7 [18], but the GE4 potential is divergent,
as shown in Figure 8 [18], I have developed new analytical
formulas to eliminate this divergence and I have obtained a
third functional with the same method of the previous:
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FLAP2
s =

5

3
s2 +

[1 + (A− 40/27)s2]

(1 +As2)
∗ [1 + (B +D) ∗ q + (B ∗D +Q) ∗ q2]

(1 +D ∗ q)
(11)

This functional has been built according to the exact
constraints, i.e. (i) for s → 0 and q → 0 (that is the slowly
varying density limit) I want obtain the GE2 functional (ii) for
s → ∞ and q → ∞ (that is the rapidly varying density limit)
I want obtain the VW functional.

The best values that I have obtained are A =
1.60 and B = 3 that allow us to get functionals that
approximate the exact one very well both for energy and for
potential.

Below are some graphs which show how are obtained this
best values of the coefficients A and B and also of the
coefficients D and Q.

In the Figure 2 it is possible to see the kinetic energy and
the kinetic potential calculated with different functionals in
particular the functional proposed in the other work [18] and
the new LAP2 with values of the coefficient A = 1.70 initially
considered the best and later improved.

Figure 2. The kinetic energy and the kinetic potential of the previous functionals and the new LAP2.

In the Figure 3 and Figure 4 you can see that the enhancement factor of the new functional has a very different trend from the
others precisely to correct the divergence of the potential. The Pauli enhancement factor was used, obtained from the enhancement
factor of the exact functional and from the enhancement factor of the VW functional: FPs = FKSs − F vWs .

Figure 3. The enhancement factor of Pauli versus s2 (upper panel) and q (lower panel) of the functionals named in the legend, the new functional LAP2 (in the legend called new)
shows a non divergent trend.
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Figure 4. The enhancement factor of Pauli versus s2 (upper panel) and q (lower panel) of the functionals named in the legend, the new functional LAP2 (in the legend called new)
shows a non divergent trend.

In the Figure 5 there are the 2-D scan, for A = 1.6, B = 3, over the parameter space (D,Q) ∈ [0, 1.4]× [0, 1.95]. The value
of the coefficient A has been obtained with the same scan over the parameter space (AD), (AQ):

Figure 5. Two dimensional scan for the LAP2 functional over the parameter space D-Q averaged over the 3 jellium’s systems for the kinetic energy (first panel) for the kinetic potential
(second panel) for kinetic energy + kinetic potential (third panel).
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In the Figure 6 there is the plot of the enhancement factor of the functionals with the values of the parameters obtained from the
above scans that allow to obtain the minimum errors both for LAP1 (i.e. B = C = 0) and for LAP2 (i.e. D = 1.20, Q = 0.45) :

Figure 6. The LAP1 and the LAP2 functionals with their minimum values.

In the table 1 there are the values of the errors on the energy
and on the potential of the reference functionals and of the
new functionals with the values of the parameters mentioned
and plotted above. The new functionals provide errors on the
energy and on the potential lower than those existing in the
literature:

Table 1. Summary of MARE (Mean absolute relative errors).

Functional KE error KP error total KE

TF 2.9618 24.8706 13.9162

GE2 0.954567 21.7619 11.3582

GE4 0.435183 10.6*10exp13 53.2*10exp13

NEWab 4.8922 24.3191 14,6056

LAP1 0.430675 16.3654 8.39804

LAP2 0.3809 16.3211 8.3510

4. Conclusions

LAP2 with the coefficient A = 1.60, B = 3 and D = 1.20
and Q = 0.45 works better of the two previous and I managed
to obtain in the denominator, which is the crucial part that
eliminates the divergence, the two quantities s2 and q, reduced
gradient and laplacian, and not just s2 or s2 and q2 as in the
previous ones. These new features, still unused, represent a

state of the art and a showcase of what could become standard
procedures in the near future.
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Appendix: Functionals
Below are some of the enhancement factors, relevant to the

present work, with the corresponding number with which they
can be found among the 41 existing kinetic functionals in libxc
[23]:

1. A-1. LDA, Thomas-Fermi

FTFs = 1 (12)

2. A-3. GGA, Thomas-Fermi plus von Weiszaecker
correction

FTFs = 1 +
5

3
s2 (13)

3. A-4-8. GGA, PBE-like

FPBEns = 1 +

n−1∑
1

C
(n)
i

(
s2

1 + a(n)
s2
)i

(14)
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4. A-11. GGA, Tran and Wesolowski TW02

FTW02
s = 1 + κ− κ

1 + µ
κs

2
(15)

where κ = 0.8438 and µ = 0.2319.
5. A-13. GGA, von Weiszaecker corretion to Thomas-

Fermi
F vWs =

5

3
s2 (16)

6. A-14. GGA, second-order gradient expansion

FGE2
s = 1 +

5

27
s2 (17)

7. A-15-18. GGA, TFλvW

FTFs = 1 + λ
5

3
s2 (18)

8. A-25. GGA, Ou-Yang and Levy v.1

FOL1s 1 +
5

27
s2 + 0.00677

20

3
(3π2)−1/3s (19)

9. A-30. GGA, Perdew

FP92
s =

1 + 88.396s2 + 16.3683s4

1 + 88.2108s2
(20)

10. A-31. GGA, Vitos, Skriver, and Kollar (VSK)

FV SK98
s =

1 + 0.95x+ 3.56x3

1− 0.05x+ 0.396x2
(21)

with x = (5/27)s2.
11. A-33. GGA, Ernzerhof

FE00
s =

135 + 28s2 + 5s4

135 + 3s2
(22)
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