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Abstract: Human health is constantly threatened by the appearance and resurgence of several diseases, as shown by recent
epidemics. COVID-19 was one of the epidemics that left its mark on the world in terms of economic and human damages. In
the search for solution to this pandemic, the scientific community is involved in all its diversity. Mathematicians are taking part
in the fight through mathematical modeling in various approaches. Ordinary derivative compartmental modeling approache is
one of the techniques widely used in epidemiological modeling. This paper presents a mathematical contribution to fight against
COVID-19 using a compartmental SQEICRS model. This model takes into account five stages. In particular, the role of chronic
diseases on the dynamique of COVID-19, is focused. A mathematical analysis of the model has been carried out, and shows
that the model is well-posed in the biological and mathematical sense. Aspects such as existence, equilibrium points and their
stability, the basic reproduction numberR0 and sensitivity anlysis have been discussed. Sensitivity analysis allowed us to identify
the parameters which contribute to the spread of the disease, including the chronicity rate due to chronic diseases. The direction
of disease propagation was also determined according to R0. Finally, the numerical results with Matlab are in conformity with
theoretical results.
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1. Introduction

The COVID-19 pandemic is one of the world’s most
worrying public health issues. It is a respiratory syndrome
caused by the SARS-CoV-2 (Severe Acute Respiratory
Syndrome Coronavirus 2) virus, which occurs in various
forms, including the Delta variant which is more infectious
than the others (Alpha, Beta, Gamma, etc.) [2]. The
complexity of this virus lies in its ability to mutate rapidly,
not only to counteract the measures taken against it, but also
to produce more virulent variants. This disease is potentially
dangerous for the elderly and chronically patient, whose
bodies are already weakened, and to a lesser extent for young

people. It is spreading rapidly and has spared no region in
the globe [30]. The impact of barrier measures taken to stem
the epidemic’s spread has been felt in all sectors of activity,
causing a general recession [20, 21]. The search for solutions
to this pandemic is therefore an imperative for the scientific
community, involving multi-disciplinary skills. Mathematics
is playing its part in this challenge through modeling.
Several papers have been published on the dynamics of
disease transmission and its impact on society. Mathematical
models with ordinary derivatives have been formulated on the
dynamics of propagation [1, 3, 5, 6, 9, 10, 12, 13]. F. Sulayman
et al, M. Manaqib et al, Vijayalakshmi et al and many others
have analysed the impact of vaccination on the transmission
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dynamics of COVID-19. In other models, the impact of barrier
measures in controlling the epidemic has been studied. Kiesha
Prem et al. [7], Sasmina et al. [8], Ankamah et al. [29] have
performed optimal control on COVID-19 models. Fractional
models have been developed by other authors : Shahram,
Paul, Jian, Vijayalakshmi. Stochastic models have also been
developed by Tomas, Zizhen and Shah. All these publications
highlight control mechanisms aimed at stemming the spread
of the epidemic. However, there are few articles dealing with
the impact of chronic diseases and asymptomatic COVID-19
patients on its transmission dynamics. Therefore this paper
aims to study the impact of chronic patients on COVID-
19 transmission dynamics, using a compartmental SQEICRS
model with ordinary derivatives. Once developed, the model
will be subjected to mathematical analysis, during which
aspects of existence, uniqueness, equilibrium points and their
stability, and sensitivity will be examined. In support to the
theoretical results, numerical simulations will be implemented
with Matlab.

2. Elaboration of the COVID-19 Model

2.1. Hypotheses

The following assumptions are necessary for model
development:
H1) Transmission is human-to-human via direct or indirect

contact with symptomatic and asymptomatic infectious
individuals [17, 18, 24, 26–28, 30]

H2) In the disease development chain, one has identified 9
stages at each time t. The population of density N(t) is
thus divided into 9 compartments whose densities S(t),
Sc(t), Q(t), E(t), Is(t), Ia(t), Ct(t), Cs(t) and R(t)
are described in Table 1. On alors:

N(t) =S(t) + Sc(t) +Q(t) + E(t) + Is(t) + Ia(t)

+ Ct(t) + Cs(t) +R(t) (1)

H3) Vertical transmission is neglected ;
H4) Deaths are not part of the disease transmission

chain: assuming that COVID-19-related deaths are well
managed up to burial, therefore one can consider that
they are no longer in the epidemic’s transmission chain.

H5) There is no immunity [1, 4]: after a brief immunity,
cured individuals fall back into the susceptible
compartment.

H7) When a patient has several chronical diseases with
vulnerability rates bi, i ∈ {1, 2, ..., n}, then the
vulnerability rate b to COVID-19 is given by
b = max (bi). Assume that bi ≥ 1.

Under the above assumptions, the dynamics of dengue
propagation can be described by the diagram of figure 1:

Figure 1. COVID-19 transmission diagram.

2.2. Description of Variables and Parameters

Variables and parameters of the model are described in
tables 1 and 2 respectively.

Table 1. Description of model variables.

Variables Description

S(t) Density of susceptible individuals

Sc(t) Density of susceptible individuals with chronical diseases

E(t) Density of exposed individuals

Q(t) Density of quarantined individuals

Is(t) Density of symptomatic infectious individuals

Ia(t) Density of asymptomatic infectious individuals

Ct(t) Density of individuals confined under treatment

Cs(t) Density of individuals confined without treatment

R(t) Density of recovered individuals

Table 2. Description of model parameters.

Parameters Description

Λ recruitment rate

Λc recruitment rate of chronical individuals

b rate of vulnerability induced by chronic disease

µ natural death rate

β1 adequate contacts rate of susceptible individuals without

chronic diseases

π adequate contact rates of chronic patients

β2 rate of quarantined individuals

δ1 infection rates of quarantined individuals

δ2 rate of vulnerability of quarantined individuals

γ1 rate of symptomatic infections

γ2 rate of asymptomatic infections

θ cure rate of symptomatic infections

ρ2 cure rate for asymptomatic infections

ρ1 aggravation rate of asymptomatic confined patients

ε rate of vulnerability of recovered individuals

εc vulnerability rate of chronic patients cured of COVID-19

ui rate induced by COVID-19

3. Results

3.1. Model

Using a stantard incidence:

f (t, Is(t), Ia(t))S(t) =
Is(t) + Ia(t)

N(t)
S(t) (2)

on diagram 1, the model of COVID-19 is formulate by system
(3)-(11):
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dS(t)

dt
= Λ + δ2Q(t) + εR(t)− µS(t)− (β1 + β2) f (t, Is(t), Ia(t))S(t) (3)

dSc(t)

dt
= Λc + εcR(t)− πbf (t, Is(t), Ia(t))Sc(t)− µSc(t) (4)

dQ(t)

dt
= β2f (t, Is(t), Ia(t))S(t)− (δ1 + δ2 + µ)Q(t) (5)

dE(t)

dt
= β1f (t, Is(t), Ia(t))S(t) + πbf (t, Is(t), Ia(t))Sc(t)− (µ+ γ1 + γ2)E(t) (6)

dIs(t)

dt
= γ1E(t)− (µ+ µi + λ) Is(t) (7)

dIa(t)

dt
= δ1Q(t) + γ2E(t)− (µ+ ν) Ia(t) (8)

dCs(t)

dt
= νIa(t)− (µ+ ρ1 + ρ2)Cs(t) (9)

dCt(t)

dt
= λIs(t) + ρ2Cs(t)− (µ+ µi + θ)Ct(t) (10)

dR(t)

dt
= θCt(t) + ρ2Cs(t)− (µ+ ε+ εc)R(t) (11)

whith the initial condition (12):

x0 = (S(0), Sc(0), Q(0), E(0), Is(0), Ia(0), Cs(0), Ct(0), R(0))
T ∈ R9

+ (12)

The total density is governed by the equation (13):

dN(t)

dt
= Λ + Λc − µN(t)− µiIs(t)− µiCt(t) (13)

3.2. Existence and Uniqueness of Solution

Let

x(t) = (S(t), Sc(t), Q(t), E(t), Is(t), Ia(t), Cs(t), Ct(t), R(t))
T (14)

be the variable state of system (3)-(11) for any t ≥ 0.
Lemma 3.1. The domain Ω of the solutions defined by:

Ω = {x(t) ∈ R9
+ | 0 < N(t) ≤ Λ + Λc

µ
} (15)

is positively invariant.

Proof. According to the system (3)-(11):

dS(t)

dt
≥ − ((β1 + β2) f (Is, Ia) + µ)S(t)
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˙S(t)

S(t)
≥ − ((β1 + β2) f (Is, Ia) + µ)

S(t) ≥ S(0) exp

(
−µt−

∫ t

0

(β1 + β2) f (Is, Ia) dt

)
≥ 0

dSc(t)

dt
≥ − (πbf (Is, Ia) + µ)Sc(t)

Sc(t) ≥ Sc(0) exp

(
−µt− πb

∫ t

0

f (Is, Ia) dt

)
≥ 0

dE(t)

dt
≥ −(µ+ γ1 + γ2)E(t)

E(t) ≥ E(0) exp (µ+ γ1 + γ2) t

E(t) ≥ 0

dQ(t)

dt
≥ −(µ+ δ1 + δ2)E(t)

Q(t) ≥ Q(0) exp (µ+ δ1 + δ2) t

Q(t) ≥ 0

By analogy: Is(t) ≥ 0, Ia(t) ≥ 0, Cs(t) ≥ 0, Ct(t) ≥ 0, R(t) ≥ 0 and consequently N(t) ≥ 0. In the absence of the disease,

N(t) =
Λ + Λc
µ

.

Hence 0 ≤ N(t) ≤ Λ + Λc
µ

.

Theorem 3.1. For any initial condition x0 ∈ Ω, the model (3)-(11) admits a unique solution which remains in Ω for all t ≥ 0.
Proof Let g = (g1, g2, g3, g4, g5, g6, g7, g8, g(9))

T be the function defined from in R9 by 16:

g(x) :=



Λ + δ2Q(t) + εR(t)− (β1 + β2) f (Is, Ia)S(t)− µS(t)
Λc + εcR(t)− πbf (t, Is, Ia)Sc(t)− µSc(t)
β2f (Is, Ia)S(t)− (δ1 + δ2 + µ)Q(t)

(πb+ β1) f (Is, Ia)S(t)− (µ+ γ1 + γ2)E(t)
γ1E(t)− (µ+ µi + λ) Is(t)

δ1Q(t) + γ2E(t)− (µ+ ν) Ia(t)
νIa(t)− (µ+ ρ1 + ρ2)Cs(t)

λIs(t) + ρ1Cs(t)− (µ+ µi + θ)Ct(t)
θCt(t) + ρ2Cs(t)− (µ+ ε)R(t)


(16)

By using (14), the system (3)-(11) can be written in the
equivalent form of Cauchy problem (17):

dx(t)

dt
= g(t, x); t > 0

x(0) = x0 ∈ Ω
(17)

The function g is C∞(Ω) and C1(Ω) in particular.
Therefore g is locally lipschitzian with respect to its second
variable. Thus the Cauchy-Lipschitz theorem ensures the
existence and uniqueness of the solution x(t) of (17) for any
initial condition x0 ∈ Ω and any t ≥ 0. According to the
lemma 3.1, x(t) ∈ Ω for all t ≥ 0.
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Remark 3.1. Any solution of the model (3)-(11) verifying
the initial condition x0 ∈ Ω is global in Ω.

Proof By the lemma 3.1, the domain Ω is a closed subset in
R8 which is positively invariant by (3)-(11). Therefore it is a
compact set. By theorem 3.1 and Proposition 1.1 [25] lead to
the conclusion.

Theorem 3.2. The model (3)-(11) admits:
a) an unique disease-free equilibrium

E0 =

(
Λ

µ
,

Λc
µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
b) an unique endemic equilibrium
Ee = (S∗, S∗c , Q

∗, E∗, I∗s , I
∗
a , C

∗
s , C

∗
t , R

∗)
where

∗ =
Λ

µ+ (β1 + β2)G
+

[
a1a2a3

νδ1
+

εa4

µ+ ε+ εc

]
C∗t −

[
λa1a1

νρ2δ1
+

a5

γ1δ1
γ2 +

λεc
a6

]
I∗s

S∗c =
Λc

µ+ πbG
+
εca4

a6
C∗t −

ρ2ρ2εc
λa6

I∗s

Q∗ =
(µ+ µi + θ) a2

νρ2

a3

δ1
C∗t −

[
a5

γ1δ1
δ2 +

λa2a3

νρ2δ1

]
I∗s

E∗ =
a5

γ1
I∗s

I∗a =
a1a2

νρ2
C∗t −

λa2

νρ2
I∗s

C∗s =
a1

ρ2
C∗t −

λ

ρ2
I∗s

N∗ =
Λ + Λc
µ

− µi
µ

(I∗s + C∗t )

and

G =

a1a2

νρ2
C∗t +

(
1− λa2

νρ2

)
I∗s

Λ + Λc
µ

− µi
µ

(I∗s + C∗t )

a1 = µ+ µi + θ a2 = µ+ ρ1 + ρ2 a3 = µ+ ν a4 = µ+ µi + 2θ a5 = µ+ µi + λ a6 = µ+ ε+ εc

Proof
a) Equilibrium E0 is obtained by solving the system
g(x) = 0 under the constraints Is(t) = Ia(t) = 0.

b) Equilibrium Ee is obtained by solving the system
g(x) = 0 without constraints.
Assuming that the numbers of symptomatic patients
and patients confined to treatment are more manageable
at each instant, and express the densities of the other
compartments in terms of the latter.

3.3. Basic Reproduction Number R0

The reproduction number R0 is a very important parameter
(a threshold) in epidemiology, providing information on the

evolution of the disease [15]. The most widely used method
for estimating the basic reproduction number is that of P. Van
den Driessche et al. [15].

Assuming x = (x1, x2, x3) = (E, Is, Ia) then the matrices
F (of new infections) and V (of transition) are defined as
follows:

F =

[
∂Fi(x∗e)
∂xj

]
1≤i,j≤4

and V =

[
∂Vi(x∗e)
∂xj

]
1≤i,j≤4
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whith

F(X) =

β1
Is + Ia
N

S + πb
Is + Ia
N

Sc

0
0

 (18)

and

V(X) =

 (µ+ γ1 + γ2)E
−γ1E + (µ+ µi + λ) Is
−δ1Q− γ2E + (µ+ ν) Ia

 (19)

Then

F =

0 β1 + πb β1 + πb
0 0 0
0 0 0

 (20)

and

V =

µ+ γ1 + γ2 0 0
−γ1 µ+ µi + λ 0
−γ2 0 µ+ ν

 (21)

V −1 =

 1
a7

0 0
1

a2a7
γ1

1
a2

0
1

a3a7
γ2 0 1

a3

 (22)

with a7 = µ+ γ1 + γ2, a8 = β1 + πb.
Then the matrix of the next generation is

FV −1 =


1

a2a3a7
(β1γ1a3 + a8γ2a2) 1

a2
a8

1
a3
a8

0 0 0
0 0 0

 (23)

Then

R0 = ρ
(
FV −1

)
= (β1 + πb)

(µ+ µi + λ) γ2 + γ1 (µ+ ν)

(µ+ γ1 + γ2) (µ+ µi + λ) (µ+ ν)
(24)

3.4. Sensitivity Study

The stability indices are as follows:

ΥR0

β1
=
∂R0

∂β1
× β1

R0
= 1 > 0

ΥR0
π =

∂R0

∂π
× π

R0
= b > 0

ΥR0

b =
∂R0

∂b
× b

R0
= π > 0

ΥR0
γ2 =

∂R0

∂γ2
× γ2

R0
=

(µ+ γ2) (µ+ ν)− γ2 (µ+ µi + λ)

(µ+ γ1 + γ2) (γ2 (µ+ µi + λ) + γ1 (µ+ ν))
> 0

ΥR0
γ1 =

∂R0

∂γ1
× γ1

R0
=

(µ+ γ1) (µ+ µi + λ)− γ1 (µ+ ν)

(µ+ γ1 + γ2) (γ2 (µ+ µi + λ) + γ1 (µ+ ν))
< 0

ΥR0

λ =
∂R0

∂λ
× λ

R0
=

−λγ1 (µ+ ν)

(µ+ µi + λ) (γ2 (µ+ µi + λ) + γ1 (µ+ ν))
< 0

ΥR0
ν =

∂R0

∂ν
× ν

R0
=

−νγ2 (µ+ µi + λ)

(µ+ ν) (γ2 (µ+ µi + λ) + γ1 (µ+ ν))
< 0

ΥR0
µi

=
∂R0

∂µi
× µi
R0

=
−µiγ1 (µ+ ν)

(µ+ µi + λ) (γ2 (µ+ µi + λ) + γ1 (µ+ ν))
< 0

ΥR0
µ = −

γ2

(
a2

7a3 + a2
2a3

)
+ γ1a

2
3 (a2 + a7)

a2
2a

2
3a

2
7

< 0

Then the parameters β1, π, b and γ2, whose sensitivity
indices are positive, potentially contribute to the spread of
the disease, while the parameters µ, µi, ν, θ and λ, whose
sensitivity indices are negative, have no influence on its spread.
Therefore, a slight increase in β1, π, b and γ2 can turn into

a highly endemic situation. Then R0 can be expressed as it
follows:

R0 = k (β1 + πb) (25)

avec k = (µ+µi+λ)γ2+γ1(µ+ν)
(µ+γ1+γ2)(µ+µi+λ)(µ+ν)

One can see thatR0 is an increasing function in b, β1 and π.
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3.5. Stability of Disease-free Equilibrium

The local stability of the disease-free equilibrium depends
on the number of basic reproductions R0 according to the
theorem below:

Theorem 3.3. The disease-free equilibrium state E0 is locally
asymptotically stable when 0 ≤ R0 < 1 and unstable
otherwise.

Proof The proof can be obtained using Liapunov’s theorem
and Routh’s criterion.

Theorem 3.4. The disease-free equilibrium Ee is globally
asymptotically stable (GAS) whenR0 < 1.

Proof Our approach is similar to those developed by J. C.
Kamgang et al. [23]. Let us check whether the model
(3)-(11) satisfies the assumptions H1 to H5 of Theorem 4.3
[23]. Let x1 = (S, Sc, Q,Cs, Ct, R) and x2 = (E, Is, Ia).
For simplicity’s sake, x1 can be denoted by (x1, 0) ∈ R5×R4

and x2 by (0, x2) ∈ R5×R4. With these notations, the system
(3)-(11) can then be written:{

ẋ1 = A1 (x) . (x1 − E0) +A12 (x) .x2

ẋ2 = A2 (x) .x2

(26)

The system (26) is of course defined on the positively
invariant compact Ω ⊂ R9

+ and satisfies the assumption H1.
The subsystem ẋ1 = A1 (x) . (x1 − E0) is expressed by (27)

and the subsystem ẋ2 = A2 (x) .x2 by (28):

dS(t)

dt
= Λ + δ2Q(t) + εR(t)− µS

dSc(t)

dt
= Λc + εcR(t)− µSc(t)

dQ(t)

dt
= − (δ1 + δ2 + µ)Q(t)

dCs(t)

dt
= − (µ+ ρ1 + ρ2)Cs(t)

dCt(t)

dt
= ρ2Cs(t)− (µ+ µi + θ)Ct(t)

dR(t)

dt
= θCt(t) + ρ2Cs(t)− (µ+ ε)R(t)

(27)


dE(t)

dt
= β1f (Is(t), Ia(t))S(t)− (µ+ γ1 + γ2)E(t)

dIs(t)

dt
= γ1E(t)− (µ+ µi + λ) Is(t)

dIa(t)

dt
= γ2E(t)− (µ+ ν) Ia(t)

(28)

A2(x) =

− (µ+ γ1 + γ2)
β1S + πbSc

N

β1S + πbSc
N

γ1 − (µ+ µi + λ) 0
γ2 0 − (µ+ ν)

 (29)

Comme le stipule l’hypothèse H3, A2(x) est une matrice de Metzler irréductible pour tout x ∈ Ω
Pour tout x ∈ Ω, la matrice A2(x) admet un maximum atteint pour S = N c’est-?dire au point d’équilibre E0. Soit J2 cette

matrice maximale. Alors J2 n’est rien d’autre la la matrice jacobienne de (28) en E0:

J2 =

− (µ+ γ1 + γ2) β1 + πb β1 + πb
γ1 − (µ+ µi + λ) 0
γ2 0 − (µ+ ν)

 (30)

In addition, J2 = A2 (x∗1, 0), which satisfies assumption H4.
Since the first four hypotheses hold, then according to hypothesis H5, one must have α (J2) ≤ 0.
Let us look for the sign of the real parts of the eigenvalues of J2 by the Routh-Hurwitz criterion. The characteristic polynomial

P (y) of J2 is:

P (y) =y3 − (J33 + J44 + J55) y2 + (J55 (J33 + J44)− (β1 + πb) (γ1 + γ2) + J33J44) y − J33J44J55 (1−R0) (31)

avec J33 = − (µ+ γ1 + γ2), J44 = − (µ+ µi + λ), J55 = − (µ+ ν)
The Routh-Hurwitz coefficients of P(y) are computed in table 3:

Table 3. Routh-Hurwitz coefficients of P(y).

y3 a3 = 1 a1 = J55 (J33 + J44)− (β1 + πb) (γ1 + γ2) + J33J44

y2 a2 = −J33 − J44 − J55 a0 = −J33J44J55 (1−R0)

y1 b1 =
−1

a2
(a0 − a1a2) 0

y0 c0 = a0 0
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The Routh coefficients a3, a2 and b1 are all positive whereas
c0 > 0 ⇔ R0 < 1 So when R0 < 1, then all eigenvalues of
J2 have strictly negative real parts. It follows that α (J2) ≤ 0.
Consequently, the hypothesis H5 is verified, which completes
the proof. The global stability of the disease-free equilibrium
means that, for any initial condition, the solution of the system
always returns to this equilibrium.
According to the global stability condition of the
disease-free equilibrium E0, the condition β1 + πb <
(µ+γ1+γ2)(µ+µi+λ)(µ+ν)

(µ+µi+λ)γ2+γ1(µ+ν) is sufficient for the disease
extinction.

Theorem 3.5. The endemic equilibrium Ee is globally
asymptotically stable whenR0 > 1.

3.6. Numerical Simulation

It has been proven earlier that the model (3)-(11) has a
unique solution in Ω. However, its analytical solving is very
difficult. Therefore one turned to numerical solution using the
4 Runge-Kutta algorithm in Matlab [19, 22].

The parameters have been estimated in table 4:

Table 4. Routh-Hurwitz coefficients of P(y).

Parameters Values Sources

Λ 1000 estimed

µ 0.0118 [11]

µi 0.03 [30]

β1 [0.0805; 0.25] [13, 14, 16]

β2 [0.0805; 0.25] [13, 14, 16]

π [0.0805; 0.25] [13, 14, 16]

b [1; 5] estimed

δ1
1

7
[13]

δ2
1

7
[13]

γ1
1

7
[13]

λ 0.45 [14]

γ2
1

7
[13]

θ
1

14
[13]

ρ1 0.175 [13]

ρ2
1

14
[13]

ε 0.75 estimed

εc 0.25 estimed

3.6.1. Disease Extinction
In this section, curves are obtained for R0 < 1 under the

initial condition
(S(0), Sc(0), Q(0), E(0), Is(0), Ia(0), Cs(0), Ct(0), R(0)) =
(100000; 20000; 5000; 1000; 500; 3000; 700; 500; 3000). The
dynamics of the infection are illustrated in figures 2 to 5 for
R0 = 0.61.

Figure 2. Density of susceptible individuals .

Figure 3. Density of exposed and quarantained individuals.

Figure 4. Density of infectious individuals.
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Figure 5. Density of confined and recovered individuals.

This figure shows the extinction of disease through the
curves of figures 3, 4 and 5.

3.6.2. Persistence of the Disease
This section illustrate the epidemic dynamics for R0 > 1

under the initial condition
(S(0), Sc(0), Q(0), E(0), Is(0), Ia(0), Cs(0), Ct(0), R(0)) =

(100000; 20000; 500; 100; 50; 300; 70; 50; 300).
The dynamics of the disease are presented in figures 6 to 9

forR0 = 2.06.
The permanent occurrence of infectious individuals in the

curves of the figure 8 attest the persistence of the disease.
The role of chronicity on COVID-19 dynamics can be

perceived through the graphs in figures 7 to 9.
When b = 1, it means that there is no chronical disease. In

this cas, all the susceptible individuals are vulnerable in the
same degree.

In the otherwise i.e. if b > 1, then the vulnerability rate of
chronic patients increases, which can sustain the disease within
the population. See on figures 10 to 13.

Figure 6. Density of susceptible individuals .

Figure 7. Density of exposed and quarantained individuals.

Figure 8. Density of infectious individuals.

Figure 9. Density of confined and recovered individuals.
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Figure 10. b = 1,R0 = 0.76 .

Figure 11. b = 1.75,R0 = 0.98.

Figure 12. b = 2.75,R0 = 1.45.

Figure 13. b = 3.75,R0 = 2.32.

4. Conclusion
In this paper, a mathematical SQEICRS model has

been developed on COVID-19 transmission dynamics.
Mathematical analysis revealed that the model is biologically
and mathematically well-posed. The basic reproduction
number has been evaluated and gives the direction of disease.
The model has a single disease-free equilibrium which is
globally stable disease if R0 < 1. It means that if R0 < 1,
then COVID-19 will go to extinction and will be persistent in
the otherwise (i.eR0 > 1). Sensitivity analysis highlighted the
parameters that could potentially contribute to the propagation
of the disease, such as adequate contacts rates and chronicity
rate. This study clearly shows that people living with a chronic
diseases are more vulnerable to COVID-19. Thus, this study
confirmed the importance of special actions such as barrier
measures required to protect the most vulnerable individuals
and contribute the disease eradication. Finally, theoretical
results are confirmed by numerical results.
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[11] Bakary Traoré Ousmane Koutou, Boureima Sangaré A
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