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Abstract: Human health is constantly threatened by the appearance and resurgence of several diseases, as shown by recent
epidemics. COVID-19 was one of the epidemics that left its mark on the world in terms of economic and human damages. In
the search for solution to this pandemic, the scientific community is involved in all its diversity. Mathematicians are taking part
in the fight through mathematical modeling in various approaches. Ordinary derivative compartmental modeling approache is
one of the techniques widely used in epidemiological modeling. This paper presents a mathematical contribution to fight against
COVID-19 using a compartmental SQEICRS model. This model takes into account five stages. In particular, the role of chronic
diseases on the dynamique of COVID-19, is focused. A mathematical analysis of the model has been carried out, and shows
that the model is well-posed in the biological and mathematical sense. Aspects such as existence, equilibrium points and their
stability, the basic reproduction number R and sensitivity anlysis have been discussed. Sensitivity analysis allowed us to identify
the parameters which contribute to the spread of the disease, including the chronicity rate due to chronic diseases. The direction
of disease propagation was also determined according to Ry. Finally, the numerical results with Matlab are in conformity with
theoretical results.
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1. Introduction people. It is spreading rapidly and has spared no region in
the globe [30]. The impact of barrier measures taken to stem

The COVID-19 pandemic is one of the world’s most the epidemic’s spread has been felt in all sectors of activity,

worrying public health issues. It is a respiratory syndrome causing a general recession [20, 21]. The search for solutions

caused by the SARS-COV-2 (Severe Acute Respiratory to this pandemic is therefore an imperative for the scientific
Syndrome Coronavirus 2) virus, which occurs in various community, involving multi-disciplinary skills. Mathematics
forms, including the Delta variant which is more infectious 'S playing its part in this challenge through modeling.

than the others (Alpha, Beta, Gamma, etc.) [2]. The Several papers have been published on the dynamics of
disease transmission and its impact on society. Mathematical

models with ordinary derivatives have been formulated on the
dynamics of propagation [1, 3, 5, 6, 9, 10, 12, 13]. F. Sulayman
et al, M. Managib et al, Vijayalakshmi et al and many others
have analysed the impact of vaccination on the transmission

complexity of this virus lies in its ability to mutate rapidly,
not only to counteract the measures taken against it, but also
to produce more virulent variants. This disease is potentially
dangerous for the elderly and chronically patient, whose
bodies are already weakened, and to a lesser extent for young
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dynamics of COVID-19. In other models, the impact of barrier
measures in controlling the epidemic has been studied. Kiesha
Prem et al. [7], Sasmina et al. [8], Ankamah et al. [29] have
performed optimal control on COVID-19 models. Fractional
models have been developed by other authors : Shahram,
Paul, Jian, Vijayalakshmi. Stochastic models have also been
developed by Tomas, Zizhen and Shah. All these publications
highlight control mechanisms aimed at stemming the spread
of the epidemic. However, there are few articles dealing with
the impact of chronic diseases and asymptomatic COVID-19
patients on its transmission dynamics. Therefore this paper
aims to study the impact of chronic patients on COVID-
19 transmission dynamics, using a compartmental SQEICRS
model with ordinary derivatives. Once developed, the model
will be subjected to mathematical analysis, during which
aspects of existence, uniqueness, equilibrium points and their
stability, and sensitivity will be examined. In support to the
theoretical results, numerical simulations will be implemented
with Matlab.

2. Elaboration of the COVID-19 Model

2.1. Hypotheses

The following assumptions are necessary for model
development:

H1) Transmission is human-to-human via direct or indirect
contact with symptomatic and asymptomatic infectious
individuals [17, 18, 24, 26-28, 30]

H2) In the disease development chain, one has identified 9
stages at each time ¢. The population of density N (t) is
thus divided into 9 compartments whose densities S(t),
Se(t), Q). B(1), L,(1), L(t), Co(t), Ci(t) and R(t)
are described in Table 1. On alors:

N(t) =S(t) + Sc(t) + Q(t) + E(t) + L(t) + Ia(t)
+Ci(t) + Cs(t) + R(1) M

H3) Vertical transmission is neglected ;

H4) Deaths are not part of the disease transmission
chain: assuming that COVID-19-related deaths are well
managed up to burial, therefore one can consider that
they are no longer in the epidemic’s transmission chain.

HS5) There is no immunity [1, 4]: after a brief immunity,
cured individuals fall back into the susceptible
compartment.

H7) When a patient has several chronical diseases with
vulnerability rates b;, ¢ € {1,2,...,n}, then the
vulnerability rate b to COVID-19 is given by
b = max (b;). Assume that b; > 1.

Under the above assumptions, the dynamics of dengue
propagation can be described by the diagram of figure 1:

Figure 1. COVID-19 transmission diagram.

2.2. Description of Variables and Parameters

Variables and parameters of the model are described in
tables 1 and 2 respectively.

Table 1. Description of model variables.

Variables Description
S(t) Density of susceptible individuals
Se(t) Density of susceptible individuals with chronical diseases
E(t) Density of exposed individuals
Q(t) Density of quarantined individuals
I:(t) Density of symptomatic infectious individuals
I,(t) Density of asymptomatic infectious individuals
Ce(t) Density of individuals confined under treatment
C,(t) Density of individuals confined without treatment
R(t) Density of recovered individuals
Table 2. Description of model parameters.
Parameters Description
A recruitment rate
Ac recruitment rate of chronical individuals
b rate of vulnerability induced by chronic disease
N natural death rate
B adequate contacts rate of susceptible individuals without
chronic diseases
T adequate contact rates of chronic patients
B2 rate of quarantined individuals
1 infection rates of quarantined individuals
d2 rate of vulnerability of quarantined individuals
Y1 rate of symptomatic infections
Y2 rate of asymptomatic infections
0 cure rate of symptomatic infections
P2 cure rate for asymptomatic infections
pP1 aggravation rate of asymptomatic confined patients
£ rate of vulnerability of recovered individuals
Ec vulnerability rate of chronic patients cured of COVID-19
w; rate induced by COVID-19
3. Results
3.1. Model

Using a stantard incidence:

I (t) + 1,(t)

FIs(8), 1a(t) S(t) = N S() (2)

on diagram 1, the model of COVID-19 is formulate by system
(3)-(11):
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%ff) = A+ 02Q(t) +eR(t) — pS(t) — (b1 + B2) f (¢, 1s(t), La(t)) S(2)

dS.(t)
dt

= Ac +ecR(t) — wbf (T, Is(t), La(t)) Se(t) — pSe(t)

%it) = Bof (t, Is(t), I,(t)) S(t) — (01 + d2 + u) Q(t)

dE(t)

= Bif (t, Is(t), I,(¢)) S(t) + wbf (¢, Is(t), Ia(t)) Sc(t) — (n+ 71 +72) E(¢)

dI,(t)
dt

=mE(t) = (u+ pi + ) L(t)

dI.(1)
dt

= 01Q(t) + 72 E(t) — (p+v) La(t)

dCs(t)
dt

=vl,(t) — (4 p1 + p2) Cs(2)

dC,(t)
dt

= ALs(t) + p2Cs(t) = (n+ pi + 0) Ci(t)

aR(t)

T = 0C() + paCa(t) = (n+e +ec) R(Y)

whith the initial condition (12):
o = (5(0), Se(0), Q(0), E(0), I,(0), 1,(0), C5(0), C:(0),R(0))" € RY,

The total density is governed by the equation (13):

AN (t)
dt

=A+Ac— pN(t) — pils(t) — piCe(t)

3.2. Existence and Uniqueness of Solution

Let
2(t) = (S(t), Se(t), Q(t), B(1), I,(t), I(t), Cs(t), Cu(t), R(t)"

be the variable state of system (3)-(11) for any ¢ > 0.
Lemma 3.1. The domain (2 of the solutions defined by:

A+A,
Q={a(t) R, | 0<N(t)< 22

}
is positively invariant.
Proof. According to the system (3)-(11):

%z(tt) > = ((Br+B2) f (Ls, 1) + 1) S(2)

11

3)

“4)

®)

(6)

)

®)

€))

(10)

(1)

(12)

13)

(14)

15)
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n

(t
0~

- ((ﬂl + BZ) f (IS7Ia) + :u’)

nn

S(t) > S(0) exp <—ut - / (Br + Ba) f (I, 1) dt) >0

dS.(t)
dt

— (mbf (Is, 1a) + 1) Se(t)

Sult) > Su(0) exp <—ut —o [ L) dt) >0

.| =
| =
~
=

—(p+ 71 +72)E(t)
E(t) > E(0)exp (n+ 71 +72)t
E(t) >0

dQ(t)
T

~—

—(p+ 61 +62)E(t)

Q(t) > Q(0) exp (1 + 1 + d2) t

Q) >0

By analogy: I(t) > 0, I,(t) > 0, Cs(t) > 0, C¢(t) > 0, R(t) > 0 and consequently N (¢) > 0. In the absence of the disease,
N(t) = A+ A,

A+ A,
—

Theorem 3.1. For any initial condition z( € €2, the model (3)-(11) admits a unique solution which remains in €2 for all ¢ > 0.
ProofLet g = (g1, 92, 93, 94, 95, 965 975 s g(9))T be the function defined from in R? by 16:

A +6:Q(t) + eR(t) — (B + B2) f (s, 1. )S( ) = uS(t)
Ao+ R () = 7bf (o, 1) Solt) — S (t)
Bof (Is, 1a) S(t) — (01 + 02 + 1) Q(2)
(b + B1) f (Is, 1a) S(t) — (b + 711+ 12) E(?)
g9(z) = V() = (e + pi + ) I(t) (16)
51Q(t) +72E(t) — (u+V)I (t)
vio(t) — (p+ p1+ p2) Cs(t)

Ms(t) + p1Cs(t) — (1 + pi + 0) Ce(t)

0C(t) + p2Cs(t) — (1 +€) R(t)

Hence 0 < N(t) <

By using (14), the system (3)-(11) can be written in the The function g is C*°(2) and C'() in particular.

equivalent form of Cauchy problem (17): Therefore ¢ is locally lipschitzian with respect to its second
variable. Thus the Cauchy-Lipschitz theorem ensures the

dL(t) =g(t,z); t>0 existence and uniqueness of the solution z(t) of (17) for any

dt T (I7) " initial condition 2y € Q and any ¢ > 0. According to the

z(0) =z € Q lemma 3.1, z(t) € Q forall ¢ > 0.
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Remark 3.1. Any solution of the model (3)-(11) verifying
the initial condition x( € 2 is global in 2.

Proof By the lemma 3.1, the domain ) is a closed subset in
R® which is positively invariant by (3)-(11). Therefore it is a
compact set. By theorem 3.1 and Proposition 1.1 [25] lead to
the conclusion.

Theorem 3.2. The model (3)-(11) admits:
a) an unique disease-free equilibrium
A A,
50 = (7 767 Oa Oa 07 07 07 Oa Oa 07 O)
B
b) an unique endemic equilibrium
Ee=(8%,85Q" E* I I CC} R")
where

A a1G2a ea Aaia a Aee | .
* _ 10203 4 }Cf—[ll—i— 5 o + :|Is
p+ (B + B2) G Vo Htetec vp2dy Moy ag
. A Ecld e P2P2Ec px
¢ pu+7wbG ag ° Aag ¢
N +p; +0)azas ., a Aasas |
Q:(MM )230,5—{562—1— 23}13
vp2 o1 Y101 vp201
Br=5r
!
I = M0 A2
vVpo vpo

a

C=—"Cf =1}
2

p

A

P2

Hi s *
; (Is +Ct)

A
c;+<1—“2>1;

vp2

N At A
o
and
a1a9
_ Up2
G="RT1m,
7
ay=p+p;+0 ax=p+p1+p2
Proof

a) Equilibrium & is obtained by solving the system
g(x) = 0 under the constraints I;(t) = I,(t) = 0.

b) Equilibrium &, is obtained by solving the system
g(x) = 0 without constraints.
Assuming that the numbers of symptomatic patients
and patients confined to treatment are more manageable
at each instant, and express the densities of the other
compartments in terms of the latter.

3.3. Basic Reproduction Number R ¢

The reproduction number R is a very important parameter
(a threshold) in epidemiology, providing information on the

Hi fr, %
;(Is—"_ct)

az=p+v ar=p+p;+20 as=p+pu+A ag=p+e+e.

evolution of the disease [15]. The most widely used method
for estimating the basic reproduction number is that of P. Van
den Driessche et al. [15].

Assuming x = (x1,22,23) = (E, I, I,) then the matrices
F' (of new infections) and V' (of transition) are defined as
follows:

OFi(x})

Ox; 1<i,j<4

€

3xj

and V = [ }
1<i,j<4
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whith with a7 = p + v1 + 2, ag = B1 + wb.
L+1, 4T Then the matrix of the next generation is
61 N S -+ 7Tb N SC 1 1 1
F(X) = 0 (18) s (Bimas + agyea2)  s-as g-as
Fv—= 2
0 \%4 0 0 0 (23)
and 0 0 0
(L+m+7)E Then
VX)=| mE+p+u+A)Is (19)
—01Q — B+ (u+v)l,
Ro=p(FV)
Then + i+ N2+ +
_ (B + b) (b4 pi +A) 72 71()/\A V) o
0 Bi+7b Br+mb (L7 +v2) (L+pi +A) (p+v)
F=10 0 0 (20)
0 0 0 3.4. Sensitivity Study
and The stability indices are as follows:
w+7+ 72 0 0 T§°:78R0Xﬂ:1>0
V= —M ptpi+A 0 (21) L 98 T Ro
—Y2 0 u+v
L O
%7 0 0 or Ro
Vii=|gem & O (22)
i ORy b
72 as R 0
asay as 'I‘ 0 I 0
b —ab X Ro >
Ro _ ORo 2 _ (+72) (utv) =y (bt pi+A) -0
0 Ro (pAmAe) (et +A) +7(e+v)
Ro _ ORo M _ (B+7) (4 pi+A) = (p+v) <0
T Ro (ptmA2) (et pi+ A+ (ptv)
TR = ORo A _ —M (it v) <0
ON  Ro (p+pi+A) (v2(pt s +A) + 0 (p+v))
TRo _ ORo LA —vy2 (p+ pi + A) <0
. O Ro  (p+v)(2(p+p+A)+nE+v)
Ro _ ORo 1 _ —pin1 (1 +v) -0
oo Op o Ro (ptpi+A) (e (04 i +A) + 71 (e +v))
a highly endemic situation. Then R can be expressed as it
follows:
rRo _ 2 (afas + a3as) + y143 (a2 + a7) “0
m a3a3a? Ro =k (81 +7b) (25)
Then the parameters 3, m, b and ~9, whose sensitivit _ _ (ptpitN)yet+yi (ptv)
P br. © 2 Yooaveck = (kty1+72) (et +A) (ptv)

indices are positive, potentially contribute to the spread of
the disease, while the parameters p, p;, v, 6 and A\, whose
sensitivity indices are negative, have no influence on its spread.
Therefore, a slight increase in 31, m, b and 7» can turn into

One can see that R is an increasing function in b, 81 and 7.
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3.5. Stability of Disease-free Equilibrium

The local stability of the disease-free equilibrium depends
on the number of basic reproductions R according to the
theorem below:

The system (26) is of course defined on the positively
invariant compact €2 C R?s- and satisfies the assumption H;.
The subsystem ©1 = A (x) . (z1 — &) is expressed by (27)

and the subsystem i:5 = Ay (2) .25 by (28):

Theorem 3.3. The disease-free equilibrium state & is locally ﬂ(t) = A+ 0:Q(t) + eR(t) — uS
asymptotically stable when 0 < Ry < 1 and unstable d gf(t)
otherwise. d% = A+ e.R(t) — uSc(t)
Proof The proof can be obtained using Liapunov’s theorem dQ(t)
and Routh’s criterion. a (01 + 02 + 1) Q() 27
Theorem 3.4. The disease-free equilibrium &, is globally dcs(t) _ (1 + p1+ p2) Ca(8)
asymptotically stable (GAS) when Ry < 1. d Cgit ®
Proof Our approach is similar to those developed by J. C. t(t) = p2Cs(t) — (u+ pi + 0) Ci(t)
Kamgang et al. [23]. Let us check whether the model d }%l{t)
(3)-(11) satisfies the assumptions H; to Hj of Theorem 4.3 T OC(t) + p2Cs(t) — (1 +€) R(t)
[23]. Let z; = (S,S5.,Q,Cs,C, R) and o = (E, I, I,).
For simplicity’s sake, ; can be denoted by (z1,0) € R® x R*
and x5 by (0, 22) € R® x R*. With these notations, the system dE(t) I.(8). I () S(¢ B
) = 3 - t
(3)-(11) can then be written: dIdt(t) Buf (Ls(8), La(®)) S(#) = (1 + m +72) B()
_ —2 = =B = (ut i+ A) L(2)
1= A1 (x). (11 — &) + A12 (x) .22 26) b (1)
T9 = Ag (Z‘) ) dt :’YQE(t) - (M+V) Ia(t)
B1S +wbS. 1S + wbS,
—(p+n+r) = N - N
Az() = " —(n+pi+ ) 0 29)
V2 0 —(n+v)

Comme le stipule I’hypothése Hs, Ao (z) est une matrice de Metzler irréductible pour tout € €
Pour tout z € €, la matrice Ay (z) admet un maximum atteint pour S = N c’est-?dire au point d’équilibre &. Soit J; cette
matrice maximale. Alors J5 n’est rien d’autre la la matrice jacobienne de (28) en &y:

—(p+7+72)
Jo = 7
72

In addition, J> = Ay (x7,0), which satisfies assumption Hy.

p1+mb B+ mb
—(p+pitA) 0 (30)
0 —(p+v)

Since the first four hypotheses hold, then according to hypothesis Hs, one must have « (J3) < 0.
Let us look for the sign of the real parts of the eigenvalues of J> by the Routh-Hurwitz criterion. The characteristic polynomial

P(y) of Jy is:

P(y) =y® — (Ja3 + Jaa + Js5) ¥ + (Js5 (J3z + Jua) — (B + 7b) (71 + 72) + Ja3Jaa) y — JazJaaJs5 (1 — Ro)

€29

avec Jy3 = — (u+v1 +72), Juu=—(p+ i+ A), Jss = — (u+v)
The Routh-Hurwitz coefficients of P(y) are computed in table 3:

Table 3. Routh-Hurwitz coefficients of P(y).

az =1

az = —J33 — Jaa — Js5

as

[=}

Yy
Yy
1 —1
Y by = — (ap — a1a2)
Yy

Co = agp

a1 = Js5 (J33 + Jaa) — (B1 + wb) (v1 + v2) + J33Jas
ag = —J33J14J55 (1 — Ro)

0

0

(28)
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The Routh coefficients as, a2 and by are all positive whereas
co > 0 < Ry < 1Sowhen Ry < 1, then all eigenvalues of
Jo have strictly negative real parts. It follows that « (J2) < 0.
Consequently, the hypothesis Hj is verified, which completes
the proof. The global stability of the disease-free equilibrium
means that, for any initial condition, the solution of the system
always returns to this equilibrium.

According to the global stability condition of the
disease-free equilibrium &y, the condition 57 + 7b <

(“zr:izvj&(ﬁgiﬁ(’\gi’gy) is sufficient for the disease

extinction.
Theorem 3.5. The endemic equilibrium &, is globally

asymptotically stable when Rg > 1.

3.6. Numerical Simulation

It has been proven earlier that the model (3)-(11) has a
unique solution in 2. However, its analytical solving is very
difficult. Therefore one turned to numerical solution using the
4 Runge-Kutta algorithm in Matlab [19, 22].

The parameters have been estimated in table 4:

Table 4. Routh-Hurwitz coefficients of P(y).

Parameters Values Sources
A 1000 estimed
o 0.0118 [11]
i 0.03 [30]
B1 [0.0805; 0.25] [13, 14, 16]
B2 [0.0805; 0.25] [13, 14, 16]
g [0.0805; 0.25] [13, 14, 16]
b [1; 5] estimed

1
01 ? [13]
02 ? [13]
Y1 7 [13]
A 0.45 [14]

1

= 13
Y2 71 [13]
6 — 13

A [13]
p1 0.175 [13]

1

13

P2 T [13]
€ 0.75 estimed
Ea 0.25 estimed

3.6.1. Disease Extinction

In this section, curves are obtained for Ry < 1 under the
initial condition
(S(O)’ SC(O)7 Q(O)v E(O)a Is(O)v Ia(o)’ Cs(o)» Ct<0)a R(O)) =
(100000; 20000; 5000; 1000; 500; 3000; 700; 500; 3000). The
dynamics of the infection are illustrated in figures 2 to 5 for
Ro = 0.61.
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4000

3500 [

3000

Fopulations
ha M
o =)
[=] 2
(=] =

1500 !

1200

1000 V!

500

3000

2500

2000 p
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1000 [ |

500

1500 [}

1200

x104
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I
Y
A
\
Y
\
\
\\
Y
\
\
R
\\
0 200 400 800 800 1000
temps en jour
Figure 2. Density of susceptible individuals .
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i
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|
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|
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|
l
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Figure 4. Density of infectious individuals.
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5000 T T T

\ Confined individuel without traitment
4500 1] Confined individuals whith traitment
1 II Curred individual

4000

|
3500 } | 1

[~ (]
o =
[=1 =1
= (=]
T

L

Populations

1000 1200

Times (days)

Figure 5. Density of confined and recovered individuals.

This figure shows the extinction of disease through the
curves of figures 3, 4 and 5.

3.6.2. Persistence of the Disease

This section illustrate the epidemic dynamics for Ry > 1
under the initial condition

(5(0),5¢(0), Q(0), E(0), I5(0), 1a(0), Cs(0), C1(0), k(0)) =
(100000; 20000; 500; 100; 50; 300; 70; 50; 300).

The dynamics of the disease are presented in figures 6 to 9
for Ry = 2.06.

The permanent occurrence of infectious individuals in the
curves of the figure 8 attest the persistence of the disease.

The role of chronicity on COVID-19 dynamics can be
perceived through the graphs in figures 7 to 9.

When b = 1, it means that there is no chronical disease. In
this cas, all the susceptible individuals are vulnerable in the
same degree.

In the otherwise i.e. if b > 1, then the vulnerability rate of
chronic patients increases, which can sustain the disease within
the population. See on figures 10 to 13.

4
g9 g0 . . .

Susceptibles individuals
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Populations

1 . . . . .
600 80O 1000
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Figure 6. Density of susceptible individuals .
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Figure 10. b = 1, Ro = 0.76.
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Figure 11. b = 1.75, Ro = 0.98.
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Figure 12. b = 2.75, Ro = 1.45.
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Figure 13. b = 3.75, Ro = 2.32.

4. Conclusion

In this paper, a mathematical SQEICRS model has
been developed on COVID-19 transmission dynamics.
Mathematical analysis revealed that the model is biologically
and mathematically well-posed. The basic reproduction
number has been evaluated and gives the direction of disease.
The model has a single disease-free equilibrium which is
globally stable disease if Rg < 1. It means that if Ry < 1,
then COVID-19 will go to extinction and will be persistent in
the otherwise (i.e Ry > 1). Sensitivity analysis highlighted the
parameters that could potentially contribute to the propagation
of the disease, such as adequate contacts rates and chronicity
rate. This study clearly shows that people living with a chronic
diseases are more vulnerable to COVID-19. Thus, this study
confirmed the importance of special actions such as barrier
measures required to protect the most vulnerable individuals
and contribute the disease eradication. Finally, theoretical
results are confirmed by numerical results.
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