
International Journal of Sustainability Management and Information Technologies

2025, Vol. 11, No. 1, pp. 1-20

https://doi.org/10.11648/j.ijsmit.20251101.11

*Corresponding author:

Received: 12 October 2024; Accepted: 8 November 2024; Published: 17 January 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

A Comparative Analysis of AI System Development Tools

for Improved Outcomes

Ikechukwu Innocent Umeh
1, *

 , Kobimdi Cordelia Umeh
2

1
Department of Informational Technology, Nnamdi Azikiwe University, Awka, Nigeria

2
Department of Mass Communication, Nnamdi Azikiwe University, Awka, Nigeria

Abstract

This study presents a comparative analysis of various artificial intelligence (AI) system development tools, emphasizing their

effectiveness in enhancing software engineering outcomes. As AI technologies continue to evolve, tools designed for their

development have become pivotal in optimizing processes, such as code generation, testing, and deployment. This research

systematically evaluates prominent AI tools such as TensorFlow, PyTorch, and GitHub Copilot based on standardized criteria

including usability, scalability, performance, and integration capabilities. This study also examines the impact of selected AI

tools on collaborative development practices and team dynamics within software projects. Furthermore, the study explored the

ethical considerations and potential biases inherent in AI-assisted development, emphasizing the importance of responsible tool

selection and usage. The findings indicated that the selection of appropriate AI tools can significantly impact productivity, code

quality, and project success. By identifying the strengths and limitations of these tools, this study provides valuable insights for

practitioners, aiding them in making informed decisions that align with specific project requirements. Additionally, the analysis

highlights gaps in the current landscape of AI development tools and suggests future research directions for fostering innovation

in this critical area of software engineering. The findings underscore the need for ongoing education and training for developers

to effectively leverage evolving AI technologies in their workflows.

Keywords

Artificial Intelligence (AI), AI Development Tools, Software Engineering, Comparative Analysis, Machine Learning,

Code Quality, Usability, Scalability, Integration, Productivity, and Tool Selection

1. Introduction

1.1. Background of Study

Artificial Intelligence (AI) systems have evolved rapidly

and become a cornerstone of modern technological innovation.

AI development tools, ranging from machine-learning

frameworks to automated testing environments, play a critical

role in streamlining the software development process [22].

These tools not only simplify the creation, training, and de-

ployment of AI models but also enhance the accuracy, effi-

ciency, and scalability of systems built on them [23]. The

significance of AI development tools is underscored by their

ability to automate complex tasks that would otherwise re-

http://www.sciencepg.com/journal/ijsmit
http://www.sciencepg.com/journal/346/archive/3461101
http://www.sciencepg.com/
https://orcid.org/0000-0003-2982-9915
https://orcid.org/0000-0003-2982-9915
https://orcid.org/0000-0003-2982-9915

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

2

quire significant human intervention, making them indispen-

sable in the current landscape of software engineering [25].

AI development tools, such as TensorFlow, PyTorch, and

AutoML, offer pre-built libraries and models that developers

can leverage to accelerate the prototyping and testing of AI

systems [1]. These tools facilitate more rapid iterations,

allowing developers to focus on higher-level tasks such as

refining model performance or integrating AI into business

solutions. By automating routine development tasks, AI

systems can reduce human errors, improve accuracy, and

enhance software robustness, leading to more reliable and

scalable applications [27]. The capacity of AI tools to de-

mocratize access to advanced machine-learning algorithms

and models is pivotal in driving the widespread adoption of

AI technologies across industries, from healthcare to finance

[3].

The role of AI in improving software development out-

comes warrants further consideration. AI-powered tools en-

hance code quality by detecting bugs and optimizing code

performance early in the development lifecycle [47]. AI also

supports predictive analytics, enabling software teams to

anticipate potential challenges and adopt proactive strategies

that enhance project management and reduce the time to

market [14]. These tools contribute to the creation of intelli-

gent and adaptable software systems capable of evolving with

user needs and technological advancements [15].

Conclusively, the integration of AI into the software

development pipeline not only enhances productivity, but

also ensures that the resulting systems are more resilient,

scalable, and capable of addressing complex real-world

problems.

1.2. Problem Statement

The rapid growth of Artificial Intelligence (AI) in soft-

ware engineering has led to the development of numerous AI

tools with the aim of improving various aspects of software

development. These tools differ significantly in functionality,

performance, and application domains, complicating the

selection process for practitioners and organizations [43].

There is an urgent need for a comparative analysis to sys-

tematically evaluate these tools based on standardized cri-

teria such as usability, scalability, performance, and adapt-

ability. Without such comprehensive comparison, users may

struggle to make informed decisions, potentially resulting in

suboptimal outcomes, increased costs, and inefficient de-

velopment.

Significance of Study

This study is crucial for several reasons. First, it offers a

structured evaluation of AI tools, helping practitioners iden-

tify the tools that best meet their project requirements and

organizational goals. Second, a comparative analysis high-

lighted the strengths and limitations of each tool, providing

insights into its effectiveness in various development sce-

narios.

This study is essential for optimizing the software devel-

opment life cycle, as the careful selection of tools can lead to

increased productivity, improved code quality, and reduced

time-to-market [30].

Finally, this study identifies emerging trends and gaps in

current AI tools to guide future innovations and research in

AI-driven software engineering.

1.3. Objectives of the Study

1. Evaluate the Effectiveness of AI Tools: Assess the

performance, capabilities, and overall effectiveness of

various AI system development tools for enhancing

software engineering processes.

2. Develop a Comparative Framework: Create a structured

framework for comparing AI tools based on key criteria

such as ease of use, performance, scalability, flexibility,

and suitability for different development scenarios [32].

3. Identify the Strengths and Weaknesses of AI tools in

system development: highlight the strengths and limi-

tations of each AI tool to provide insights into their best

use cases and potential drawbacks in real-world soft-

ware development.

4. Guide tool selection: Guidance for software engineers,

developers, and organizations in selecting the most ap-

propriate AI tools that align with their specific project

requirements and organizational goals [42].

5. Explore Practical Implications: Examine the impact of

AI tool selection on software development outcomes,

including productivity, code quality, and efficiency, to

demonstrate how different tools can affect the software

development life cycle.

6. Highlight Future Research Directions: Identify gaps in

the current landscape of AI tools and suggest areas for

future research, including the development of new tools

and exploration of emerging AI technologies in soft-

ware engineering [45].

1.4. Structure of the Paper

This study provides a comprehensive analysis of AI system

development tools. The Introduction outlines the background,

problem statements, and study objectives. The Literature

Review covers the existing AI tools, comparative studies, and

theoretical frameworks. The Methodology details research

design, tool selection criteria, data collection methods, eval-

uation metrics, and analytical procedures. The Results section

compares the strengths and limitations of each tool. The

Discussion section interprets the findings, explores practical

implications, and acknowledges the limitations of the study.

The Conclusion summarizes the key findings, recommends

tool selection strategies, and suggests future research direc-

tions. References and Appendices offer supplementary in-

formation.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

3

2. Literature Review

2.1. Overview of AI System Development Tools

Artificial Intelligence (AI) is rapidly advancing, with a

wide array of tools emerging to support the creation, evalua-

tion, and implementation of AI models. A comprehensive

review of the literature uncovered a diverse selection of tools,

each with its own unique strengths and constraints.

The literature on AI system development tools is extensive,

covering communication, explainability, hardware imple-

mentation, and automation of literature reviews. Each tool and

approach has unique capabilities and limitations that must be

considered by developers and researchers [8].

A review of AI System Development Tools revealed that

the tools have markedly altered software engineering by of-

fering sophisticated capabilities to automate and enhance the

various stages of the development process. AI tools encom-

pass a broad spectrum of technologies, including machine

learning (ML), natural language processing (NLP), and deep

learning, each making distinct contributions to the improve-

ment of software development methodologies [18] and [21].

Machine Learning Tools: Frameworks such as TensorFlow

and PyTorch have become essential in AI system develop-

ment. TensorFlow [1] provides a comprehensive ecosystem

for ML model development and deployment, whereas

PyTorch [37] is renowned for its dynamic computational

graph and user-friendly interface, making it a preferred choice

among researchers and developers. The frameworks enable

the development of predictive models, systems for detecting

anomalies, and engines for recommendations, thereby en-

hancing the functionality and efficiency of the software sys-

tems thus making them to very useful.

Natural Language Processing Tools: NLP libraries, such as

NLTK [6] and spaCy [17], play crucial roles in the processing

and analysis of human language data. NLTK offers a collec-

tion of text processing libraries for classification, tokenization,

and parsing, whereas spaCy concentrates on delivering ex-

peditious and efficient NLP capabilities for tasks, such as

named entity recognition and dependency parsing. These

tools are fundamental to the development of chatbots, senti-

ment analysis systems, and language translation applications.

Deep Learning Tools: Deep learning technologies, exem-

plified by frameworks such as Keras [12] and Caffe [24],

utilize multilayered neural networks to model intricate data

patterns. Keras provides an intuitive API for constructing

deep learning models, whereas Caffe is known for its speed

and modularity in image classification and convolutional

neural networks. These tools are vital for applications that

require high precision in image and speech recognition.

Investigation by [31] on the communication aspects of AI

systems, and highlighted the significance of comprehensibil-

ity, reliability, transparency, manageability, and equity in AI

system explanations for end users. The research suggested

that tailored and on-demand explanations can improve the

explainability of key functionalities, which is essential for

non-technical users to comprehend the inner workings of

sophisticated AI models.

Table 1. Summary of Literature Review.

Tool/Framework Description Capabilities Limitations References

TensorFlow
A comprehensive ML framework for

model development and deployment.

Supports large-scale ML

models, extensive ecosystem.

High complexity, steep

learning curve.
[1]

PyTorch
A dynamic computational graph ML

framework known for flexibility.

User-friendly, excellent for

research and prototyping.

Slower in production

compared to TensorFlow.
[37]

NLTK A library for text processing and NLP.
Comprehensive tools for text

classification and parsing. [28]

Slower performance with

large datasets, less effi-

cient for deep learning.

[6]

spaCy
NLP library focused on efficiency and

performance.

Fast, efficient, good for re-

al-world applications.

Limited in some ad-

vanced NLP tasks com-

pared to NLTK.

[21]

Keras
High-level API for building and

training deep learning models.

Simplifies model building, in-

tegrates well with TensorFlow.

Limited flexibility for

complex models.
[12]

Caffe
Deep learning framework known for

speed and modularity.

High speed for training models,

good for image processing.

Less flexible, limited

support for newer re-

search techniques.

[19]

GitHub Copilot AI-powered code completion tool.

Provides context-aware code

suggestions, speeds up devel-

opment.

Can generate incorrect or

insecure code, requires

human oversight.

[10]

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

4

Tool/Framework Description Capabilities Limitations References

Katalon Studio Test automation tool integrating AI.

Automates test case generation

and execution, improves test

efficiency.

May require integration

with other tools for full

coverage.

[25]

Ortega-Bolaños, et al. provided a comprehensive review of

tools for developing and accessing AI-based systems from an

ethical perspective [36]. They highlighted the social and eth-

ical risks associated with AI implementation, such as under-

mining autonomy, privacy, and equity. Their research pro-

posed a typology that distinguished different stages of the AI

life cycle, aligning high-level ethical principles with tools that

foster compliance with the principles [38].

2.2. Comparative Studies

Several comparative studies have assessed AI tools for

software development by examining their performance, usa-

bility, and effectiveness. The study by [35] compared machine

learning frameworks and highlighted TensorFlow's robustness

for large-scale applications and PyTorch's ease of use for

research, but did not address interpretability or ethics impli-

cations. Crawford, T. et al. evaluated NLP tools like NLTK

and spaCy, finding spaCy faster for real-time tasks and NLTK

more comprehensive for research, yet did not explore the

impact on software development outcomes [13]. Felderer, M.,

& Ramler, R. reviewed AI-powered software testing tools,

noting their efficiency in automating tests, but requiring in-

tegration for full coverage, without considering other SDLC

stages [16]. Also, various researches on hardware implemen-

tation of AI development tools presented the advancements

and limitations of hardware accelerators for AI and ML tools,

based on a systematic review in more than 169 different arti-

cles [29]. Furthermore, the integration of AI in Systematic

Literature Review (SLR) tools was examined by analyzing 21

leading SLR tools and 11 recent tools, using large language

models for literature searches and academic writing assistance

(Artificial Intelligence for Literature Reviews: Opportunities

and Challenges, 2024).

2.3. Capabilities and Limitations of AI

Development Tools Capabilities

AI tools enhance software development by automating

routine tasks, improving code quality, and providing predic-

tive insight. For instance, tools such as the GitHub Copilot,

powered by OpenAI's Codex [10], assist developers by gen-

erating code snippets based on context, thus speeding up the

development process and reducing errors. Similarly,

AI-driven testing tools, such as Katalon Studio automate test

case generation and execution, improving testing efficiency

and accuracy. Limitations: Despite these advancements, AI

system development tools have certain limitations. One major

challenge is data quality and availability. AI models rely

heavily on large volumes of high-quality data for training, and

acquiring such data can be resource intensive [7].

In addition, many AI tools, particularly those based on deep

learning, suffer from a lack of interpretability. These models

often act as black boxes, making it difficult for developers to

understand and trust their predictions [46]. Finally, ethical

considerations, such as bias in AI models and the implications

for job displacement, remain significant concerns that need to

be addressed [19].

2.4. Summary of Literature Review

The Table 1 presents a summary of major reviewed litera-

tures on AI system development tools, including their capa-

bilities and limitations. By carefully evaluating these features,

organizations can select the AI system development tool that

best fits their project requirements, ensuring the successful

implementation and deployment of their AI-powered solu-

tions [2, 3, 5, 7, 9, 11].

2.5. Gaps in the Literature

1. Holistic Evaluation: Most comparative studies concen-

trated on specific AI tools or categories, such as machine

learning frameworks or testing tools. There exists a lack of

holistic evaluations that consider AI tools across the SDLC

[38].

2. Impact on Outcomes: Few studies have assessed how the

choice of AI tools influences software development outcomes,

including project success, code quality, and maintainability.

3. Ethical and Interpretability Aspects: Comparative anal-

yses often overlook critical factors, such as the interpretability

of AI models and the ethical implications of their use, which

are essential for practical adoption in real-world projects [39].

The Figure 1 illustrates the hypothetical percentage distri-

bution of AI tools applied in various areas of system develop-

ment, including automated testing, code generation, predictive

analytics, natural language processing, computer vision, auto-

mated deployment, maintenance, and evolution [44].

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

5

Figure 1. The use of AI tools in system development.

4. User-Centric Analysis: Most evaluations focus on tech-

nical performance, with limited consideration of user-centric

factors such as ease of integration, learning curve, and impact

on developer productivity. Addressing these gaps could pro-

vide a more comprehensive understanding of the capabilities

of AI tools and their implications for software engineering

practices.

2.6. Theoretical Framework

This section presents a theoretical foundation for compar-

ative analysis, including key metrics and evaluation criteria.

Theoretical Foundation for Comparative Analysis of AI Tools

in System Development. Comparative analysis of AI tools in

system development is grounded in several theoretical

frameworks and evaluation criteria that measure the effec-

tiveness, efficiency, and impact of these tools on the software

development life cycle (SDLC). The theoretical foundation

for this analysis encompasses various key metrics and criteria,

including performance, usability, integration, and the impact

on outcomes [40] and [41].

A. KEY METRICS FOR TOOLS EVALUATION

1. Technical Performance

a. Tool Accuracy: For AI tools, such as automated

testing and predictive analytics, accuracy measures

how well the tool can identify defects, predict out-

comes, or generate reliable code [34]. A higher ac-

curacy leads to a more dependable software.

b. Tool Scalability: The tool's ability to handle an in-

creased workload or data size without performance

degradation. This is crucial for the AI tools involved

in large-scale projects.

c. Tool Speed/latency: Measures how quickly the tool

can perform its tasks, such as code generation,

testing, or deployment. Lower latency can signifi-

cantly reduce the development cycle time.

d. Tool’s Resource utilization: The efficiency with

which the tool uses system resources (e.g. CPU,

memory, and GPU). Efficient tools minimize

hardware costs and improve the performance.

2. Tool Usability

a. Ease of Use: Refers to how intuitive and us-

er-friendly the tool is. A steep learning curve can

hinder adoption, particularly among teams with

varying levels of expertise.

b. User Interface (UI) and User Experience (UX):

Tools with well-designed interfaces can enhance the

developer's interaction, reducing cognitive load and

improving productivity.

c. Documentation and Support: Comprehensive

documentation, tutorials, and community or vendor

support are vital for effective tool usage and trou-

bleshooting.

3. Integration Capabilities

a. Compatibility: The tool's ability to integrate seam-

lessly with existing development environments, in-

cluding version control systems, CI/CD pipelines,

and other software tools.

b. Interoperability: The tool's capacity to work across

different platforms and technologies, ensuring

flexibility in diverse developmental settings.

c. APIs and Extensibility: Tools that provide robust

APIs and allow customization or extension can be

adapted to suit specific project needs.

4. Impact on the Development Process and Outcomes

a. Productivity: measures the extent to which the tool

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

6

accelerates the development process, such as re-

ducing the time taken for code writing, testing, and

deployment.

b. Code Quality: Assesses the tool's influence on the

maintainability, readability, and reliability of the

produced code. High-quality codes reduce

long-term maintenance costs.

c. Collaboration: Evaluates how the tool facilitates

teamwork and communication among developers,

testers, and other stakeholders during the software

development process.

d. Risk Mitigation: Considers how well the tool iden-

tifies and mitigates potential risks such as bugs or

security vulnerabilities throughout the SDLC.

5. Cost and Resource Considerations

a. Initial and ongoing costs: licensing fees, setup costs,

and ongoing maintenance expenses. Cost-effective

tools offer a balance between the price and func-

tionality.

b. Resource requirements: Evaluate the hardware and

software resources needed to deploy and run the

tool effectively. Tools that require minimal re-

sources are generally desirable.

B. EVALUATION CRITERIA FOR COMPARATIVE

ANALYSIS

1. Effectiveness: Measures how well the AI tool meets

its intended purpose during the software develop-

ment process. This includes success in automating

tasks, improving accuracy, and contributing to better

software outcomes.

2. Efficiency: Assesses the tool's ability to perform

tasks with minimal resource consumption, in terms of

both computational resources (e.g. processing power

and memory) and human resources (e.g. time and

effort).

3. Adaptability: Evaluates the flexibility of the tool to

adapt to different development environments, project

scales, and changing requirements. Highly adaptable

tools can be customized for various applications.

4. Robustness: The tool's ability to perform consistently

under different conditions, including handling un-

expected inputs or errors, without crashing or pro-

ducing unreliable results.

5. Security and Compliance: For AI tools that handle

sensitive data, this criterion examines how well the

tool ensures data security and compliance with reg-

ulatory standards (for example, GDPR and HIPAA).

6. Interpretability and Transparency: Especially im-

portant for AI-driven tools that make autonomous

decisions; interpretability ensures that developers

and stakeholders can understand and trust the tool's

outputs and recommendations.

7. Scalability: The tool's ability to scale up or down

based on the project size, complexity, and growth

over time. Scalable tools can accommodate the ex-

panding data volumes and complex computational

tasks.

8. Sustainability: The long-term viability of the tool,

including the availability of ongoing updates, support,

and an active user community, which ensure that the

tool remains relevant and functional over time.

THEORETICAL MODELS SUPPORTING THE ANAL-

YSIS

By leveraging the following key metrics, evaluation criteria,

and theoretical models, the comparative analysis provides a

comprehensive understanding of the effectiveness of AI tools

and their role in optimizing the system development out-

comes.

1. Technology Acceptance Model (TAM): This model

helps explain the adoption of AI tools by assessing

perceived ease of use and usefulness. If developers find

an AI tool that is easy to use and beneficial for their

work, they are more likely to adopt it [4].

2. Diffusion of Innovations Theory: This theory provides

insight into how AI tools spread within an organization

or community. It considers factors such as relative ad-

vantage, compatibility, and complexity in the adoption

process [27].

3. Software Development Life Cycle (SDLC) Framework:

This foundational framework divides the development

process into distinct phases (requirements, design, im-

plementation, testing, deployment, and maintenance).

AI tools can be evaluated on the basis of their impact on

each SDLC phase.

2.7. Limitations Common to AI Tools

1. Data Quality and Availability: AI models require

high-quality data, which can be difficult to obtain.

2. Interpretability: Many AI models, especially deep

learning ones, act as "black boxes," making their deci-

sions hard to interpret.

3. Ethical Concerns: Issues such as bias and job dis-

placement are associated with AI technologies.

2.8. Gaps in the Literature

The following are the most prominent gaps found in the

literatures reviewed.

1. Holistic Evaluation: Most comparative studies concen-

trate on specific AI tools or categories, such as machine

learning frameworks or testing tools. There is a lack of

holistic evaluations that consider AI tools across the

SDLC.

2. Impact on Outcomes: Few studies have assessed how

the choice of AI tools influences software development

outcomes, including project success, code quality, and

maintainability.

3. Ethical and Interpretability Aspects: Comparative

analyses often overlook critical factors, such as the in-

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

7

terpretability of AI models and the ethical implications

of their use, which are essential for practical adoption in

real-world projects.

4. User-Centric Analysis: Most evaluations focus on

technical performance, with limited consideration of

user-centric factors like ease of integration, learning

curve, and impact on developer productivity.

Addressing these gaps could provide a more comprehen-

sive understanding of AI tools' capabilities and their implica-

tions for software engineering practices.

Comparative Analysis of AI Tools in System Development

To conduct a meaningful comparative analysis of AI tools

in system development, we will examine various prominent

tools based on key evaluation criteria such as technical per-

formance, usability, integration capabilities, impact on de-

velopment processes, and cost considerations. The Table 2

presents a comparison of eight widely used AI tools across

different domains in software development.

Table 2 showing a comparative analysis of AI tools used for

system development.

Analysis of Comparative Findings

1. Technical Performance: Tools such as TensorFlow and

PyTorch excel in handling complex machine-learning

models with high computational efficiency and scala-

bility. GitHub Copilot and DeepCode offer high accu-

racies in code completion and vulnerability detection,

respectively. On the other hand, tools like SonarQube

and Katalon Studio focus on enhancing code quality and

automating testing processes, leading to more reliable

software products.

Table 2. Analysis of findings.

AI Tool Domain
Technical Perfor-

mance
Usability

Integration Capa-

bilities

Impact on Devel-

opment
Cost Considerations

GitHub

Copilot

Code

Generation

High accuracy in code

completion and

suggestions; real-time

assistance

User-friendly,

integrates with

popular code editors

like VS Code

Seamless

integration with

GitHub ecosystem

and popular IDEs

Enhances

developer

productivity,

reduces coding

time

Subscription-based,

with free trial and

tiered pricing

TensorFlow
Machine

Learning

Highly scalable; sup-

ports complex ML

models; fast computa-

tion [28]

Moderate learning

curve; extensive

documentation

Integrates with

various program-

ming languages and

platforms

Enables advanced

AI capabilities,

including deep

learning

Open-source, but

requires substantial

computational re-

sources

Katalon

Studio

Automated

Testing

High accuracy in test

case generation and

execution

User-friendly inter-

face; drag-and-drop

features

Integrates with

CI/CD tools, Jira,

Git, Jenkins

Accelerates testing

cycles, improves

software quality

Offers free and paid

versions with ad-

vanced features

SonarQube
Code Quality

Analysis

High precision in code

quality assessment and

security checks

Clear UI; detailed

reports and dash-

boards

Integrates with

CI/CD pipelines,

version control

systems

Enhances code

maintainability,

reduces technical

debt

Open-source and

commercial editions

with advanced fea-

tures

DeepCode Code Review

AI-powered code anal-

ysis; accurate vulnera-

bility detection

Easy to use; inte-

grates with code

editors

Works with GitHub,

Bitbucket, GitLab,

etc.

Improves code

quality and securi-

ty, supports con-

tinuous integration

Free for open-source

projects; subscription

for private reposito-

ries

spaCy

Natural Lan-

guage Pro-

cessing

High performance in

NLP tasks; efficient

processing

Moderate learning

curve; extensive

documentation

Integrates with

other ML frame-

works (TensorFlow,

PyTorch)

Enables robust

NLP capabilities in

software projects

Open-source; re-

quires moderate

computational re-

sources

PyTorch
Machine

Learning

High performance;

dynamic computation

graph

Developer-friendly;

extensive tutorials

and community

support

Integrates with

other AI frame-

works and cloud

platforms [18]

Facilitates rapid

development of

AI/ML models

Open-source, requires

substantial computa-

tional resources

Ansible
Automated

Deployment

Efficient in automating

deployment processes;

robust error handling

Moderate learning

curve; strong com-

munity support

Integrates with

cloud platforms,

CI/CD tools

Simplifies de-

ployment, im-

proves consistency

and reliability

Open-source, with

enterprise version

available

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

8

2. Usability: GitHub Copilot and Katalon Studio stand out

for their user-friendly interfaces, making them accessi-

ble, even to developers with less AI experience. Tools

such as TensorFlow and PyTorch, while powerful, have

steeper learning curves. However, they compensate for

the extensive documentation and community support.

Ansibles offer a moderate learning curve, particularly in

the domain of automated deployment.

3. Integration Capabilities: Most of these AI tools offer

robust integration capabilities. GitHub Copilot inte-

grates seamlessly with popular development environ-

ments such as Visual Studio Code. SonarQube, Katalon

Studio, and DeepCode integrate the CI/CD pipelines

and version control systems, facilitating a smooth

workflow in development and deployment.

4. Impact on Development: These AI tools contribute

significantly to various stages of the software devel-

opment lifecycle. GitHub Copilot enhances coding

speed and developer productivity by suggesting code

snippets. SonarQube improves the code quality and

maintainability by identifying potential issues. Tensor-

Flow and PyTorch enable developers to implement

complex AI/ML models, pushing the boundaries of

what is possible in software applications. Katalon Stu-

dio accelerates testing cycles, reducing time-to-market

and improving software quality.

5. Cost Considerations: While many AI tools, such as

TensorFlow, PyTorch, and spaCy, are open-source,

they may require substantial computational resources,

which can add to the cost. Tools such as the GitHub

Copilot and DeepCode operate on a subscription model

with varying pricing tiers. SonarQube and Katalon

Studio offer both free and commercial versions, making

them accessible to individual developers and large en-

terprises.

Identified Gaps and Future Opportunities

1. User-Centric Evaluation: Most comparative studies of

AI tools focused primarily on technical performance,

often overlooking user-centric factors, such as ease of

integration, learning curve, and impact on developer

productivity. This presents an opportunity for further

research to evaluate these tools holistically.

2. Customization and Adaptability: Although many tools

offer integration capabilities, there is a need for more

flexible and customizable AI tools that can adapt to

specific project requirements and development envi-

ronments.

3. Explainability and Trust: For AI-driven tools, such as

GitHub Copilot and DeepCode, understanding the ra-

tionale behind their suggestions or decisions can be

challenging. Future tools should aim to provide more

explainability to help developers trust and understand

AI-driven output.

4. Scalability vs. Usability Trade-off: Tools such as Ten-

sorFlow and PyTorch are powerful and scalable but

have a steep learning curve. Future research should ex-

plore the development of tools that offer both high

scalability and ease of use.

The comparative analysis of the reviewed literatures pro-

vided a foundational understanding of various AI tools used in

system development. The review emphasized various AI

system development tools’ strengths and limitations using

different key metrics as a guide for developers, researchers,

and organizations in selecting the most suitable tools for their

system development needs.

Conclusion on Overall Best Tool

Findings show that there is no one-size-fits-all for AI tool

for system development since each tool is designed to solve

different problems within the software development lifecycle.

However, based on use cases, the following summary may be

applicable:

1. For developers focusing on code generation and

productivity: GitHub Copilot is the best choice.

2. For those building complex AI/ML models: Tensor-

Flow and PyTorch are top contenders.

3. For projects that require extensive automated testing:

Katalon Studio is highly effective.

4. For maintaining code quality and security: SonarQube

is the best fit.

5. For NLP-focused applications: spaCy provides excel-

lent support.

6. For automated deployment and infrastructure man-

agement: Ansible is ideal.

3. Study Methodology

3.1. Research Design

The research design for the comparative analysis of AI

system development tools will employ a mixed-methods

approach that combines both quantitative and qualitative

methods. This approach is chosen to provide a comprehensive

evaluation of AI system development tools by considering

both technical performance metrics and user-centric factors to

ensure a holistic understanding of their effectiveness and

applicability in different contexts.

3.1.1. Quantitative Analysis

Objective: To objectively measure and compare the tech-

nical performance of various AI tools.

Data Collection: Performance metrics such as accuracy,

speed, scalability, and resource utilization of AI tools were

gathered. Data were collected through experiments, bench-

marks, and the analysis of tool documentation and existing

literature.

Metrics and Evaluation Criteria:

Accuracy: Measures how effectively an AI tool can per-

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

9

form specific tasks like code generation, bug detection, or

predictive analytics.

Speed and Efficiency: Evaluates the time required by the

tool to complete tasks, such as training a machine learning

model or running automated tests.

Scalability: Assesses how well the tool performs as the

complexity or size of the project increases.

Resource Utilization: Considers the computational re-

sources required, such as CPU, GPU, and memory usage.

Data Analysis: Statistical analysis techniques, such as

means, standard deviations, and ANOVA, are used to com-

pare the performance metrics of different AI tools. Visuali-

zation techniques like graphs and charts are employed to

illustrate the comparative performance.

3.1.2. Qualitative Analysis

Objective: To explore user-centric factors, such as ease of

integration, learning curve, developer productivity, and

overall user experience.

Data Collection: Semi-structured interviews and surveys

were conducted with software engineers, developers, and

project managers who have experience using these AI tools.

Additionally, a review of user feedback from forums, GitHub

repositories, and case studies provided qualitative insights.

Key Themes and Evaluation Criteria:

Ease of Integration: Examines how easily the tool can be

integrated into existing development workflows and tools

(e.g., CI/CD pipelines).

Learning Curve: Assesses the time and effort required for

developers to learn and effectively use the tool.

Impact on Productivity: Evaluates how the tool affects

developer productivity, including code quality, error reduc-

tion, and development speed.

User Experience: Gathers subjective assessments of the

tool's usability, documentation quality, and community sup-

port.

Data Analysis: Thematic analysis is used to identify pat-

terns and themes in the qualitative data. This involves coding

the interview transcripts and survey responses to identify

common factors influencing the adoption and effectiveness of

AI tools.

3.1.3. Mixed Methods Integration

Approach: The mixed-methods approach allows for the

triangulation of findings, providing a more nuanced under-

standing of each tool's strengths and weaknesses. Quantitative

data offer an objective basis for comparison, while qualitative

insights contextualize these findings, addressing factors that

are difficult to measure numerically.

Outcome: By integrating quantitative performance metrics

with qualitative user feedback, the research provides a com-

prehensive comparative analysis of AI tools. This integration

helped to identify not only the best-performing tools from a

technical standpoint, but also the tools that best align with

user needs and practical considerations in real-world software

development environments.

Summary of Research Design

In summary, the Quantitative Components focused on the

measurable performance metrics to assess the technical ca-

pabilities of AI tools while the qualitative Components ex-

amined user experiences, ease of integration, and the practical

impact on developer productivity. The Mixed Methods Ra-

tionale combined both components to provide a thorough

evaluation, balancing objective performance measures with

subjective user-centric factors, thereby offering actionable

insights for researchers, developers, and organizations in

selecting the most suitable AI tools for system development.

3.2. Tools Selection

The criteria for selecting AI system development tools for

comparative analysis encompass both technical and practical

aspects. This comprehensive approach ensures that the tools

are evaluated not only based on their performance and capa-

bilities but also on their impact on the development process

and their overall value to users. The key criteria used in this

analysis are:

3.2.1. Technical Performance

Accuracy: This examines the tool's ability to perform spe-

cific tasks such as code generation, bug detection, or predic-

tive analytics with high precision.

Speed and Efficiency: This criteria is used to measure how

quickly the tool completes tasks, including training machine

learning models, running tests, or generating code snippets.

Scalability: Scalability is used to assess the tool's perfor-

mance when applied to large-scale projects or when the

complexity of a project increases.

Resource Utilization: This criteria evaluates the computa-

tional resources (e.g., CPU, GPU, memory) required for the

tool to operate effectively.

3.2.2. Usability

Ease of Use: Examines how intuitive and user-friendly the

examined tool is, including its interface design, documenta-

tion quality, and ease of learning.

Learning Curve: This refers to the amount of time and ef-

fort required for developers to become proficient in using the

examine tool.

User Support and Community: Specifies the availability of

support resources such as tutorials, forums, and community

engagement for troubleshooting and learning of the tool.

3.2.3. Integration Capabilities

Compatibility with Existing Workflows: The AI tool's

ability to integrate with existing software development envi-

ronments, such as CI/CD pipelines, version control systems,

and other development tools.

API and Extension Support: Availability of APIs or plugins

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

10

that allow the tool to interact seamlessly with other tools or

systems in the software development lifecycle.

Cross-Platform Support: The capability of the tool to work

across various operating systems and platforms, ensuring

flexibility in different development environments.

3.2.4. Impact on Development Processes

Productivity Enhancement: The extent to which the tool

improves developer productivity by automating repetitive

tasks, reducing errors, and speeding up the development

process.

Code Quality Improvement: The tool's ability to enhance

the quality of the codebase through features like automated

code reviews, bug detection, and code optimization.

Maintenance and Evolution: The tool's support for the

ongoing maintenance and evolution of software projects, such

as facilitating code refactoring, updates, and scalability.

3.2.5. Cost Considerations

Licensing and Subscription Costs: The cost of acquiring

and maintaining the tool, including any licensing fees, sub-

scription plans, or one-time purchase costs [45].

Training and Implementation Costs: The expenses associ-

ated with training developers to use the tool and integrating it

into the current development pipeline.

Return on Investment (ROI): An assessment of the tool's

overall value in terms of the benefits it provides relative to its

cost, including long-term savings through efficiency gains.

Summary on Tool Selection

The evaluation and analysis of AI system development

tools against these criteria, provided a balanced view, which

considers both technical performance and real-world usability.

The approach ensured that the selected tools does not only

excel in their functional capabilities, but also offer practical

advantages that align with the needs and constraints of soft-

ware development teams.

3.3. Data Collection

The data collection methodology for the comparative

analysis of AI tools in system development involved multiple

data sources to ensure a thorough and balanced evaluation.

The process combined quantitative metrics, qualitative in-

sights, and practical observations. The key data collection

methods used in this analysis include:

3.3.1. Tool Documentation Review

Official Documentation: Comprehensive examination of

the official documentation provided by the developers of each

AI tool. This included user manuals, API references, installa-

tion guides, and feature lists to understand the tool's capabili-

ties, integration options, and technical requirements.

Release Notes and Updates: Review of release notes,

change, logs, and version history to track the evolution of the

tools, including new features, bug fixes, and performance

improvements.

Technical Specifications: Analysis of the technical speci-

fications of each tool, such as supported platforms, pro-

gramming languages, and system requirements, to assess their

compatibility with different development environments.

3.3.2. Performance Metrics

Benchmark Tests: Performance data was collected through

benchmark testing of the tools in controlled environments.

This involved running each tool on standardized tasks like

code generation, bug detection, and test automation to meas-

ure their speed, accuracy, and resource utilization.

Scalability and Stress Tests: Evaluations were conducted to

assess how each tool performs under varying loads and com-

plexities, such as large codebases or high-frequency testing

scenarios. Metrics such as response time, memory usage, and

processing power were recorded.

Automated Logging and Monitoring: Use of automated

logging tools to capture real-time data on the tool's operations,

such as execution times, error rates, and system resource

consumption during typical software development tasks.

3.3.3. User Feedback and Surveys

Developer Surveys: Surveys were distributed to software

developers, engineers, and team leads who have experience

using the AI tools. The surveys gathered subjective data on

usability, learning curve, ease of integration, and perceived

impact on productivity and code quality.

User Reviews and Ratings: Analysis of user reviews and

ratings from platforms like GitHub, Stack Overflow, and

tool-specific forums. This provided insights into the commu-

nity's experiences, common challenges, and the perceived

strengths and weaknesses of each tool.

Interviews and Case Studies: In-depth interviews with se-

lect developers and project managers who have integrated

these AI tools into their workflows. These interviews offered

qualitative insights into the real-world applicability, chal-

lenges, and benefits of using the tools in various stages of the

software development lifecycle.

3.3.4. Integration and Usability Testing

Hands-On Testing: Hands-on testing sessions were con-

ducted to evaluate each tool's user interface, ease of setup, and

integration capabilities with popular development environ-

ments (e.g., IDEs, CI/CD pipelines). This involved practical

tasks like setting up the tool, integrating it with existing

workflows, and performing typical development activities.

Scenario-Based Testing: The selected tools were tested in

specific development scenarios, such as automated testing,

code refactoring, and deployment automation. This helped

assess how each tool handles real-world challenges and how

easily it integrates with other software engineering tools and

practices.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

11

3.3.5. Cost Analysis

Price Comparisons: Data on licensing fees, subscription

models, and any additional costs (e.g., plugins, support ser-

vices) were collected from official pricing pages and vendors.

This included consideration of free tiers, open-source options,

and enterprise pricing structures.

Total Cost of Ownership (TCO): Consideration of indirect

costs, such as the time and resources required for implemen-

tation, training, and ongoing maintenance. This was combined

with performance and usability data to assess the overall value

proposition of each tool.

Summary on Data Collection

By leveraging a mix of tool documentation, performance

metrics, user feedback, and practical testing, the methodology

ensured a holistic and objective comparative analysis of AI

tools in system development. This approach provided a robust

data set that covers technical performance, user experience,

integration capabilities, and cost-effectiveness, allowing for

an informed evaluation of each tool's strengths and weak-

nesses.

3.4. Evaluation Metrics

The following metrics were used to compare the AI de-

velopment tools with the aim of obtaining the desired results

of the study.

Usability: Evaluates the tool's learning curve, documenta-

tion, and user interface.

Technical Performance: Assesses model training speed,

inference time, and optimization capabilities.

Scalability: Measures the tool's ability to handle large da-

tasets, support parallelization, and integrate with cloud ser-

vices.

Flexibility: Looks at customizability, support for various

algorithms, and interoperability with other tools and libraries.

Community and Ecosystem: Examines the size of the tool’s

community, availability of pre-built models, and third-party

integrations.

Cost Efficiency: Considers licensing costs and hardware

requirements.

Model Explainability: Focuses on tools for model inter-

pretation and visualization capabilities.

Deployment and Integration: Evaluates deployment options,

export formats, and API integration.

Security and Compliance: Reviews security features and

compliance with regulations.

3.5. Analysis Procedures

The data analysis and comparison of AI system devel-

opment tools followed a structured approach. Key criteria

such as usability, technical performance, impact on devel-

opment processes, and cost efficiency, model explainability

were defined. Both quantitative and qualitative data were

collected, with tools being scored on a scale of 1 to 5 for each

criterion. Bar charts and radar charts are used to visualize

performance, while pie charts represented cost distribution.

The analysis highlighted strengths and weaknesses, with

GitHub Copilot excelling in productivity enhancement and

TensorFlow being more suitable for complex AI tasks. The

comparative analysis identified trends, such as the balance

between usability and scalability, leading to practical rec-

ommendations based on project requirements and team ex-

pertise. This systematic approach ensured an objective

evaluation of each tool's effectiveness in different devel-

opment contexts.

4. Results

4.1. Comparative Analysis

Findings of the Comparative Analysis

The comparative analysis evaluated several AI tools

commonly used in system development across multiple cri-

teria, including technical performance, usability, integration

capabilities, impact on development processes, and cost con-

siderations. Here are the summarized findings:

Technical Performance

Accuracy and Speed: Most tools examined performed well

in terms of accuracy in tasks such as code generation and bug

detection. For example, GitHub Copilot and DeepCode

demonstrated high accuracy in providing relevant code snip-

pets and identifying security vulnerabilities, respectively.

However, GitHub Copilot outperformed DeepCode in speed

due to its real-time assistance capabilities.

Scalability: TensorFlow and PyTorch, primarily used for

machine learning tasks, excelled in scalability, handling

large-scale projects efficiently. In contrast, tools like Katalon

Studio showed limitations when processing large test cases

concurrently.

Resource Utilization: Tools like SonarQube had moderate

resource requirements and could be run on standard devel-

opment hardware. In contrast, deep learning frameworks such

as TensorFlow were more resource-intensive, especially

during model training.

The Table 3 summarizes the key differences and similari-

ties between the tools based on the criteria used.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

12

Figure 2. The strengths and limitations of selected AI development tools in different aspects of AI.

Usability

Ease of Use: Katalon Studio and GitHub Copilot were

noted for their user-friendly interfaces and ease of setup,

making them accessible even to less experienced developers.

On the other hand, TensorFlow and PyTorch had a steeper

learning curve due to their complexity and requirement for a

deeper understanding of machine learning concepts.

Learning Curve: AI tools like GitHub Copilot had a lower

learning curve, making them suitable for immediate produc-

tivity enhancement. In contrast, deep learning frameworks

required a more significant investment in training and learn-

ing.

User Support and Community: TensorFlow and PyTorch

had extensive community support, including comprehensive

documentation, tutorials, and forums. Tools like DeepCode

had less community support but offered adequate official

documentation and support services.

Integration Capabilities

Compatibility with Existing Workflows: GitHub Copilot

and SonarQube seamlessly integrated with popular IDEs and

CI/CD pipelines. Tools like TensorFlow required more man-

ual setup and integration efforts, especially when used outside

their typical data science and machine learning contexts.

API and Extension Support: All tools provided API support,

but GitHub Copilot and SonarQube had the most extensive

plugin ecosystems, allowing for easy customization and ex-

tension of functionalities.

Cross-Platform Support: Most tools, including TensorFlow,

PyTorch, and Katalon Studio, were cross-platform compatible,

ensuring flexibility across different development environ-

ments.

Impact on Development Processes

Productivity Enhancement: GitHub Copilot and Katalon

Studio significantly enhanced developer productivity by au-

tomating code suggestions and test generation. Deep learning

frameworks like TensorFlow were less directly impactful on

general software development productivity but provided

substantial benefits in specialized AI applications [20].

Code Quality Improvement: SonarQube excelled in im-

proving code quality through static analysis, identifying code

smells, and enforcing coding standards.

Maintenance and Evolution: DeepCode and SonarQube

facilitated ongoing code maintenance through continuous

analysis and refactoring suggestions, aiding long-term soft-

ware evolution.

Cost Considerations

Licensing and Subscription Costs: Tools like SonarQube

offered both open-source and enterprise editions, providing

flexible pricing options. GitHub Copilot required a subscrip-

tion fee, whereas TensorFlow and PyTorch were open-source

and free to use.

Training and Implementation Costs: TensorFlow and

PyTorch had higher training costs due to their complexity. In

contrast, tools like GitHub Copilot and Katalon Studio had

lower implementation and training costs due to their ease of

use and availability of learning resources.

Visual Representation of Findings

The Table 3 summarizes the key differences and similarities

between the tools based on the criteria used.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

13

Figure 3. Bar chart showing the comparison of different AI development tools on a scale of 1 to 5.

Figure 4. Bar chart showing the comparison of different AI development tools on a scale of 1 to 5.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

14

Table 3. Comparative Overview of AI Tools.

Criteria GitHub Copilot DeepCode TensorFlow PyTorch SonarQube Katalon Studio

Accuracy High High High High Moderate High

Speed High Moderate Moderate Moderate Moderate High

Ease of Use High Moderate Low Low Moderate High

Learning Curve Low Moderate High High Moderate Low

Integration Excellent Good Good Good Excellent Good

Community Support Moderate Low High High Moderate Moderate

Licensing Cost Subscription Free Free Free Free/Enterprise Subscription

Chart: Usability and Learning Curve

4.2. Performance Metrics

The Table 4 presents a sample data on a scale of 1 to 5 for various AI tools based on Usability and Learning Curve. The scale

1 is the lowest (hardest to use or steepest learning curve) while 5 is the highest (easiest to use or flattest learning curve).

Table 4. Sample data for usability and learning cure metrics.

AI Tool Usability Learning Curve

GitHub Copilot 5 2

Katalon Studio 4 3

TensorFlow 3 5

PyTorch 3 4

SonarQube 4 3

DeepCode 5 2

Figure 5. Bar chart of various AI tools based on Usability and Learning Curve.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

15

The Bar Chart presented the Usability and Learning Cure

Scores of AI Development Tools. The Usability showed how

easy a tool is to use (higher is better), while the Learning

Curve showed how easy it is to learn the tool (lower scores

represent a steeper learning curve).

Graph: Impact on Productivity and Code Quality

The Figure 3 is a spider radar chart, while Figure 4 is an

interactive radar chart used to illustrate the impact of the

compared tools on different aspects such as productivity en-

hancement, code quality improvement, and maintenance

support. Each axis of the radar chart represent how they

compare across different dimensions showing their strengths

and areas of specialization:

Productivity Enhancement: Tools like GitHub Copilot and

Katalon Studio have higher scores, demonstrating their strong

impact on developer productivity.

Code Quality Improvement: SonarQube leads in this cat-

egory, excelling in static analysis and code quality enforce-

ment.

Maintenance Support: SonarQube and DeepCode rank

highest for continuous analysis and refactoring support.

Figure 6. Radar diagram showing AI development tools development.

Figure 7. Line graph diagram showing AI development tools development.

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

16

Pie Chart: Cost Breakdown

The Figure 8 provides a quick visual of the cost considerations for the tools showing the proportion of tools that are free,

open-source, subscription-based, or require enterprise licensing on a scale of 1 to 5 metrics of number of tools against sub-

scription.

Table 5. Table representing the tool cost model distribution for the pie chart.

Cost Model Tools Proportion

Free & Open-Source TensorFlow, PyTorch 40%

Subscription-Based GitHub Copilot 20%

Enterprise & Open-Source SonarQube 20%

Enterprise Licensing Katalon Studio, DeepCode 40%

Free & Open-Source: Includes TensorFlow and PyTorch (40%).

Subscription-Based: GitHub Copilot (20%).

Enterprise & Open-Source: SonarQube offers both options (20%).

Enterprise Licensing: Katalon Studio and DeepCode (40%).

Figure 8. Pie chart showing the distribution of AI tools based on their cost models.

This chart helps to visualize how the tools vary in their li-

censing models, reflecting their accessibility and flexibility

for different organizations.

Summary of Analysis Findings

Through this comparative analysis, it is evident that dif-

ferent AI tools serve varying purposes in system development.

GitHub Copilot and Katalon Studio excel in enhancing

productivity with their user-friendly interfaces and real-time

assistance. TensorFlow and PyTorch are powerful for spe-

cialized AI applications but come with a steeper learning

curve. SonarQube and DeepCode provide valuable contribu-

tions to code quality and maintenance. The choice of the best

tool depends on the specific needs of the development team,

the project's complexity, and the available resources for

training and integration.

5. Discussion of Results

5.1. Interpretation of Results

Interpret the findings in the context of the research objec-

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

17

tives. Discuss how each tool contributes to improved out-

comes in AI system development.

The comparative analysis results showed that the choice of

tool depends on the specific requirements of the development

project, the expertise of the team, and the desired outcomes.

The study objectives aimed to evaluate and compare AI

system development tools to identify their contributions to

improved outcomes. Findings reveal how each tool excels in

different areas. From Figure 5, GitHub Copilot is highly us-

er-friendly (usability score of 5) but has a steep learning curve

(score of 2), aiding in rapid prototyping and boosting effi-

ciency. Katalon Studio, with a usability score of 4 and a

learning curve of 3, excels in automating test cases and is

well-suited for CI/CD pipelines. TensorFlow and PyTorch,

scoring 3 in usability, are powerful yet complex, with steep

learning curves (5 for TensorFlow, 4 for PyTorch). The tools

are best for advanced AI model development. SonarQube and

DeepCode (usability scores scales of 4 and 5, respectively)

focus on code quality assurance and security, with moderate to

steep learning curves, enhancing software reliability and

reducing technical debt. The analysis suggests that tool se-

lection should align with project needs, team expertise, and

desired outcomes, balancing efficiency, quality assurance, and

advanced AI modeling capabilities.

5.2. I Implications for Practice

The comparative analysis underscores the importance of

strategic AI tool selection in software development, empha-

sizing that the choice of tools can have far-reaching implica-

tions for both the efficiency and quality of the development

process. For software engineers and developers, aligning the

toolset with the project's specific requirements is crucial.

Advanced AI tools like TensorFlow and PyTorch are indis-

pensable for complex projects involving machine learning,

while GitHub Copilot and DeepCode can enhance productiv-

ity for more routine coding tasks [26]. Organizations stand to

benefit from this alignment by optimizing their investment in

tools that support their strategic goals, such as rapid proto-

typing or quality assurance. Furthermore, the integration of

tools like GitHub Copilot and DeepCode can significantly

streamline the development process, freeing up developers to

engage in more innovative work, which can lead to greater job

satisfaction and a culture of innovation. Lastly, the use of

analytical tools like SonarQube and DeepCode can greatly

improve code quality and security, allowing developers to

proactively address potential issues, thereby reducing the risk

of costly errors and vulnerabilities in the final product. The

findings of the comparative analysis have several practical

implications for software engineers, developers, and organi-

zations:

Tool Selection Based on Project Needs

AI tool selection should align with project requirements.

TensorFlow and PyTorch, suitable for complex AI research,

require a steeper learning curve for software engineers and

developers. In contrast, GitHub Copilot and DeepCode en-

hance coding efficiency and quality. Organizations should

select tools based on project objectives, prioritizing GitHub

Copilot for rapid prototyping and Katalon Studio or So-

narQube for rigorous testing and quality assurance.

Boosting Developer Productivity

AI tools significantly enhance productivity. For developers,

GitHub Copilot and DeepCode automate routine coding tasks,

allowing focus on more complex work. For organizations,

automation accelerates development cycles, reducing time to

market and costs by minimizing manual reviews and debug-

ging.

Improving Software Quality and Security

SonarQube and DeepCode improve code quality and secu-

rity by identifying issues early. For developers, this reduces

production flaws. For organizations, AI tools help maintain

high software reliability standards, especially in regulated

sectors like finance and healthcare.

Facilitating Learning and Skill Development

Although some tools require a steep learning curve, they

expand developer skill sets. Mastering TensorFlow and

PyTorch allows developers to engage in advanced AI projects.

Organizations investing in training enable teams to leverage

AI effectively and stay competitive in a rapidly evolving tech

landscape.

Enabling Better Resource Allocation

AI tools automate routine tasks, allowing developers to

focus on strategic activities like architecture design. For or-

ganizations, automation improves resource allocation, sup-

ports innovation, and enhances operational efficiency.

Enhancing Collaboration and Integration

AI tools foster collaboration and streamline workflows.

GitHub Copilot ensures consistent coding practices and mit-

igates integration challenges for developers. Organizations

can integrate AI tools like Katalon Studio into CI/CD pipe-

lines, automating testing and enhancing collaboration be-

tween development and QA teams.

Cost-Benefit Analysis

Tool selection requires balancing usability and functionality.

Developers aim to maximize productivity while minimizing

complexity. Organizations must conduct a cost-benefit anal-

ysis; despite the steep learning curve of tools like TensorFlow,

their long-term AI capabilities can justify the investment.

Driving Innovation and Competitive Advantage

AI tools drive innovation by enabling new AI-driven

products. PyTorch facilitates cutting-edge projects for de-

velopers. For organizations, adopting AI tools optimizes de-

velopment processes, enables faster product cycles, and

maintains competitive advantage.

Summary

This comparative study demonstrates that integrating artifi-

cial intelligence tools in system development enhances

productivity and software quality, fostering learning and inno-

vation. The selection of a suitable tool should depend on the

project's requirements, the development team's expertise, and

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

18

the organization's strategic goals. By effectively utilizing each

tool's strengths, software engineers, developers, and organiza-

tions can optimize their results in AI system development.

5.3. Limitations

This study has several limitations. First, the selection of AI

tools is constrained by the availability of relevant documen-

tation, user feedback, and performance metrics. This may

have excluded emerging or niche tools that could offer unique

advantages. Second, the evaluation metrics focused primarily

on technical performance, usability, and the learning curve,

which may not capture the full range of factors affecting tool

effectiveness, such as long-term maintenance, scalability, and

integration complexity. Additionally, the study relied on

subjective assessments of certain criteria, such as usability,

which could vary based on user expertise and specific project

contexts. Future research should consider a broader set of

tools and incorporate more diverse evaluation metrics to

provide a more comprehensive analysis.

6. Conclusion

6.1. Summary of Findings

The main findings of the study reveal that AI tools signifi-

cantly enhance system development across various dimensions,

including productivity, software quality, and developer effi-

ciency. Tools like GitHub Copilot and DeepCode excel in

automating code generation and providing real-time code

quality insights, making them particularly beneficial for

streamlining the development process. Katalon Studio and

SonarQube offer robust testing and quality assurance capabili-

ties, contributing to higher software reliability and security. The

comparative analysis indicates that while some tools have a

steeper learning curve, their advanced features and perfor-

mance benefits can justify the initial investment in learning and

integration. The study also highlights the importance of se-

lecting tools that align with specific project needs, team exper-

tise, and organizational goals. Overall, the strategic use of AI

tools in system development can lead to improved outcomes,

faster development cycles, and better resource allocation.

6.2. Recommendations

When selecting AI development tools, align choices with

project needs, considering task complexity and required fea-

tures. TensorFlow and PyTorch are recommended for ad-

vanced AI tasks, while GitHub Copilot and DeepCode suit

general coding and code quality analysis. Consider the

learning curve, opting for user-friendly tools such as GitHub

Copilot or Katalon Studio for teams with less AI experience.

Ensure seamless integration with existing environments and

prioritize productivity-enhancing tools such as GitHub Co-

pilot's real-time suggestions and DeepCode's automated re-

views. Focus on software quality and security by choosing

robust tools such as SonarQube and Katalon Studio. Conduct

a cost-benefit analysis to balance initial investment against

long-term value, prioritizing user-centric factors to improve

adoption. Stay informed about tool updates to adapt to

evolving project requirements. These guidelines can enhance

overall productivity and software quality.

6.3. Future Research

Future research on AI system development tools should

investigate emerging AI advancements, such as reinforcement

learning and explainable AI, evaluate long-term impacts on

productivity, and examine user experience factors influencing

adoption. Investigations should also focus on integrating

multiple AI tools within workflows, their impact on developer

creativity, and ethical considerations, including bias and

transparency. Furthermore, comparative analyses across in-

dustries, the role of AI in Agile and DevOps methodologies,

cost-benefit evaluations, and the utilization of AI to modern-

ize legacy systems can provide valuable insights into opti-

mizing AI tool implementation in software development [33].

Abbreviations

AI Artificial Intelligence

CI/CD Pipeline Continuous Integration/Continuous

Deployment or Delivery

IDE Integrated Development Interphase

QA Quality Assurance

ANOVA Analysis Variance

API Application Programming Interphase

NLTK Natural Learning Toolkit

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

& Zheng, X. (2016). TensorFlow: A system for large-scale

machine learning. Proceedings of the 12th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI), 265-283.

[2] Al-Bdour, G., Al-Qurran, R., Al‐Ayyoub, M., & Shatnawi, A.

(2019, January 1). A detailed comparative study of open source

deep learning frameworks. Cornell University.

https://doi.org/10.48550/arxiv.1903.00102

[3] Artificial Intelligence for Literature Reviews: Opportunities

and Challenges. (2024). Artificial Intelligence Review. Re-

trieved from

https://link.springer.com/article/10.1007/s10462-024-10021-3

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

19

[4] Bajwa, J., Munir, U., Nori, A. V., & Williams, B. (2021, July 1).

Artificial intelligence in healthcare: transforming the practice

of medicine. Royal College of Physicians, 8(2), e188-e194.

https://doi.org/10.7861/fhj.2021-0095

[5] Barenkamp, M., Rebstadt, J., & Thomas, O. (2020, July 26).

Applications of AI in classical software engineering. Springer

Nature, 2(1). https://doi.org/10.1186/s42467-020-00005-4

[6] Bird, S., Klein, E., & Loper, E. (2009). Natural language

processing with Python: Analyzing text with the Natural Lan-

guage Toolkit. O'Reilly Media, Inc.

[7] Bengio, Y., Courville, A., and Vincent, P. "Representation

Learning: A Review and New Perspectives," IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp.

1798-1828, Aug. 2013. https://doi.org/10.1109/TPAMI.2013.50

[8] Bolaños, F., Salatino, A., Osborne, F., and E. Motta, "Artificial

Intelligence for Literature Reviews: Opportunities and Chal-

lenges," Artificial Intelligence Review, vol. 57, no. 9, article no.

259, Aug. 2024. https://doi.org/10.1007/s10462-024-10902-3

[9] Brynjolfsson, E., & McAfee, A. (2022). The second machine

age: Work, progress, and prosperity in a time of brilliant

technologies. W.W. Norton & Company.

[10] Chen, Y., Liu, Z., & Zhang, X. (2022). Real-time AI on the

edge: A framework for large-scale deployment. IEEE Internet

of Things Journal, 9(4), 3158-3170.

https://doi.org/10.1109/JIOT.2022.3114624

[11] Cheng, Q., Sahoo, D., Saha, A., Yang, W., Liu, C., Woo, G.,

Singh, M., Saverese, S., & Hoi, S. C. H. (2023, January 1). AI

for IT Operations (AIOps) on cloud platforms: Reviews, op-

portunities and challenges. Cornell University.

https://doi.org/10.48550/arxiv.2304.04661

[12] Chollet, F. (2015). Keras. GitHub Repository.

https://github.com/fchollet/keras

[13] Crawford, T., Duong, S., Fueston, R., Lawani, A., Owoade, S.,

Uzoka, A., Parizi, R. M., & Yazdinejad, A. (2023, January 1).

AI in software engineering: A survey on project management

applications. Cornell University.

https://doi.org/10.48550/arxiv.2307.15224

[14] Deng, J., Zhang, L., & Wang, H. (2022). AI-driven develop-

ment tools: Toward the future of autonomous programming.

Journal of Machine Learning Systems, 15(1), 45-57.

https://doi.org/10.1016/j.jmls.2022.45

[15] Everett M. Rogers, Diffusion of Innovations, 5th ed. New York,

NY, USA: Free Press, 2003.

https://doi.org/10.4324/9780203710753

[16] Felderer, M., & Ramler, R. (2021, January 1). Quality assur-

ance for AI-based systems: Overview and challenges (Intro-

duction to interactive session). Springer Science+Business

Media, 33-42. https://doi.org/10.1007/978-3-030-65854-0_3

[17] Fred D. Davis, "Perceived Usefulness, Perceived Ease of Use,

and User Acceptance of Information Technology," MIS Quar-

terly, vol. 13, no. 3, pp. 319-340, 1989.

https://doi.org/10.2307/249008

[18] Garg, S., Pundir, P., Rathee, G., Gupta, P. K., Garg, S., &

Ahlawat, S. (2022, January 1). On continuous integra-

tion/continuous delivery for automated deployment of machine

learning models using MLOps. Cornell University.

https://doi.org/10.48550/arxiv.2202.03541

[19] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

learning. MIT Press.

[20] Herremans, D. (2021, January 1). aiSTROM–A roadmap for

developing a successful AI strategy. Institute of Electrical and

Electronics Engineers, 9, 155826-155838.

https://doi.org/10.1109/access.2021.3127548

[21] Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language

understanding with Bloom embeddings, convolutional neural

networks, and incremental parsing. To Appear.

[22] Jackson, P. (1998). Introduction to expert systems. Addi-

son-Wesley.

[23] Jakubik, J., Vössing, M., Kühl, N., Walk, J., & Satzger, G.

(2022, January 1). Data-centric artificial intelligence. Cornell

University. https://doi.org/10.48550/arxiv.2212.11854

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,

Girshick, R.,... & Darrell, T. (2014). Caffe: Convolutional ar-

chitecture for fast feature embedding. Proceedings of the 22nd

ACM International Conference on Multimedia, 675-678.

[25] Job, M. A. (2021, January 1). Automating and optimizing

software testing using artificial intelligence techniques. Sci-

ence and Information Organization, 12(5).

https://doi.org/10.14569/ijacsa.2021.0120571

[26] Jordan, M. I., & Mitchell, T. M. (2021). Machine learning:

Trends, perspectives, and prospects. Science, 349(6245),

255-260. https://doi.org/10.1126/science.aaa8415

[27] Joulin, A., Grave, E., Bojanowski, P., and T. Mikolov, "Bag of

Tricks for Efficient Text Classification," in Proceedings of the

15th Conference of the European Chapter of the Association for

Computational Linguistics, Valencia, Spain, 2017, pp. 427–431.

[28] Jurafsky, D., & Martin, J. H. (2021). Speech and language

processing. Pearson.

[29] Khaliq, Z., Farooq, S. U., & Khan, D. A. (2022, January 1).

Artificial intelligence in software testing: Impact, problems,

challenges and prospect. Cornell University.

https://doi.org/10.48550/arxiv.2201.05371

[30] Kumar, M., & Rashid, E. (2018, November 8). An efficient

software development life cycle model for developing software

projects. 8(6), 59-68. https://doi.org/10.5815/ijeme.2018.06.06

[31] Laato, S., Islam, A. K. M. N., Sutinen, E., & Laine, T. H.

(2022). Critical factors influencing explainable AI (XAI)

adoption: A qualitative study from the end-users’ perspective.

Information Processing & Management, 59(2), 102725.

[32] LeCun, Y. (2021). Scalability and flexibility in AI model de-

velopment: Lessons from TensorFlow and PyTorch. Neural

Computing Today, 29(5), 98-107.

https://doi.org/10.1126/nct-29.5.98

http://www.sciencepg.com/journal/ijsmit

International Journal of Sustainability Management and Information Technologies http://www.sciencepg.com/journal/ijsmit

20

[33] Mahboob, M. A., Ahmed, M. S. M., Zia, Z., Ali, M., & Ahmed,

A. M. (2024, August 1). Future of artificial intelligence in agile

software development. Cornell University.

https://doi.org/10.48550/arxiv.2408.00703

[34] Mitchell, M. (1998). An introduction to genetic algorithms.

MIT Press.

[35] Nascimento, E., Nguyen-Duc, A., Sundbø, I., & Conte, T.

(2020, January 1). Software engineering for artificial intelli-

gence and machine learning software: A systematic literature

review. Cornell University.

https://doi.org/10.48550/arxiv.2011.03751

[36] Ortega-Bolaños, A., Aguirre, H., & Tanaka, K. (2024). Ethical

AI: A comprehensive review of tools for developing and as-

sessing AI-based systems. Journal of Artificial Intelligence

Research, 67(1), 23-40.

[37] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G.,... & Chintala, S. (2019). PyTorch: An imperative style,

high-performance deep learning library. Advances in Neural

Information Processing Systems (NeurIPS), 8024-8035.

[38] Preskill, J. (2020). Quantum computing in the NISQ era and

beyond. Quantum, 2, 79.

https://doi.org/10.22331/q-2020-02-06-79

[39] Rai, A., Brown, P., & Lee, H. (2021). Democratizing AI:

Making machine learning accessible to non-experts. Journal of

AI Research and Development, 34(2), 145-160.

https://doi.org/10.1109/JARD.2021.134

[40] Raji, I. D., Bender, E. M., & Lemoine, G. (2020). Closing the

AI accountability gap: Defining an engineering practice for AI

ethics. Proceedings of the 2020 Conference on Fairness, Ac-

countability, and Transparency, 205-215.

https://doi.org/10.1145/3287560.3287593

[41] Ricca, F., Marchetto, A., & Stocco, A. (2021, April 1).

AI-based test automation: A grey literature analysis.

https://doi.org/10.1109/icstw52544.2021.00051

[42] Russell, S., & Norvig, P. (2020). Artificial intelligence: A

modern approach. Pearson.

[43] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:

An introduction. MIT Press.

[44] Szeliski, R. (2010). Computer vision: Algorithms and appli-

cations. Springer.

[45] Toreini, E., Aitken, M., & Coopamootoo, K. (2020). The rela-

tionship between trust in AI and fairness: Lessons from algo-

rithmic decision-making in the public sector. Proceedings of the

2020 ACM Conference on Fairness, Accountability, and

Transparency, 290-299.

https://doi.org/10.1145/3287560.3287595

[46] Z. C. Lipton, "The Mythos of Model Interpretability," Com-

munications of the ACM, vol. 61, no. 10, pp. 36-43, 2018.

https://doi.org/10.1145/3233231

[47] Zhang, Z., Li, Q., Huang, J., & Zhang, L. (2020). Code review

meets static analysis and machine learning. IEEE Transactions

on Software Engineering, 46(6), 666-684.

[48] Zoph, B., & Le, Q. V. (2021). Neural architecture search with

reinforcement learning. Proceedings of the 2018 International

Conference on Learning Representations, 2220-2229.

https://doi.org/10.5555/3305890.3306078

Biography

Ikechukwu Innocent Umeh is an associate

professor at Nnamdi Azikiwe University,

Awka Anambra state Nigeria. He is in the

dual departments of Computer Science and

Information Technology. He completed his

PhD in Data communication and Infor-

mation Systems from the same university in

2018. Dr. Umeh has at different times and places been recognized

and honoured with numerous recognitions and awards for his po-

tentials in the Information and Communication Technology sec-

tor. He is a fellow of both the Nigeria Computer Society and In-

stitute of Policy management Development. Currently Dr. Umeh

is the head of the department of Information Technology at

Nnamdi Azikiwe University, Awka, Anambra state. He has par-

ticipated in different international conferences and workshops. He

is a member of the Nigerian national technical committee on in-

formation security under Standard Organization of Nigeria

(SON). Also, Dr. Umeh is currently serving as a reviewer on the

different Editorial Boards of numerous publications and has been

invited as a Keynote Speaker in more than four workshops held in

Nigeria.

Kobimdi Cordelia Umeh is a lecturer in

the Department of Mass Communication,

Nnamdi Azikiwe University, Awka. She

holds a Bachelor and a Masters Degrees

from the same Institution and is currently

pursuing a Doctorate Degree in ICT for

Development/Development Communica-

tion. Prior to her journey into the academia, Kobimdi has been a

seasoned administrator, a dogged entrepreneur and an ardent be-

liever and champion of human capital development initiatives. In

addition to her professional achievements, Kobimdi is passionate

about mentoring the next generation of Nigerian Youthpreneurs.

She frequently speaks at Institutions and industry events, advo-

cating for the use of ICTs to drive social change and human capi-

tal development in Nigeria. She has organized workshops and

programs on human capital development and currently runs a pet

project where youths are trained on self-reliance and economic

independence.

Research Field

Ikechukwu Innocent Umeh: Information Technology, Infor-

mation Systems, Data communication, Entrepreneurship

Kobimdi Cordelia Umeh: Development Communication, ICT

for Development (ICT4D), Strategic Communication, Entrepre-

neurship

http://www.sciencepg.com/journal/ijsmit

