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Abstract: This paper presents a novel approach to stabilizing the Duffing oscillator using a neural-inspired control policy
based on the hyperbolic tangent function. The controller, though structurally simple, is interpreted as a one-layer neural network
with explicitly defined weights and no need for training. Through this lens, we explore how artificial intelligence techniques
can be adapted to deliver interpretable, energy-aware control for nonlinear dynamical systems. The system’s long-term behavior
is analyzed using bifurcation diagrams, Poincare sections, and Lyapunov-based stability analysis. Simulation results show that
the control law suppresses chaotic transitions, enforces global boundedness, and facilitates adaptive entrainment with external
forcing. Time evolution of the Lyapunov function remains bounded and oscillatory with the function’s peaks and troughs giving
no indication of runaway growth or divergence. A custom energy efficiency metric is also introduced, quantifying the system’s
ability to retain input energy under feedback control. This energy efficiency metric presents an upward trend with increasing
excitation, suggesting that the controller not only stabilizes the system but also facilitates more effective interaction with the
external environment. Together, these results demonstrate the potential of embedded Al control to regulate nonlinear systems
in a sustainable, robust, and explainable manner. The findings offer a foundation for future research in control-aware learning,
physics-informed neural architectures, and real-time energy regulation.
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1. Introduction

The Duffing oscillator remains a canonical model for
exploring nonlinear phenomena such as bifurcation, chaos,
and hysteresis in mechanical and electrical systems [1]. Its
versatility and sensitivity make it both a powerful analytical
tool and a challenging testbed for modern control techniques
[2]. While classical nonlinear control approaches, including
feedback linearization and backstepping, offer tools for
stabilization [3, 4], they often fall short in adaptivity and
sustainability under time-varying excitation.

With the emergence of machine learning in control
theory, neural-inspired architectures have gained significant
attention for their ability to model and regulate complex
systems. Recent works have shown that deep learning can

be successfully embedded into control frameworks for PDEs
and physical systems, often bypassing the need for explicit
gain tuning or complex analytical inversion [11, 12]. Neural
operators, in particular, allow a direct approximation of
controllers and observers in functional space.

In power systems, reinforcement learning has been used to
stabilize real-world voltage profiles under uncertain operating
conditions, highlighting both the promise and the practical
difficulties of AI deployment in critical infrastructure [10].
These approaches suggest a transition toward data-aware and
adaptable controllers that can manage uncertainty and physical
constraints simultaneously.

The integration of Al into dynamical systems also intersects
with concepts from input-to-state stability and energy-
aware system design. Jiang and Wang [5] extended these
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stability notions to discrete nonlinear systems, offering
groundwork for robust analysis in more complex control
setups. Similarly, Slotine’s adaptive control formulations [§]
emphasized boundedness and convergence, ideas that carry
over into neural-inspired settings.

Meanwhile, Raissi et al. introduced physics-informed
neural networks (PINNs) as a framework to enforce
differential constraints while training neural models, merging
the rigor of physics with the flexibility of deep learning
[6]. Doya’s work on continuous-time reinforcement learning
offered early insights into how learning-based controllers
could be shaped for systems with infinite state and action
spaces [7], an idea now finding practical realization in hybrid
models. The use of control barrier functions as demonstrated
by Ames et al. [9] also supports the argument that safety
and constraint satisfaction are essential components of any
deployable Al controller.

Despite these advancements, there remains a significant gap
between theory and implementation, particularly in developing
Al-based control laws that are not only stable and sustainable
but also interpretable and analytically tractable. In this work,
we bridge that gap by designing a tanh-based controller that
mimics a shallow neural network architecture. Instead of
relying on black-box training, we hand-design the network’s
weights to reflect known dynamical features, while retaining
the boundedness and smoothness properties of modern Al
controllers.

We analyze the proposed control strategy through the lenses
of bifurcation behavior, Poincare maps, Lyapunov-based
boundedness, and a custom-defined energy efficiency metric.
In doing so, we provide not only a rigorous control design but
also a replicable and insightful template for integrating Al into
nonlinear control with sustainability as a core objective.

2. System Description

We consider a nonlinear oscillator inspired by the forced
Duffing equation, representing the dynamics of a wind turbine
under stochastic wind input and Al-based control. The system
is described by a second-order nonlinear differential equation
with cubic stiffness and periodic forcing.

2.1. Equation of Motion

The general form of the system is:

&+ 0% + ax + fa® = vy cos(wt) + u(t) (1)

Here, x(t) is the displacement or angular deviation
(generalized coordinate), 4(t) is the velocity (first derivative
of x), ¢ is the damping coefficient, « is the linear stiffness
coefficient, [ is the nonlinear stiffness coefficient, v is the
amplitude of external periodic forcing (e.g., wind power), w is
the forcing frequency, and u(t) is the control input generated
by an Al controller.

2.2. State Space Form

Let us define the state variables: x; = x, 2 = %.
The system in first-order form becomes:

T1 = T2 )

dg = =029 — axy — B + 7 cos(wt) + u(t) 3)

2.3. Al-Based Control

The control term w(t) is assumed to be generated by a neural
network policy:

u(t) = N(x1, 22, ;0)

Here, N(+; 0) represents a neural network with parameters
0, trained with multiple objectives.

First, it aims to maximize power extraction, for instance by
maximizing the product z(t) cos(wt), which is analogous to
the energy transferred from wind.

Second, it seeks to minimize the energy spent on control,
quantified as the integral [ u(t)?dt.

Third, the control policy enforces safety and sustainability
constraints by keeping the magnitude of z(¢) within bounds to
prevent structural fatigue or instability.

2.4. AI-Based Control Using a Neural Network Policy

In this study, we model the control input «(t) using a neural
network that learns a nonlinear feedback policy based on the
system’s current state and time. The controller is designed as
a feedforward neural network with a single hidden layer and a
nonlinear activation function.

The input to the neural network consists of the current state
x(t), ©(t), and the current time ¢. Denote these as:

The control output is computed as:

u(t) = tanh (wy - o (Wiz(t) + bi) + bo)

where:
W, € R"3  (input-to-hidden weights)
by € R" (hidden layer bias)

o(+) is an activation function, such as ReLU or sigmoid
Wo € Rh
by € R (output bias)

(hidden-to-output weights)

In our case, we simplify this structure to a single hidden
neuron and directly embed the weights and biases into the tanh
expression. This yields:
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u(t) = tanh | 0.5 -x(t) +0.25-&(¢) + 0.1 -sin(0.5¢)
W11 Wiz Wis
This corresponds to:
W, = [0.5 0.25 0.1] , h=1

b1:O, W2:1, b2=0
o(-) = tanh(:)

This model is a minimal neural network: 3 input features,
1 hidden neuron, and tanh nonlinearity applied directly to the
weighted sum of inputs. It is structurally equivalent to a 1-
layer fully connected network with no additional complexity
or learned weights.

Each weight in this neural controller has a physical and
functional interpretation:

1. Wiy = 0.5: emphasizes the current displacement x(¢),

2. Wis = 0.25: responds proportionally to the velocity
(1),

3. Wi3 = 0.1: introduces phase sensitivity via the
sinusoidal input, enabling entrainment to the external
forcing,

4. The tanh activation ensures that the output u(t) €
(—1,1), enforcing bounded control effort.

This control law strikes a balance between state feedback
and time-based modulation, achieving an adaptive and smooth
regulation strategy that is easy to simulate, differentiable for
analysis, and structurally extensible to deeper networks if
needed.

The hyperbolic tangent function is particularly suitable
for control systems. It is smooth and differentiable, aiding
stability and continuity of the control input. It saturates at
large positive or negative inputs, preventing unbounded control
outputs. Around the origin, it behaves nearly linearly, allowing
the controller to behave like a proportional controller under
small perturbations.

This design avoids high-frequency switching (as in bang-
bang control), limits actuator stress, and contributes to energy
sustainability by smoothly allocating control effort.

While the weights in this case are hand-chosen, they could
be trained using data-driven techniques such as Reinforcement
Learning to maximize a long-term energy extraction reward,
or Supervised learning on optimal control trajectories, or
Physics-informed training using simulation data and Lyapunov
constraints.

Thus, the proposed tanh-based controller serves as
a practical and theoretically grounded surrogate for Al
control policies in real-world nonlinear systems, combining
interpretability with performance.

In our simulation, we use this simplified neural controller
for interpretability and direct embedding in the ODE system.
Specifically, the hidden layer consists of a single neuron, the
activation function is the identity, and the weights are manually

chosen to imitate a trained policy. The control law used in the
simulation is:

u(t) = tanh (0.5z(t) + 0.252(¢) + 0.1sin(0.5t))

This form preserves the essential nonlinear dependence
of the control on the system state and introduces time
dependence, enabling adaptive behavior. The bounded output
of the tanh function ensures that the control remains within
sustainable limits.

This network structure can be replaced with a fully trained
neural controller exported from a deep learning framework.
The use of a smooth, differentiable control function allows
for gradient-based analysis and integration within continuous-
time simulation.

3. Simulation Results with Neural
Network-Based Control

We simulate the Duffing oscillator using the neural network
control law

u(t) = tanh (0.5z(¢) + 0.252(¢) + 0.1sin(0.5t))

as derived earlier. The results are visualized through both
phase-space and time-domain analyses.

3.1. State Space Behavior

Figure 1 shows the state space trajectory in the (x, &) phase
plane. The closed-loop dynamics under the neural control
policy lead to structured, nested loops which resemble the
classical “’butterfly” shape associated with the Duffing system,
but with notable smoothing and regularization.

State Space Plot with Neural Network Control
T T

Figure 1. State space plot of the Duffing oscillator with Al-based control.
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3.2. Time Domain Response

The presence of nested invariant curves suggests that the Al
controller stabilizes the motion into a bounded, quasiperiodic
regime. Unlike in chaotic or purely damped systems, the
system avoids divergence or erratic spiraling, and instead
settles into a sustainable oscillatory envelope. This is a key
signature of controlled nonlinear stability introduced by the
neural policy.

In Figure 2, the upper subplot shows the evolution of
displacement xz(t), while the lower subplot depicts the
corresponding velocity #(t). The displacement exhibits an
oscillatory pattern with variable amplitude during the early
transient phase (roughly ¢ < 40), eventually stabilizing into
a near-regular periodic form.

The velocity waveform displays richer harmonic content,
with sharper transitions and more frequent peaks. This
indicates that the control input is responding adaptively to
nonlinear distortions in the system, ensuring sustained motion
while maintaining energy efficiency.

These results demonstrate that the embedded neural
controller is capable of enforcing dynamically rich yet stable
behavior, avoiding unbounded growth or excessive damping,
and preserving the characteristic nonlinear structure of the
Duffing system under external forcing.

Displacement over Time
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Figure 2. Time-domain plots showing displacement x(t) (top) and velocity &(t) (bottom)
over the simulation horizon.

4. Energy-Based Sustainability Analysis

To quantify sustainability in the controlled Duffing system,
we evaluate the energetic balance over a finite time horizon.
The external periodic forcing injects energy into the system,
while energy is lost via damping and consumed by the control
input.

The net input energy from the external force ~ cos(wt) is

Bharat Khushalani: Nonlinear Dynamic Model for AI-Augmented Sustainable Energy System

given by:
T
Ey, = / v cos(wt) - &(t) dt
0
Dissipation due to viscous damping is:
T
Fiss = / Sa(t)* dt
0

The effort expended by the neural network control is:

T
Eun = / u(t)? dt
0

Based on these, we define the energy efficiency as:

_ Ein - Ediss
E;

- Eclrl

This metric indicates what fraction of input energy remains
available after losses. A value of =~ 1 implies high efficiency,
while 7 < 0 implies that control and damping consume more
energy than the system gains from the input.

In our simulations, these integrals are evaluated numerically
using trapezoidal integration over the output of the ODE
solver. The efficiency metric 1 is reported for each controller
design to assess its sustainability impact.

4.1. Refined Energy Efficiency Metric

Initial computations
expression

of energy efficiency using the

_ Ly, — Ediss — Ectrl
= 2l
sometimes yielded negative values, which are difficult to
interpret physically in the context of a conservative dynamical
system. This occurs when the sum of damping and control
losses exceeds the injected energy, particularly for weak
forcing amplitudes.

To address this, we introduce a more robust and
interpretable performance metric:

_ E;
T~ Baw+E

diss ctrl
This ratio directly compares the energy supplied to the energy
expended. A value 77 > 1 indicates an energy-positive regime,
while 7 < 1 suggests the control and damping mechanisms
are energetically dominant, making sustained operation less
viable. This metric provides a clearer window into the
controller’s effectiveness under variable forcing conditions.

As shown in Figure 3, the modified efficiency 7 exhibits a
general increasing trend with respect to the forcing amplitude
~. This aligns with physical intuition: stronger external forcing
provides more energy for the system to harness, allowing the
neural controller to operate more effectively without excessive
expenditure.
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Modified Energy Efficiency with Linear Fit
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Figure 3. Modified energy efficiency 7 versus forcing amplitude -y, with best-fit linear
model overlaid in red.

The curve also displays oscillatory variations, indicating
transitions in the underlying dynamical regime. These
fluctuations likely correspond to bifurcations, where the
system shifts between different types of attractors (e.g.,
periodic, quasiperiodic, or chaotic). Such transitions alter the
interaction between forcing, dissipation, and control, and thus
affect the energy balance.

This analysis demonstrates that the proposed Al-based
control policy enables stable and efficient operation across a
broad range of excitation levels, while also offering insight into
the interplay between nonlinear dynamics and sustainability-
focused objectives.

To better understand the general trend of the system’s energy
performance, we fit a linear model to the modified efficiency
data 7 as a function of the forcing amplitude . The linear
regression yields the following relationship:

i = 0.097 - v + 0.024

As shown in Figure 3, the red dashed line represents the
best-fit linear model superimposed on the original efficiency
curve. This provides a baseline trend against which local
oscillations and nonlinear deviations can be measured.

The slope of the line, approximately 0.097, indicates the
rate of improvement in efficiency with respect to the external
excitation level. Physically, this suggests that for each unit
increase in forcing amplitude, the energy efficiency improves
by nearly 0.1 units. This increase reflects the enhanced ability
of the system to extract and utilize energy as more power is
injected into the dynamics.

The intercept value of approximately 0.024 represents the
baseline energy efficiency at very low forcing amplitudes.
Although relatively small, this nonzero value implies that the
neural controller maintains some degree of effectiveness even
when the external input is minimal.

Overall, this linear approximation highlights that, despite
the nonlinear structure of the Duffing system and the
complexity of the control policy, the system exhibits a nearly

monotonic and approximately linear gain in energy efficiency
with increasing external forcing. This supports the hypothesis
that Al-based control can adapt to varying input conditions
in a smooth and predictable manner, contributing to robust
sustainable performance.

4.2. Poincare Analysis with Neural-Inspired AI Control

To analyze the long-term dynamics of the Duffing oscillator
under the neural-inspired control law, we construct a Poincare
section by sampling the system state once every period of the
external forcing.

; Poincaré Section with Neural-Inspired Al Control
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Figure 4. Poincare section of the Duffing oscillator under tanh-based Al control.

Figure 4 shows the resulting Poincare section in the (z, &)
phase space. The plot reveals two distinct clusters of points,
indicating that the system converges to a stable periodic orbit.
The discrete nature of the points - rather than forming loops
or scattered clouds - implies strong periodic locking to the
external excitation.

This behavior is consistent with a subharmonic response,
likely a period-2 limit cycle, where the system returns to the
same state only after every two cycles of the forcing input. The
use of the smooth, bounded tanh(-) control function enforces
regularity and prevents chaotic divergence.

Notably, the structure of the controller appears to stabilize
the dynamics early, as the same Poincare pattern emerges
regardless of whether short or long simulation times are
used. This suggests that the controller is effectively damping
transients and promoting fast convergence to a periodic
attractor. Such behavior is desirable in sustainability-aware
systems, as it promotes predictable and bounded motion,
reducing long-term mechanical stress and energy waste.

4.3. Bifurcation Structure Under Neural-Inspired AI
Control

To study how the dynamical behavior of the Duffing
oscillator changes with external forcing, we construct a
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bifurcation diagram by varying the forcing amplitude v while
holding other system parameters constant. At each value of
v, the system is simulated over a long time interval, and the
displacement x(t) is sampled once per period of the external
forcing, after discarding transients. These stroboscopic
samples form the Poincare section, and their evolution with
~ reveals the system’s qualitative transitions.

- Bifurcation Diagram with Neural-Inspired AI Control
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Figure 5. Bifurcation diagram showing Poincare-section displacement values as a
function of forcing amplitude y, under neural-inspired tanh-based control.

As seen in Figure 5, the system exhibits strongly regular
behavior across a wide range of -y. For most values, a single or
a few discrete points appear in the Poincare section, indicating
that the system settles into a stable period-1 or low-period
periodic orbit. This suggests that the neural-inspired control
law is effective in suppressing chaotic or high-dimensional
behavior, even as the forcing amplitude increases.

Atisolated values of v, such as near v ~ 0.23 and v ~ 0.50,
the bifurcation diagram shows hints of period doubling, where
two or more points appear. However, there is no evidence
of fully developed chaos (e.g., wide bands of points), which
typically characterize the classical Duffing oscillator without
control.

This indicates that the control architecture enforces
nonlinear regulation, maintaining the system in a predictable,
bounded regime. From a sustainability perspective, this is
highly desirable: it leads to energy-efficient, stable operation
with low mechanical wear and controllable dynamics.

4.4. Dynamic Stability Analysis Under Neural-Inspired
Control

We analyze the local dynamic stability of the Duffing
oscillator under the neural-inspired control law: Linearizing
the system around the equilibrium point (z, %) = (0,0), and
assuming ¢ ~ 0, we approximate:

ou ou

= =05, — =0.2
o 05 5% 0-25

z=0,2=0 z=0,2=0

The Jacobian matrix becomes:

J= “(a O_ 0.5) —(6 _10_25)} = [1(.)5 0})5]

The eigenvalues of this matrix are:

)\1 ~ —12, )\2 ~ 1.25

These are real and of opposite sign, indicating that the
equilibrium is a saddle point, and therefore locally unstable
in the linearized system.

However, simulations of the full nonlinear system reveal
a different behavior. Despite the linear instability, the
neural control stabilizes the dynamics globally by bounding
trajectories and guiding them into periodic attractors.

Trajectories Near Equilibrium under AI Control

Figure 6. Phase-space trajectories near the origin under Al control. Despite linear
instability, all trajectories remain bounded.

As shown in Figure 6, all nearby trajectories remain
confined to smooth, closed orbits. This illustrates how
nonlinear control can override local instability and ensure
practical dynamic stability - an essential property for ensuring
long-term sustainability in controlled physical systems.

5. Global Boundedness and Lyapunov-
Based Stability of the Tanh Controller
To rigorously verify the stability of the Duffing oscillator
under the proposed control law, we construct and analyze

a Lyapunov function to establish global boundedness of the
system trajectories.

5.1. Candidate Lyapunov Function

We define a standard energy-based Lyapunov function:
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1 1 1
Viz,2) = 53':2 + 50[:1:2 + 151"4,

which captures the total kinetic and potential energy of the
Duffing system. This function is positive definite and radially
unbounded for @ > 0, and serves as a natural candidate for
analyzing energy-based stability.

Taking the derivative of V' along the system trajectories:

V = ii+ oxd + Baii = i [j&—i—ax—i—ﬁx?’]
Using the controlled Duffing dynamics:

i = —0% — ax — Bz® + v cos(wt) + u(t)

Substituting:
V = =022 + v cos(wt)i + u(t)i
5.2. Bounding the Time Derivative
Using | cos(wt)| < 1, |u(t)] < 1, we get:
V < —0i% + (v +1)|2]

Completing the square:

2

. .o+l (v +1)2
< _ _

V< 5(3: % > + 15

This inequality shows that V is negative outside a compact
set, implying that V'(¢), and hence the state trajectories x(t),
Z(t), are globally bounded.

5.3. Numerical Validation and Boundedness Behavior

We simulate the full nonlinear system and evaluate V()
numerically over time. The evolution of V'(¢) is shown in
Figure 7. Despite transient growths and oscillations due to
periodic forcing, the function remains confined within an
upper envelope, confirming that the system energy remains
bounded under the tanh-based Al control.

The figure demonstrates that V(¢) does not exhibit
unbounded growth, even over a long simulation horizon of
100 time units. The oscillatory envelope corresponds to
the nonlinear exchange between kinetic and potential energy
in the presence of external forcing and internal damping.
The controller’s saturation and smooth feedback prevent
runaway energy amplification, ensuring long-term operational
sustainability.

The Lyapunov analysis and simulation results jointly
confirm that the tanh-based neural-inspired controller
stabilizes the Duffing oscillator in a globally bounded regime.
Despite local linear instability near the origin, the nonlinear
saturation of the control law and its state- and time-dependent
structure prevent excessive energy accumulation. This makes
it suitable for applications requiring robust energy control,
sustainability, and nonlinear system regulation under uncertain
or dynamic inputs.

Lyapunov Function V(t) Under Tanh Control
T : :

05 . . . .
0 20 40 60 80 100

t

Figure 7. Time evolution of the Lyapunov function V (x(t), &(t)) under neural-inspired
tanh control.

6. Conclusions

The findings of this research highlight the subtle but
profound ways in which a bounded, nonlinear Al-inspired
controller can reshape the behavior of a classical nonlinear
oscillator. ~ While the Duffing system is known for its
rich bifurcation structure and sensitivity to initial conditions,
the introduction of a smooth tanh-based control policy
dramatically altered the system’s long-term dynamics.

Throughout the simulations, the neural-inspired controller
consistently promoted structured and predictable motion. The
Poincare section revealed tight clusters of recurring states,
suggesting that the system, even in the presence of periodic
forcing, avoids chaotic divergence and converges toward
attractors of low periodicity. This was further validated by the
bifurcation diagram, where extended intervals of single-valued
or minimally bifurcated responses indicated strong resistance
to dynamical fragmentation as the forcing amplitude varied.
Notably, even near transitions where bifurcations typically
emerge, the controller maintained coherence in the system
response.

Perhaps most telling was the time evolution of the Lyapunov
function, which remained bounded and oscillatory over an
extended horizon. The function’s peaks and troughs reflected
the natural ebb and flow of kinetic and potential energy in
the system but offered no indication of runaway growth or
divergence. This bounded behavior, visualized clearly in the
Lyapunov plot, confirmed that the control strategy enforces
energetic discipline even when the system is externally excited.

In a parallel line of evidence, the energy -efficiency
metric presented an upward trend with increasing excitation,
suggesting that the controller not only stabilizes the system
but also facilitates more effective interaction with the
external environment. While small resonant disturbances
were observed as local deviations in the curve, the overall
progression hinted at adaptive entrainment, where the control
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implicitly tunes the system to operate efficiently in response to
external input.

Together, these observations converge on a broader insight:
the tanh-based control policy, though simple in formulation,
embeds enough structural nonlinearity to modulate a highly
sensitive system into one that behaves robustly and sustainably.
Its boundedness, smoothness, and time-adaptive nature
contribute simultaneously to stability, predictability, and
energy-aware operation. These characteristics are crucial
not only for theoretical control design but also for practical
applications where safety, reliability, and efficiency must
coexist under dynamic conditions.

This work illustrates the potential of neural-inspired design
philosophies in physical control systems and underscores
the importance of interpretability when blending Al with
nonlinear dynamics. The conclusions drawn here are not
about the elimination of complexity, but rather about learning
to shape it into something useful, sustainable, and ultimately
more human-aligned.
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