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Abstract: Antiretroviral therapy (ART) adherence is crucial for HIV/AIDS control, yet patient default remains a significant
challenge. Defaulter tracing aims to re-engage patients lost to follow-up, but its quantitative impact under varying conditions
needs assessment. This study employs numerical simulations of a deterministic compartmental HIV/AIDS model to evaluate the
impact of varying defaulter tracing effectiveness (DTeff ) and ART retention rates (θ) on epidemic dynamics within Kenya. The
model, incorporating susceptible, infected, on-ART, not-on-ART, and under-tracing compartments, was solved using the Runge-
Kutta-Fehlberg (RKF45) method with parameters informed by data. Scenarios explored DTeff levels from 45% to 75% and
retention rates (θ) from 65% to 85%. Simulation results demonstrate that increasing DTeff significantly reduces the untreated
infected population (INARV ) and the size of the defaulter population (DTR), while increasing the population maintained on
ART (IARV ). However, improving the retention rate (θ) showed a significant impact of reducing the need for tracing and the size
of the untreated population, while substantially increasing ART coverage. The findings highlight that while effective defaulter
tracing is a vital component, particularly when retention is suboptimal, improving ART retention is fundamental for long-term
HIV control. This study shows the need for integrated public health strategies that combine robust, proactive retention efforts
with efficient defaulter tracing mechanisms to effectively manage the HIV/AIDS epidemic.
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1. Introduction

Human Immunodeficiency Virus/Acquired Immunodeficiency
Syndrome (HIV/AIDS) remains a major global health
burden, requiring sustained efforts in prevention, treatment,
and care [12]. While Antiretroviral Therapy (ART) has
transformed HIV into a manageable chronic condition, its
long-term success lies on maintaining high levels of treatment
adherence [9]. A significant challenge faced by HIV programs
worldwide is patient default from ART, where individuals
interrupt or cease treatment [1, 10]. Defaulting can lead
to severe consequences, including viral rebound, disease
progression, the development of drug resistance, and an
increased risk of HIV transmission within the community.

Defaulter tracing has emerged as a vital public health

intervention designed to address this challenge. It
involves systematically identifying, locating, and supporting
individuals who have missed scheduled clinic appointments
or discontinued ART, with the aim of re-engaging them in
care [4, 6]. Effective defaulter tracing can improve retention in
care, enhance treatment adherence and ultimately contribute to
better health outcomes for individuals and the community.

Despite the recognized importance of defaulter tracing,
there is a need for a deeper quantitative understanding of how
different tracing strategies impact HIV epidemic dynamics,
particularly concerning variations in tracing effectiveness and
its interaction with overall retention program [3]. Evaluating
the effectiveness of defaulter tracing interventions is essential
for optimizing resource allocation and designing evidence-
based control programs. While empirical studies exist [4],
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mathematical modeling and numerical simulation provide
powerful tools to explore complex dynamics and compare
the potential impact of different intervention scenarios over
time [2].

The goal of this study is to assess the potential
impact of defaulter tracing effectiveness and ART retention
strategies on achieving HIV/AIDS epidemic control. To
achieve this, the study aims to numerically simulate an
HIV/AIDS mathematical model to evaluate how varying
levels of defaulter tracing effectiveness influence key epidemic
indicators. Furthermore, it seeks to quantify the impact of
different ART retention rates on the dynamics of the HIV-
infected population, both on and off treatment, and to explore
the combined effect of defaulter tracing effectiveness and
ART retention on population subgroups relevant to epidemic
control, such as those on ART, not on ART, and individuals
under tracing.

The investigation employs a compartmental mathematical
model which divides the population into susceptible, infected,
infected on ART, infected not on ART, and defaulters under
tracing compartments.

2. Methodology
This section details the methods employed in the numerical

simulation study to assess the impact of defaulter tracing
strategies on HIV/AIDS dynamics.

2.1. Mathematical Model

The simulation study utilizes a deterministic compartmental
mathematical model representing the transmission dynamics
of HIV/AIDS, incorporating treatment and defaulter
tracing. The model divides the total population into five
compartments: Susceptible (Sp), Infected (IT ), Infected
receiving Antiretroviral Therapy (IARV ), Infected but not
receiving ART (INARV ), and individuals previously on ART
who have defaulted and are currently under Defaulter Tracing
(DTR). The flow between these compartments is governed
by parameters representing infection, treatment initiation,
defaulting from treatment, natural mortality, disease-induced
mortality, and the processes of tracing and re-engagement into
care as shown in Figure 1.
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Figure 1. Flow diagram of the HIV/AIDS model with defaulter tracing. Arrows indicate the transition of individuals between compartmentsSp (Susceptible), IT (Infected Total/Initial),
IARV (Infected on ART), INARV (Infected not on ART), andDTR (Defaulters under Tracing). Parameters governing the transitions are shown alongside the arrows.

The dynamics of the system are described by the following system of ordinary differential equations (ODEs), derived from the
flow diagram depicted in Figure 1:

dSp
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= πN − λcSpIT
N

− µSp
dIT
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=
λcSpIT
N

− (β + µ)IT

dIARV
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= φβIT − (γ + µ)IARV +DTeffωDTR

dINARV
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= (1− φ)βIT + γIARV − (α+ µ+ δ)INARV + (1−DTeff )ωDTR

dDTR

dt
= αINARV − (ω + µ)DTR

(1)

Here, the parameters (π, λ, c, µ, β, φ, γ, α, δ,DTeff ) represent various epidemiological and intervention rates as defined in
Table 1.
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2.2. Numerical Simulation Setup

2.2.1. Numerical Method
The system of ordinary differential equations (ODEs) (1)

describing the HIV/AIDS dynamics was solved numerically
using the Runge-Kutta-Fehlberg (RKF45) method. This
method is well-suited for solving systems of ODEs,
particularly when adaptive step-size control is beneficial for
maintaining accuracy and efficiency, as is often the case in

modeling epidemiological dynamics.
The RKF45 method combines a fourth-order Runge-Kutta

method with a fifth-order Runge-Kutta method to estimate the
solution and the local truncation error at each step. Let yn be
the numerical approximation of the solution vector y(t) at time
tn, and let h be the step size. The formulas for advancing from
tn to tn+1 = tn + h involve calculating several intermediate
stages (Ki):
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K2 = hf

(
tn +

1

4
h, yn +

1

4
K1

)
(3)

K3 = hf

(
tn +

3

8
h, yn +

3

32
K1 +

9

32
K2

)
(4)

K4 = hf

(
tn +

12

13
h, yn +

1933

2197
K1 −

7200

2197
K2 +

7296

2197
K3

)
(5)

K5 = hf

(
tn + h, yn +

439

216
K1 − 8K2 +

3680

513
K3 −

845

4104
K4

)
(6)

K6 = hf

(
tn +

1

2
h, yn −

8

27
K1 + 2K2 −

3544

2565
K3 +

1859

4104
K4 −

11

40
K5

)
(7)

Such that the fifth-order approximation (yn+1) and the fourth-order approximation (zn+1) are given below:
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The difference |yn+1 − zn+1| provides an estimate of the
local error. This error estimate is used to adjust the step
size h dynamically, ensuring that the error remains within a
specified tolerance level throughout the simulation. Numerical
simulations were implemented using MATLAB.

2.2.2. Parameter Values and Initial Conditions
The simulations were initialized using population data

relevant to Kenya, particularly focusing on the 15–64 age
group.

1. The total population at risk (age 15–64) was estimated
at 52 million [12]. We thus set the initial susceptible
population Sp(0) = 52, 000, 000.

2. According to [8], the people living with HIV (PLHIV)

are estimated to be 1.6 million. Thus, we set IT (0) =
1, 600, 000.

3. Out of the PLHIV population, approximately 1.338
million were estimated to be on ART [12], thus
IARV (0) = 1, 338, 000.

4. This implies the initial population infected but not on
ART is INARV (0) = IT (0)−IARV (0) = 1, 600, 000−
1, 338, 000 = 262, 000.

5. Defaulter tracing was assumed to be initially ineffective
or not fully established, which is consistent with
challenges noted in [4, 10], hence DTR(0) = 0.

The baseline parameter values used for the simulations
are listed in Table 1, derived from literature, reports, and
assumptions.

Table 1. Baseline Parameter Values for Numerical Simulation.

Parameter Description Value Source

π Recruitment (persons/year) 5250 [11]

β Rate at which infected use ARTs 0.0015 Assumed

α Tracing rate of defaulted persons 0.0055 Assumed

δ HIV-related death rate 3.45 × 10−5 [12]

φ Proportion defaulting medication 0.75 [12]
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Parameter Description Value Source

µ Natural death rate 3.56 × 10−4 [11]

c Effective contact rate 3.72 × 10−4 Assumed

γ Rate of dropping out of care 3.76 × 10−4 [5]

θ Rate of retention on ARV [0.65 − 0.85] Assumed

DTeff Defaulter tracing effectiveness [0.45 − 0.75] Assumed

ω Awareness campaigns for ART uptake 0.005 Assumed

The parameters varied in the simulation scenarios are the
defaulter tracing effectiveness, DTeff , and the ART retention
rate, θ. The retention rate θ determines the rate of dropping
out of care γ via the relationship γ = (1− θ)φβ.

2.2.3. Simulation Scenarios
To evaluate the impact of key interventions on HIV/AIDS

dynamics, several simulation scenarios were conducted by
varying specific model parameters, while keeping others at
their baseline values (Table 1). The simulations focused on
the effects of defaulter tracing effectiveness (DTeff ) and ART
retention rate (θ).

Scenario 1: Varying Defaulter Tracing Effectiveness
(DTeff ) In this set of simulations, the effectiveness of the
defaulter tracing program was varied to assess its impact on
the population dynamics. The baseline parameter values were
used, except for DTeff , which was set to three different levels
representing low, moderate, and high effectiveness:

1. Low effectiveness: DTeff = 0.45 (45%)
2. Moderate effectiveness: DTeff = 0.60 (60%)
3. High effectiveness: DTeff = 0.75 (75%)

The results of these simulations are presented to show
the dynamics of the traced defaulter population (DTR), the
population on ART (IARV ), and the population infected but
not on ART (INARV ) over the simulation period.

Scenario 2: Varying Retention Rate (θ) This set of
simulations explored the impact of the ART retention rate
(θ) on the epidemic dynamics. The retention rate directly
influences the rate at which individuals abandon ART (γ),
calculated as γ = (1 − θ)φβ. Three levels of retention were
simulated:

1. Low retention: θ = 0.65 (65%)
2. Moderate retention: θ = 0.75 (75%)
3. High retention: θ = 0.85 (85%)

All other parameters were kept at their baseline values. The
simulations illustrate how different retention levels affect the
size of the defaulter population requiring tracing (DTR), the
population successfully maintained on ART (IARV ), and the
population infected but not on ART (INARV ).

All simulations were run for a period of 1800 days,
equivalent to approximately 5 years, to observe both short-
term and medium-term dynamics of the interventions.

3. Results
This section presents the results obtained from the numerical

simulations of the HIV/AIDS model (1) under different
scenarios of defaulter tracing effectiveness (DTeff ) and ART
retention rate (θ).

3.1. Impact of Defaulter Tracing Effectiveness (DTeff )

The following figures illustrate the dynamics of the DTR

populations over 1800 days when varying the effectiveness of
defaulter tracing (DTeff = 45%, 60%, 75%).

Figure 2. Defaulter Tracing Population (DTR) over Time for VaryingDTeff .

Figure 2 shows the number of individuals in the defaulter
tracing population (DTR) over time. Initially, the number of
defaulters being traced increases rapidly as ART programs
identify individuals who have defaulted. The peak number
of individuals under tracing is higher and occurs later when
tracing effectiveness is lower (DTeff = 45%), as inefficient
tracing allows defaulters to accumulate. Conversely, higher
tracing effectiveness (DTeff = 75%) leads to a lower peak
and a faster decline, indicating that individuals are being
successfully returned to ART more quickly, reducing the size
of the defaulter population.
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Figure 3. Population under ART (IARV ) over Time for VaryingDTeff .

Figure 3 illustrates the impact of tracing effectiveness
on the population receiving ART (IARV ). Higher tracing
effectiveness (DTeff = 75%) results in a larger number of
individuals maintained on ART over the simulation period
compared to lower effectiveness levels. This is because
more effective tracing successfully re-engages defaulters,
preventing sustained treatment interruptions and contributing
to higher overall retention in the ART program. Lower tracing
effectiveness (DTeff = 45%) leads to a smaller peak and a
faster decline in the IARV population due to higher dropout
rates not being adequately compensated by tracing efforts.

Figure 4. Population Not under ART (INARV ) over Time for VaryingDTeff .

Figure 4 shows the dynamics of the population infected with
HIV but not currently receiving ART (INARV ). Increased

tracing effectiveness leads to a lower peak and a more rapid
decline in the INARV population. When DTeff = 75%,
more defaulters are successfully traced and returned to care
(moving out of DTR to IARV ), thus reducing the number
of individuals contributing to the INARV population (either
directly or indirectly via γ). Lower effectiveness (DTeff =
45%) results in a higher peak and slower decline of INARV ,
indicating a larger population of untreated individuals who
pose a risk for further transmission and disease progression.

3.2. Relationship Between Untraced and Traced
Populations

Figure 5. Dynamics of Population Not under ART (INARV ) and Population under
Defaulter Tracing (DTR) over Time (Baseline Scenario).

Figure 5 compares the dynamics of the population not
under ART (INARV ) and the population actively being traced
(DTR). Initially, both populations increase. The INARV curve
peaks earlier and then declines, while the DTR curve rises
sharply as tracing efforts intensify and then stabilizes before
declining. The subsequent decline in INARV is influenced
by the effectiveness of tracing (transferring individuals from
DTR back to IARV ) and treatment initiation. The merging
trends suggest that, over time, a significant portion of
the untreated population is captured by the tracing system.
This highlights the potential effectiveness of tracing and
reintegration strategies in reducing the overall population of
untreated HIV infections.

3.3. Impact of Retention Rate (θ)

The following figures show the effect of varying the ART
retention rate (θ = 65%, 75%, 85%) on the different population
compartments. Recall that γ = (1− θ)φβ.
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Figure 6. Defaulter Tracing Population (DTR) over Time for Varying Retention Rate θ.

Figure 6 demonstrates how the ART retention rate affects
the number of individuals needing tracing (DTR). At a low
retention rate (θ = 65%), more individuals default from ART,
leading to a larger number entering the tracing population,
resulting in a higher peak for DTR. As the retention rate
improves (θ = 75% and θ = 85%), fewer individuals default,
significantly reducing the number requiring tracing. With
high retention (θ = 85%), the DTR population remains low
throughout the simulation, indicating that proactive retention
minimizes the need for reactive tracing.

Figure 7. Population under ART (IARV ) over Time for Varying Retention Rate θ.

Figure 7 shows the impact of retention rate on the
population actively receiving ART (IARV ). Higher retention
rates (θ = 85%) lead to a significantly larger and more
sustained population on ART compared to lower retention
rates (θ = 65%). Improved retention directly translates
to better treatment coverage and stability within the ART
program. While all scenarios show an eventual decline

(potentially due to mortality exceeding recruitment into ART
over the long term), higher retention significantly delays and
mitigates this decline.

Figure 8. Population Not under ART (INARV ) over Time for Varying Retention Rate θ.

Figure 8 illustrates the effect of retention on the population
infected but not receiving ART (INARV ). At low retention
(θ = 65%), the INARV population peaks at a high level and
declines slowly, as many individuals drop out of treatment.
Increasing the retention rate to 75% and further to 85%
significantly reduces the peak size and accelerates the decline
of the INARV population. With high retention (θ = 85%), the
number of untreated individuals decreases almost immediately,
demonstrating the powerful effect of sustained ART adherence
in controlling the untreated, infectious population.

3.4. Sensitivity of Parameters (Numerical Evaluation)

To complement the simulation results and identify
parameters with a strong influence on the epidemic potential
under the specific baseline conditions used, Table 2 presents
numerically evaluated sensitivity indices for the basic
reproduction number (R0). These indices were calculated
using the baseline parameter values from Table 1.

Table 2. Numerically Evaluated Sensitivity Indices ofR0.

Parameter Sensitivity Index (ΥR0
P )

π (Recruitment rate) 1.0000

β (ART use rate) 4.62 × 10−7

α (Defaulter tracing rate) -1.0001

δ (HIV-related death rate) 8.36 × 10−6

φ (Medication default rate) 0.0000

µ (Natural death rate) 7.81 × 10−4

λ (Probability of infection) 1.0000

c (Contact rate of infection) 1.0000

ω (Rate of return of defaulters) 0.0000

γ (Proportion/rate of defaulters) 7.34 × 10−4
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Based on the numerical values presented in Table 2 (from
the source document), the parameters with a sensitivity index
magnitude of 1 (π, λ, c, α) appear to be the most influential
on the calculated R0. The positive indices for recruitment
and transmission parameters (π, λ, c) confirm their role in
driving the epidemic. The large negative index for the tracing
initiation rate (α) suggests that, under the assumptions leading
to this numerical result, increasing the rate at which non-
ART individuals are identified for tracing significantly reduces
R0. The other parameters, including ART initiation rate (β),
mortality rates (δ, µ), and ART drop out rate (γ), show very
small indices in this numerical evaluation.

4. Discussion

The numerical simulations conducted in this study provide
quantitative insights into the impact of defaulter tracing
effectiveness (DTeff ) and ART retention rate (θ) on the
dynamics of HIV/AIDS within the modeled population,
representing the context of Kenya.

Impact of Defaulter Tracing Effectiveness: The results
clearly demonstrate that increasing the effectiveness of
defaulter tracing significantly improves HIV control outcomes.
As shown in Figures 2, 3, and 4, higher tracing effectiveness
(e.g., DTeff = 75%) leads to:

1. A smaller peak and faster resolution of the defaulter
population (DTR), indicating efficient re-engagement.

2. A higher and more sustained number of individuals
maintained on ART (IARV ), reflecting improved
treatment coverage.

3. A lower peak and faster decline in the number
of individuals infected but not on ART (INARV ),
signifying reduced untreated prevalence and lower
transmission potential.

Conversely, low tracing effectiveness (DTeff = 45%)
allows the defaulter population to grow larger, diminishes
the number of people successfully retained on ART, and
sustains a larger population of untreated individuals for longer
periods. This indicates that robust tracing mechanisms are
crucial for mitigating the negative consequences of treatment
interruption. Figure 5 further highlights the interplay, showing
how effective tracing efforts (DTR) directly contribute to
reducing the untreated population (INARV ) over time.

Impact of Retention Rate: The simulations varying the
retention rate (θ) reveal its profound impact on HIV dynamics
(Figures 6, 7, 8). Improving retention from 65% to 85% results
in:

1. A significant reduction in the number of individuals
defaulting and needing tracing (DTR). High retention
proactively prevents defaults, lessening the burden on
tracing systems.

2. A substantial increase in the number of individuals
successfully maintained on ART (IARV ), leading to
better long-term viral suppression at the population
level.

3. A significant reduction and faster decline in the

untreated population (INARV ). High retention
minimizes the population of individuals who are not
virally suppressed and can transmit the virus.

These findings emphasize that strategies aimed at improving
ART adherence and retention are fundamental to achieving
long-term HIV epidemic control. Even with effective tracing,
poor retention leads to a persistently high number of untreated
cases and a large tracing workload.

The results suggest an important interaction between tracing
and retention. At lower retention rates, effective defaulter
tracing plays a critical role in mitigating the damage by
returning individuals to care. However, as retention improves,
the reliance on tracing diminishes, allowing resources to
potentially be shifted towards maintaining high retention and
other prevention efforts. A well-structured HIV control
program should therefore integrate both proactive retention
strategies (counseling, support groups, addressing barriers)
and efficient reactive defaulter tracing mechanisms. The
simulations indicate that combining high retention (e.g.,
85%) with effective tracing would yield the most significant
reductions in untreated HIV prevalence and maximize the
population benefiting from ART.

Public health policies should therefore prioritize a dual
approach: strengthening systems to keep patients on ART
while also implementing efficient tracing systems to recover
those who inevitably drop out of care [7, 12].

5. Conclusion

This study utilized numerical simulations of a
compartmental HIV/AIDS model to quantitatively evaluate
the impact of defaulter tracing effectiveness (DTeff ) and
ART retention rates (θ) on controlling the HIV epidemic in
Kenya. The simulations provide valuable insights into how
these interventions shape the dynamics of different population
subgroups over time.

The key findings from the simulations reinforce the
importance of both defaulter tracing and retention strategies.
Our results demonstrate that:

1. Effective defaulter tracing significantly mitigates the
negative impact of ART default. Increasing tracing
effectiveness (DTeff ) leads to a quantifiable reduction
in the untreated HIV-positive population (INARV ) and
the size of the defaulter population (DTR), while
concurrently increasing the number of individuals
successfully maintained on ART (IARV ). This
highlights defaulter tracing as a vital tool for improving
treatment coverage and reducing transmission potential,
particularly in the earlier phases of ART dropout.

2. Improving ART retention has a profound and arguably
more fundamental impact on epidemic control. Higher
retention rates (θ) significantly reduce the number of
individuals defaulting and requiring tracing (DTR),
substantially increase the population benefiting from
sustained ART (IARV ), and lead to a faster and
more significant decline in the untreated, infectious
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population (INARV ). This signifies that proactive
measures to keep individuals engaged in care are crucial
for long-term HIV suppression.

3. Tracing and retention strategies are complementary.
While high retention minimizes the need for tracing,
effective tracing provides an essential support for
individuals who default, especially when retention rates
are suboptimal. A combination of high retention and
effective tracing yields the best outcomes in reducing the
untreated HIV burden.

These findings confirm that defaulter tracing, when
implemented effectively, serves as a crucial intervention for
HIV/AIDS control by reducing the population of untreated
individuals and supporting sustained treatment engagement.
However, the simulations strongly suggest that prioritizing and
enhancing ART retention strategies is paramount for achieving
efficient and sustainable long-term epidemic control.

In conclusion, this numerical study quantitatively
demonstrates the significant positive impact of both effective
defaulter tracing and high ART retention on controlling HIV
spread. By guiding investments in these complementary
strategies, public health programs can accelerate progress
towards achieving HIV epidemic control goals.

6. Recommendations

Based on the simulation results attained in this study,
the following policy and programmatic recommendations are
proposed to enhance HIV/AIDS epidemic control:

1. Strengthen and Scale Up Defaulter Tracing Programs:
Health systems should invest in and strengthen proactive
defaulter tracing programs. This includes utilizing
effective mechanisms such as community health
workers, digital health tools (e.g., SMS reminders,
mHealth apps), and routine monitoring systems to
promptly identify and re-engage individuals who have
defaulted from ART [3, 6].

2. Prioritize and Enhance ART Retention Strategies:
A strong emphasis must be placed on improving
ART retention through comprehensive, patient-centered
strategies. These should include enhanced counseling,
robust peer support programs, proactive measures to
address socio-economic barriers to adherence (e.g.,
transportation, food security), and the implementation of
differentiated service delivery models tailored to patient
needs [7].

3. Foster an Integrated Approach: An integrated approach
that combines robust retention initiatives with efficient
and responsive tracing systems is likely to be the
most effective strategy for maximizing ART coverage,
minimizing treatment interruptions, and ultimately
reducing HIV transmission. These two prongs should
not be seen as mutually exclusive but as synergistic
components of HIV care.

4. Utilize Data-Driven Decision Making for Resource
Allocation: Mathematical modeling and simulation,

informed by real-time programmatic data and local
surveillance, should be continuously utilized to optimize
the allocation of resources between retention and tracing
activities. This can help tailor interventions based on
specific contexts, program performance, and evolving
epidemic dynamics.

5. Invest in Research for Effective Tracing Modalities:
Further operational research is valuable to assess and
identify the most cost-effective and impactful defaulter
tracing modalities in different settings, considering
factors like population density, mobility, and available
infrastructure.
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