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Abstract 

Image semantic segmentation is essential in fields such as computer vision, autonomous driving, and human-computer 

interaction due to its ability to accurately identify and classify each pixel in an image. However, this task is fraught with 

challenges, including the difficulty of obtaining detailed pixel labels and the problem of class imbalance in segmentation 

datasets. These challenges can hinder the effectiveness and efficiency of segmentation models. To address these issues, we 

propose an active learning semantic segmentation model named CG_D3QN, which is designed and implemented based on an 

enhanced Double Deep Q-Network (D3QN). The proposed CG_D3QN model incorporates a hybrid network structure that 

combines a dueling network architecture with Gated Recurrent Units (GRUs). This novel approach improves policy evaluation 

accuracy and computational efficiency by mitigating a Q-value overestimation and making better use of historical state 

information. Our experiments, conducted on the CamVid and Cityscapes datasets, reveal that the CG_D3QN model significantly 

reduces the number of required sample annotations by 65.0% compared to traditional methods. Additionally, it enhances the 

mean Intersection over Union (IoU) for underrepresented categories by approximately 1% to 3%. These results highlight the 

model’s effectiveness in lowering annotation costs, addressing class imbalance, and its versatility across different segmentation 

networks. 
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1. Introduction 

Semantic Segmentation, as a pixel-level image semantic 

label classification task, aims to classify each pixel in an 

image to achieve accurate segmentation of semantic regions 

in the image [1]. Semantic segmentation plays a crucial role in 

popular AI fields such as autonomous driving [2], medical 

imaging, and augmented reality. However, current research 

faces two major limitations. First, compared to other image 

classification tasks, semantic segmentation datasets require a 

large number of high-quality pixel labels. This is particularly 

true in fields with high annotation thresholds, such as medical 

imaging and defense, where annotators need a high level of 

expertise. Additionally, manual annotation is prone to errors, 

and the annotation process is time-consuming and la-

bor-intensive. Second, the results of semantic segmentation 

may be affected by data imbalance in the segmentation dataset. 

For instance, in medical imaging [3, 4], there is often a sig-

nificant bias in the age and gender distribution of data samples, 

which can lead to the model's performance being skewed 

http://www.sciencepg.com/journal/ijdst
http://www.sciencepg.com/journal/390/archive/3901003
http://www.sciencepg.com/
https://orcid.org/0009-0007-9530-0901
https://orcid.org/0009-0007-9530-0901
https://orcid.org/0009-0007-9530-0901


International Journal on Data Science and Technology http://www.sciencepg.com/journal/ijdst 

 

52 

toward the more prevalent classes. Given the challenges of 

large-scale data and high annotation costs faced by many 

semantic segmentation studies, active learning has garnered 

attention as a method to reduce the model's dependency on 

data [5]. 

Active Learning (AL) [6], also known as query learning or 

optimal experimental design, is centered on the idea of adap-

tively selecting the most informative samples for annotation 

and training to reduce annotation costs without compromising 

model performance. Active learning methods can be broadly 

categorized into two types: traditional hand-crafted heuristic 

methods [7, 8], which select strategies generally tailored to 

specific research goals or datasets, designed by experts based 

on their knowledge or approximate theoretical criteria, and 

data-driven methods [9, 10], which are built upon prior active 

learning experiences and trained using labeled data to develop 

active learning strategies. Since the process of active learning 

can be simulated as a sequential decision-making pro-

cess—learning to make a series of decisions through interac-

tion with the environment—Reinforcement Learning (RL) [11] 

offers the possibility of training active learning query strate-

gies. 

Currently, compared to image classification [12], research 

on active learning for semantic segmentation is relatively 

scarce. Traditional active learning methods for semantic 

segmentation mainly rely on hand-crafted heuristic ap-

proaches, with the most basic active learning algorithm being 

the random sampling strategy (Random), which selects sam-

ples from the unlabeled pool randomly for annotation. Cai et 

al. [13] proposed a cost-sensitive acquisition function based 

on labeled image regions; however, in practical applications, 

this information is not static, which limits its applicability. 

Mackowiak et al. [14] introduced an active learning algo-

rithm for handling large sample segmentation datasets, which 

is region-based and does not consider the cost of image la-

beling. Gal et al. [15] proposed a decision uncertainty-based 

active learning method (BALD) that uses Bayesian Convolu-

tional Neural Networks for active learning. Although the 

aforementioned methods have made some progress in ad-

dressing semantic segmentation, they are tailored to specific 

datasets, which limits the generalization and robustness of 

the models. 

With the development of the deep learning field, deep 

neural networks have been introduced into the field of rein-

forcement learning, giving rise to Deep Reinforcement 

Learning (DRL). Current active learning methods using re-

inforcement learning typically adopt a strategy of annotating 

one sample at a time [16, 17] until the sample budget is 

reached. However, when dealing with large-scale semantic 

segmentation datasets, re-training the segmentation network 

and recalculating the corresponding rewards after each an-

notation results in low efficiency. Sener et al. [18] proposed 

an active learning algorithm based on core-set selection, 

which incrementally selects a batch of representative sam-

ples, improving annotation efficiency. Dhiman et al. [19] 

combined DRL, active learning, and recurrent neural net-

works (RNN) to propose an automatic annotation model for 

streaming applications, enhancing retrieval accuracy and 

performance. Chan et al. [20] reduced the impact on the 

segmentation network by weighting posterior and prior class 

probabilities. Casanova et al. [21] proposed a reinforcement 

learning-based active learning method (Rails), a general ap-

proach to discovering active learning strategies from data, 

but it still faces the challenge of label class imbalance during 

the active learning process. 

To address the aforementioned issues, this paper proposes 

a data-driven active learning semantic segmentation method, 

which selects and requests labels for the most relevant re-

gions from an unlabeled image set, enabling the training of a 

high-performance segmentation network with only a small 

number of annotated pixel label samples. The main contribu-

tions are as follows: 

a) Proposed Model: We introduce an active learning se-

mantic segmentation model based on an improved 

Double Deep Q-Network, transforming the pool-based 

active learning process into a Markov decision process. 

The model selects critical image regions rather than en-

tire images, improving information extraction. 

b) Q-Value Overestimation and Imbalance: To address 

Q-value overestimation and class imbalance issues, we 

incorporate a Dueling Double Deep Q-Network (Duel-

ing DDQN) and a hybrid CNN-GRU network structure, 

enhancing the model's robustness and performance. 

c) Performance Evaluation: Evaluations on CamVid and 

Cityscapes datasets demonstrate that our model re-

quests more annotations for less frequent classes, im-

proving efficiency and addressing class imbalance. The 

model also outperforms original semantic segmentation 

methods when combined with the latest segmentation 

networks. 

2. Methods 

2.1. Problem Definition 

―Given k unlabeled samples, they are placed into an unla-

beled sample pool 𝑈𝑡 . The active learning semantic seg-

mentation method selects sample regions from U for annota-

tion while simultaneously learning a query network that 

serves as a discriminative method for selecting regions to 

annotate. The annotated samples are then placed into the 

labeled sample pool 𝐿𝑡 , and the semantic segmentation 

model is trained using the samples in 𝐿𝑡, iterating until the 

annotation budget B is reached. To reduce the impact of an-

notationbudget and class imbalance, the sample selection 

strategy is crucial. 

To address this, this paper proposes a CG_D3QN active 

learning semantic segmentation model, which transforms the 

active learning semantic segmentation problem into a Mar-
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kov Decision Process (MDP), represented by the tuple (S, A, 

R, 𝑆𝑡+1), defined as follows: 

a) State Set S: Represents a set of state values. For each 

state 𝑠𝑡 ∈ 𝑆, the agent selectswhich sample regions to 

label from 𝑈𝑡 by performing an action 𝑎𝑡 ∈ 𝐴. 

b) Action Set A: Represents the action 𝑎𝑡 ∈ *𝑎1, … , 𝑎𝑛+, 

composed of n sub-actions, each representing labeling a 

region on a sample, determined based on the semantic 

segmentation network, the labeled sample pool 𝐿𝑡, and 

the unlabeled sample pool 𝑈𝑡. 

c) Reward Set R: Represents the reward value 𝑟𝑡+1 ∈ 𝑅 

obtained after each active learning iteration, calculated 

based on the difference in performance of the segmen-

tation network on DR between the current and previous 

rounds. Here, DR is a separate subset of datasamples 

used to evaluate the performance of the segmentation 

network." 

d) State Set 𝑆𝑡+1: Represents the state value at the next 

time step. 

The model adopts a pool-based active learning process 

framework as the overall architecture, with Feature Pyramid 

Networks (FPN) [24] used as the semantic segmentation 

network. The process framework is shown in Figure 1. The 

query network is modeled as the reinforcement learning 

agent, while the other components are modeled as the rein-

forcement learning environment. The state subset DS in-

cludes data samples from all classes, representing a repre-

sentative subset of the entire dataset. During training, the 

agent obtains state and action representations from the envi-

ronment and trains the query network using a reinforcement 

learning model and samples from the experience buffer. The 

query network selects an action 𝑎𝑡 and adds the annotated 

region to the labeled sample pool. These mantic segmenta-

tion network FPN is updated and the reward is calculated, 

with iterative training continuing until the annotation budget 

is reached. 

 
Figure 1. Active learning semantic segmentation workflow framework. 

2.2. Construct State Representation and Action 

Representation for Semantic Segmentation 

"Since semantic segmentation is a pixel-level semantic 

label classification task, to avoid consuming a large amount of 

memory, the state representation for reinforcement learning is 

constructed using a state subset DS. The samples in DS are 

divided into multiple patches and feature vectors are calcu-

lated for all patches. During the construction of the state 

representation, first, the information entropy at each pixel 

position within the image sample regions of the state subset is 

calculated. Three pooling operations maximum, minimum 

and average are then applied to the entropy values to 

downsample them, generating the first set of feature vectors. 

Next, the segmentation network is used to predict the number 

of pixels for each class, and these predicted values are nor-

malized to form the second set of feature vectors. Finally, the 

two sets of feature vectors for each sample region are con-

catenated to encode the state 𝑠𝑡. 

In the active learning semantic segmentation process, ac-

tion representation involves labeling the unlabeled regions 

pixel by pixel. However, each action request requires calcu-

lating the features for every region in the unlabeled samples, 

which incurs a high computational cost. To address this issue, 

during the construction of the action representation, at each 

time step t, n unlabeled regions are uniformly sampled from 

the unlabeled sample pool to form a region pool 𝑛𝑝
𝑡 , which 

approximately represents the entire set of unlabeled samples. 

Then, a candidate region 𝑥𝑡 is selected from the region pool 

𝑛𝑝
𝑡 , and the normalized count of predicted pixels for each 

class is calculated. Subsequently, the KL divergence between 

the class distributions predicted by the segmentation network 

for the labeled and unlabeled regions is computed, forming 

two sets of feature vectors. Finally, these vectors are concat-

enated with the state representation to form the action repre-
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sentation 𝑛𝑎
𝑡 . The state and action representations for se- mantic segmentation are illustrated in Figure 2. 

 
Figure 2. State representation and action representation. 

2.3. Web Framework 

2.3.1. Dual Deep Q Network 

Double Deep Q Network (DDQN) is an improved algo-

rithm of the Deep Q Network (DQN). The primary differ-

ence between DDON and DON lies in its use of double 

Q-learning to find the optimal policy, By decoupling the ac-

tion selection and value evaluation processes for the target 

Q-value, DDQN aims to eliminate overestimation bias. The 

DDON algorithm uses deep convolutional neural networks to 

approximate the state-action value function: 

(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡;  𝜃)               (1) 

where 𝜃 represents the parameters of the main network. The 

network takes the state sample 𝑠𝑡, and the action 𝑎𝑡, under 

that state as input and then outputs the corresponding 

Q-value. During training, the action that yields the maximum 

Q-value produced by the main network is selected, and this 

action is input into the target network to evaluate the 

state-action value function: 

𝑦𝑡 = 𝑟*𝑡+1+ + 

𝛾 ⋅ 𝑄(𝑠*𝑡+1+, *𝑎𝑟𝑔𝑚𝑎𝑥+{𝑎*𝑡+1+} 𝑄(𝑠*𝑡+1+, 𝑎*𝑡+1+; 𝜃); 𝜃−)  (2) 

Where 𝜃− represents the parameters of the target network, 

𝑟𝑡+1 is the immediate reward value, and 𝛾 is the discount 

factor. The goal of training is to minimize the error between 

the target value and the predicted value, commonly known as 

the Temporal Difference (TD) error. The loss function of the 

main network is defined as: 

𝐿(𝜃) = 𝐸 *(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡;  𝜃))
2

+        (3) 

where the parameters of the main network and the target 

network are updated asynchronously. This approach effec-

tively decouples the sample data from the network training. 

2.3.2. Dueling Network 

Dueling Deep Q Network (Dueling DON) introduces the 

dueling network structure to both the main network and the 

target network, The structure of the main network is shown 

in Figure 3. 

 
Figure 3. Dueling network structure. 

In the dueling network structure, the Q-value function Q (s, 
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a) is explicitly decomposed into two parts: one part is the 

value function V(s) under the state s; the other part is the 

advantage function A (s, a) of taking action a under the state 

s. 

Dueling DON improves the accuracy of action value func-

tion predictions by decoupling the value function in this way. 

The final expression for the output Q-value function is: 

𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) + (𝐴(𝑠, 𝑎; 𝜃, 𝛼) −
1

|𝐴|
∑ 𝐴(𝑠, 𝑎′; 𝜃, 𝛼)𝑎′ )                 (4) 

where: 

𝜃 represents the shared network parameters, 

𝛽 represents the network parameters for the state value 

function, 

𝛼 represents the network parameters for the action ad-

vantage function, 

𝑉(𝑠; 𝜃, 𝛽) is the value function for state 𝑠𝑡 , indicating 

whether the current state is favorable for obtaining future 

cumulative rewards, 

𝐴(𝑠, 𝑎; 𝜃, 𝛼) is the advantage function for action a, indi-

cating how beneficial each possible action is for the current 

state, 

𝑎′ represents possible actions, 
1

|𝐴|
∑ 𝐴(𝑠, 𝑎′; 𝜃, 𝛼)𝑎′  is the average value of the advantage 

function across actions. 

By combining these two evaluation values and calculating 

the advantage of each action, the dueling network can better 

understand the differences between state values and various 

actions, thereby estimating the Q-value more effectively. 

2.3.3. CG_D3QN Structure 

 
Figure 4. CG_D3QN network framework. 

In order to enable the query network model to better un-

derstand the differences between state values and different 

actions in semantic segmentation, improve the model's 

learning efficiency, and alleviate the overestimation problem 

in Deep Q Networks, the DDQN is combined with the duel-

ing network structure to form the Dueling Double Deep Q 

Network (D3QN). Additionally, since the state information 

comes from local regions of image samples, indicating that 

the environment is a Partially Observable Markov Decision 

Process (POMDP), the Q-value is not only related to the 

current state and action but also to historical state infor-

mation. Therefore, a hybrid network model combining CNN 

and GRU (CG) is introduced into the D3QN, forming the CG 

D3QN model. The CG D3QN model uses the CG network to 

fit the Q function and optimizes the entire network structure 

through the D3QN network, achieving a high-performance 

segmentation network with a small amount of labeled data. 

The framework of the CG D3QN network model is shown in 

Figure 4. 

The design approach of the CG_D3QN network model is as 

follows: 

First, the state and action information are combined and 

feature extraction is performed. The KL distance distribution 

features of the action representation, calculated by the Bias 

network, are used as coefficients to weight the state-action 

values, obtaining a more accurate action-state value. Then, 

the obtained action-state value undergoes both value evalua-

tion and advantage evaluation. Finally, the CG network is 

used to encode the historical information of the state, and 

this information is recorded in the hidden layer. This allows 

the model to fully learn previous state information during 

Q-value evaluation, thereby improving the decision-making 

performance of the model. 

3. Evaluation 

The Materials and Methods section should provide com-

prehensive details to enable other researchers to replicate the 

study and further expand upon the published results. If you 

have multiple methods, consider using subsections with ap-

propriate headings to enhance clarity and organization. 

3.1. Dataset and Metrics 

To verify the feasibility of the CG_D3QN model, the 

CamVid and Cityscapes datasets were selected to evaluate 

the semantic segmentation performance. The CamVid dataset 
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was collected using a car-mounted camera and contains 370 

training images, 104 validation images, and 234 test images, 

with a resolution of 360×480. It provides pixel-level labels 

for 11 categories, covering classes such as roads, buildings, 

cars, and pedestrians. The Cityscapes dataset is a large-scale 

dataset of urban street scenes, containing 3475 high-quality 

images with a resolution of 2048×1024, of which 2975 are 

used for training and 500 for validation, covering 19 catego-

ries in total. The experimental dataset was divided into four 

subsets, with detailed information provided in Table 1. 

Table 1. Algorithm hyperparameter setting. 

Dataset CamVid Cityscapes 

the state subset 𝐷𝑆 10 10 

The training subset 𝐷𝑇 100 150 

The evaluation subset 𝐷𝑉 260 2615 

The reward subset 𝐷𝑅 104 200 

The training subset 𝐷𝑇 , is used to train the query network 

under a fixed budget B for labeled pixel regions. Both the 

state subset 𝐷𝑆  and the training subset 𝐷𝑇 , are obtained 

through uniform sampling from the training set. The reward 

subset 𝐷𝑅  is derived from the remaining data obtained 

through uniform sampling from the validation set or the 

training set. The evaluation subset 𝐷𝑉 consists of a large 

number of training data samples retained after sampling. 

The experiment uses Mean Intersection over Union (MIoU) 

as the performance evaluation metric for the segmentation 

network. MIoU is calculated as the arithmetic mean of the 

IoUs for all categories, providing a comprehensive evalua-

tion of the pixel overlap across the entire dataset. The calcu-

lation formula is as follows: 

𝑀𝐼𝑜𝑈 =
1

𝑛+1
∑

𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝑛
𝑗=0 +∑ 𝑝𝑗𝑖

𝑛
𝑗=0 −𝑝𝑖𝑖

𝑛
𝑖=1        (5) 

In this context, 𝑝𝑖𝑖  represents the number of correctly 

classified pixels; 𝑝𝑖𝑗  represents the number of pixels be-

longing to class i but predicted as class j; and n represents the 

total number of classes. 

3.2. Experimental Environment and Parameter 

Settings 

The programming language used for the experiment is 

Python 3.8, and the framework is PyTorch 1.11. The hard-

ware environment for the experiment includes an NVIDIA 

GeForce RTX 3090 SUPER graphics card, an i9 13900 pro-

cessor, 32GB of video memory, and the Windows 11 operat-

ing system. 

To improve the efficiency of the experiment, the network 

parameters are updated in batches from the experience replay 

buffer. The hyperparameters of the reinforcement learning 

model are shown in Table 2. 

Table 2. Hyperparameter in CG D3QN model. 

Hyperparameters CamVid Cityscapes 

Region_size 80*90 128*128 

Al_algorithm / / 

Rl_episodes 100 100 

Rl_buffer 600 1000 

lr 0.001 0.0001 

gamma 0.998 0.998 

Train_batch_size 32 16 

Val_batch_size 4 1 

patience 10 10 

Num_each_iter 24 256 

R1_pool 10 10 

3.3. Active Learning Comparison Experiment 

To validate the final performance of the model, experi-

ments were conducted using the CamVid and Cityscapes 

datasets. The FPN network, pretrained on the GTAV dataset, 

was used as the backbone network for the model. First, the 

entire training set was set to 1 epoch, and five independent 

experiments were conducted using different random seeds. 

The training process consisted of 100 episodes, ultimately 

producing the query network for active learning. 

 
Figure 5. Comparison of experimental results for various algo-

rithms on the Camvid dataset. 
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This study compares the proposed active learning seman-

tic segmentation model based on CG_D3QN with three other 

active learning methods: Rails, BALD, and Random. The 

comparison was performed under different pixel region 

budgets. The effectiveness of the model training was evalu-

ated by comprehensively analyzing the MIoU during the 

validation phase. The experimental results of the four active 

learning methods are shown in Figures 5 and 6, where the 

x-axis represents the number of labeled pixel regions used 

for training, and the y-axis represents the MIoU level. 

By observing the experimental results on the small-scale 

CamVid dataset shown in Figure 7, it is evident that the tradi-

tional random sampling method (Random) and the maximum 

uncertainty method (BALD) both perform poorly under dif-

ferent budgets. This suggests that training with newly acquired 

labels does not provide additional information. Moreover, the 

CG_D3QN method shows a 1% to 5% improvement compared 

to other models, indicating that a larger label budget contributes 

to enhanced model performance. The experimental results 

demonstrate that the region selection strategy of CG_D3QN 

can help the segmentation model avoid local optima and im-

prove the overall performance of the semantic segmentation 

model. Due to the small sample size of the CamVid dataset, all 

results exhibit considerable variance, leading to further valida-

tion on the large-scale Cityscapes dataset. 

 
Figure 6. Comparison of experimental results for various algo-

rithms on the Cityscapes dataset. 

 
Figure 7. 9Visualization results on the Cityscapes dataset. 

Figure 6 presents the performance on the Cityscapes da-

taset under different budget levels. With a pixel budget of 

3840, the CG_D3QN method achieved an MIoU level of 

63.3%, while the baseline algorithm Ralis required an addi-

tional 65% of labeled pixels to reach the same performance. 

The experimental results further indicate that the CG_D3QN 

method can reliably and effectively select the image pixel 

regions that need to be labeled when handling large-scale 
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semantic segmentation datasets. 

Table 3 provides detailed records of the MIoU results, 

along with standard deviations, for the 19 classes in the Cit-

yscapes dataset under a pixel region budget of 19,200 for the 

four active learning methods. The bolded numbers indicate 

the maximum MIoU values. The experiments demonstrate 

that across different classes, the CG_D3QN method main-

tains a relatively high MIoU level compared to other active 

learning methods. Additionally, for classes with smaller 

sample sizes, such as Person, Motorcycle, and Bicycle, 

CG_D3QN also maintains a high MIoU level, confirming the 

effectiveness of this method in addressing the class imbal-

ance problem in image datasets. 

To visually demonstrate the advantages of CG_D3QN, this 

section presents a visual analysis of the selected pixel re-

gions in specific images under consistent budget conditions. 

The specific results are shown in Figure 7. Compared to tra-

ditional active learning methods such as BALD, Random, 

and reinforcement learning-based active learning method 

Rails, it can be observed that CG_D3QN includes more in-

formative labels in the selected annotation regions. Further-

more, CG_D3QN focuses more on selecting underrepre-

sented regions, thereby further enhancing the overall perfor-

mance of the model. 

Table 3. Miou results for all image categories when the budget is set to 19200. 

Method Road SideWalk Building Wall Fence Pole Traffic Light 

Bald 96.32±0.03 74.74±0.15 89.77±0.06 42.28±0.17 46.91±0.20 49.44±0.17 52.51±0.28 

Random 93.94±0.06 65.13±0.22 88.28±0.11 37.70±0.47 44.81±0.43 45.70±0.23 48.86±0.39 

Ralis 95.74±0.06 73.13±0.25 89.17±0.10 43.61±0.30 48.01±0.28 47.33±0.17 50.05±0.29 

CG_D3QN 96.99±0.03 77.55±0.14 90.85±0.06 45.58±0.12 50.03±0.14 52.18±0.13 56.53±0.23 

 

 Traffic Sign Vegetation Terrain Sky Person Rider Car 

Bald 59.56±0.22 89.31±0.05 59.08±0.12 92.64±0.05 73.01±0.10 32.46±0.34 91.52±0.06 

Random 55.47±0.39 87.92±0.10 54.58±0.29 91.73±0.17 69.70±0.17 28.98±0.51 88.82±0.12 

Ralis 57.98±0.26 88.63±0.08 57.26±0.17 90.18±0.18 92.96±0.17 33.41±0.52 91.11±0.12 

CG_D3QN 64.22±0.19 89.84±0.05 59.60±0.07 93.45±0.04 74.96±0.08 41.54±0.03 92.76±0.05 

 

 Truck Bus Train Motorcycle Bicycle 

Bald 30.29±0.40 27.13±0.29 38.40±0.51 37.29±0.39 61.08±0.21 

Random 21.29±0.66 23.66±0.69 37.55±0.89 25.99±0.67 57.38±0.42 

Ralis 36.98±0.73 35.43±0.61 54.26±0.77 34.24±0.39 61.30±0.30 

CG_D3QN 38.43±0.29 35.94±0.22 54.19±0.33 44.32±0.27 64.97±0.18 

 

3.4. Ablation Experiment 

To validate the impact of the key techniques used in the 

CG_D3QN model on its performance, two sets of ablation 

models were designed to separately test the effects of the 

Dueling network module and the combined Convolutional 

Neural Network module (CG) on the overall network per-

formance. The comparison algorithms include the original 

DDQN model, the Dueling DDQN model, and the 

CG_D3QN model. These three models were independently 

trained for 100 episodes under the same experimental pa-

rameter settings, and the experimental results are shown in 

Figure 8. 

Based on the experimental results, the following conclu-

sions can be drawn: The DDQN model exhibits significant 

performance fluctuations under different pixel budget condi-

tions, and it fails to achieve notable improvements under high 

budget conditions, indicating that this method cannot effec-

tively utilize new label information for decision-making. In 
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contrast, the Dueling DDQN model, which introduces the Du-

eling network module, achieves a high MIoU level even under 

low labeling budget conditions, and its performance gradually 

improves as the budget increases. This demonstrates that the 

Dueling network structure can understand action advantages 

and state values, effectively addressing the Q-network's value 

overestimation problem, thereby formulating more effective 

image region selection strategies. The CG_D3QN model, 

which incorporates the combined Convolutional Neural Net-

work (CG) module on top of the Dueling DDQN structure, 

achieves significant performance improvements under high 

budget conditions. This suggests that the recurrent network 

structure can effectively leverage historical state information 

in reinforcement learning, enabling the model to learn more 

valuable information and further enhancing model perfor-

mance with a large amount of state information. 

 
Figure 8. Ablation experiment results on the Camvid dataset. 

3.5. Segmentation Model Comparison 

Experiment 

To verify that the CG_D3QN model can still improve the 

performance of segmentation models when using different 

image semantic segmentation algorithms, the following ex-

periment was designed: DDRNet [25] and BiSeNet [26], both 

pretrained on the ImageNet dataset, were used as the segmen-

tation networks within the active learning framework. A com-

parison experiment was conducted on the CamVid dataset 

against the original semantic segmentation models. The image 

region budget was set to 480, and the performance of the algo-

rithms was evaluated after training for 10 epochs. The original 

semantic segmentation networks used a random strategy to 

select image regions for segmentation training, while the 

comparison method used the CG_D3QN model to select re-

gions for training. When transferring the new semantic seg-

mentation algorithms to the CG_D3QN model, the same hy-

perparameters were used for both experiments. The evaluation 

metrics included accuracy and MIoU, with the experimental 

results on the validation set shown in Table 4. 

Table 4. Model performance under different basic segmentation 

algorithms. 

Mthod Accuracy MIoU 

DDRNet 75.99 34.76 

CG_D3NQ+DDRNet 75.71 35.92 

BiSeNet 77.46 34.08 

CG_D3NQ+ BiSeNet 82.41 38.61 

According to the results in Table 4, after applying different 

semantic segmentation networks with the CG_D3QN model, 

the MIoU level of the segmentation method using the 

CG_D3QN model improved under the same budget condi-

tions. This demonstrates that the proposed method can still 

enhance model performance when using different semantic 

segmentation networks, validating the applicability of the 

model. Additionally, this section includes a visual analysis of 

the active learning region selection strategy. The results in 

Figure 9 show that on the CamVid dataset, by introducing 

the CG_D3QN active learning model, the amount of label 

information in the sample regions selected by both DDRNet 

and BiSeNet significantly increased, further validating the 

superiority of this model. 

 
Figure 9. Visualization results on the Camvid dataset. 

4. Conclusion 

This paper proposes a region-based, data-driven active learn-

ing semantic segmentation model, CG_D3QN. The model aims 

to address the challenges in semantic segmentation tasks, such as 

the difficulty and large quantity of annotation work, as well as 

the class imbalance in image samples. The CG_D3QN model 

builds on the Double Deep Q-Network structure by incorporat-

ing a dueling network module and a combined convolutional 

neural network module to learn the acquisition function during 
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the active learning process, achieving high-performance seman-

tic segmentation with a smaller amount of labeled samples. Ex-

perimental results show that this model demonstrates significant 

advantages in MIoU across multiple datasets and also improves 

performance for classes with fewer samples in large-scale da-

tasets, validating the model's effectiveness. Moreover, after ap-

plying different semantic segmentation networks, the perfor-

mance of the segmentation networks was further enhanced, thus 

validating the algorithm's applicability. In future research, the 

reinforcement learning algorithm could be further optimized by 

constructing new state and action representations for region 

selection, thereby improving the feature representation ability of 

the reinforcement model and further reducing the amount of 

annotations required. 
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