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Abstract 

Aiming at the problems of identification difficulties and low identification accuracy in modelling and identification of 

multiple-input multiple-output (MIMO) nonlinear Gaussian time-varying systems, this paper proposes an identification scheme 

based on the step-by-step approximation of multidimensional Taylor network (MTN). The aim of this paper is to improve the 

modelling of complex nonlinear systems so as to improve the prediction performance and control effect of the system. Different 

from the traditional multidimensional Taylor network identification method, this method adopts an order-by-order 

approximation strategy, which seeks its parameters sequentially from the lower order to the higher order, and continuously 

optimises the parameter weights during the parameter seeking process. Firstly, the nonlinear function model is approximated as a 

polynomial form by the order-by-order Taylor expansion, and then the weight parameters of each order of the Taylor expansion 

are calculated and updated step by step by using the algorithm based on the Variable Forgetting Factor Recursive Least Squares 

(VFF-RLS) method. Through iterative optimized of these parameters, dynamic weight assignment to each order of the Taylor 

expansion is achieved. A parameter-identified nonlinear function model is finally obtained, which can more accurately describe 

the dynamic behaviour and characteristics of the system. Finally, an arithmetic simulation is carried out through an example to 

verify the effectiveness of the proposed method. 
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1. Introduction 

For the past few years, there has been extensive and 

in-depth research on identification methods for 

time-invariant systems. However, compared to linear 

time-invariant systems, nonlinear time-varying systems are 

the most general and widely applicable system in engineer-

ing applications [1]. Recently, a number of scholars have 

started to delve into the problem of mode identification for 

nonlinear time-varying system. However, there is still lim-

ited domestic and international research on the structure of 

such system. Nonlinear system identification is one of the 
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main methods to address complex system modelling, and it 

serves as the foundation for system analysis and control. 

Therefore, research on the identification of nonlinear 

time-varying systems is of significant importance and ap-

plication value [2]. 

Currently, with the emergence of neural networks, thise 

method has become an effective approach to solving non-

linear identification problems due to their powerful nonlin-

ear approximation capabilities. Recently, a fully connected 

recurrent neural network (FCRNN) structure for nonlinear 

system recognition has been proposed by Shobana et al [3]. 

The fully connected recurrent neural network structure 

consists of feedback layers with internally adjustable 

weights, which not only endows the structure with the nec-

essary memory properties but also improves its ability to 

handle dynamic systems. The Back Propagation (BP) algo-

rithm is used to derive the equations used to update the 

weights of the proposed model. Experimental results show 

that the FCRNN model has better discriminative accuracy 

and robustness compared to feedforward neural networks 

(FFNN) and local recurrent neural networks (LRNN). Lit-

erature [4] proposes a model based on the classical Elman 

Neural Network (ENN), which connects the output neurons 

to an additional number of weighted self-feedback loops and 

adjustable weighted input signals, and updates the model 

parameters using the Lyapunov stability criterion, which 

ensures the stability of the model and the validity of the 

simulation. XuJun et al [5] proposed an efficient hinge hy-

perplane (EHH) neural network, EHH is different from the 

commonly used single hidden layer neural network, the 

hidden layer in EHH can be viewed as a directed acyclic 

graph (DAG), and the output is influenced by all nodes in the 

DAG. Each EHH neural network contains an equivalent 

Adaptive Hinge Hyperplane (AHH) tree, which is proposed 

on the basis of the Hinge Hyperplane (HH) model, and is 

well used in the direction of system identification. Applying 

the EHH neural networks to nonlinear system identification 

can achieve satisfactory accuracy with relatively low com-

putational cost. However, nonlinear identification based on 

neural networks has a series of problems due to high data 

demand, overfitting, difficulty in choosing the network 

structure, often falling into local optimums, and the need for 

high computational resource requirements, which cannot 

satisfy the demand for constructing predictive models in real 

time. In addition, compared with single-input single-output 

systems, multi-input multi-output systems are more difficult 

to model due to the more complex relationship between 

input and output variables [6, 7]. 

With the development of mathematics, statistics and 

computational methods, many new model identification 

methods and techniques are emerged. For online identifica-

tion of continuous-time nonlinear systems by sliding win-

dow type Gaussian process (GP) models, a scheme com-

bining the linear recursive least squares (RLS) method with 

the firefly algorithm (FA) in a bootstrap approach for 

tracking the time-varying system parameters and nonlinear 

functions has been proposed in the literature [8]. The Firefly 

algorithm is mainly responsible for searching the hyperpa-

rameters of the covariance function, while the least squares 

(RLS) method is used to update the system parameters of the 

linear terms and the weighting parameters of the mean 

function. Literature [9] presents a model reference adaptive 

control (MRAC) method for identifying unstable nonlinear 

systems in nonlinear parameters. The method first ensures 

that the system is stabilized at the equilibrium point by Li-

apunov's method and then is used to estimate the unknown 

system parameters by nonlinear least squares. The method is 

advantageous in identifying open-loop unstable nonlinear 

systems. Literature [10] proposed a flexible coefficient au-

toregressive model (BFM-FCAR) based on the basis func-

tion matrix with a time series and nonlinear system modeling 

framework. Using this framework, many well-known non-

linear time series models can be derived by choosing ap-

propriate basis function matrices, and the effectiveness of 

the method is demonstrated by experimental results. How-

ever, many model-based nonlinear system model identifi-

cation still suffer from high algorithmic complexity, poor 

real-time performance, and some identification schemes are 

not generalizable. 

In 2010, based on the idea of Taylor expansion, Prof. 

Hongsen Yan proposed a modelling scheme of multidimen-

sional Taylor net, which is a new dynamics modelling tool 

that can be used to solve the problem of dynamics modelling 

and identification of general nonlinear systems with unknown 

mechanisms. Professor Hongsen Yan proposed the idea of 

multidimensional Taylor network optimal control [11, 12], 

which was applied to the field of control of nonlinear systems, 

and successively carried out extensive research on the control 

problems of nonlinear time-varying systems [13], nonlinear 

time-lag systems [14] and nonlinear stochastic systems [15]. 

However, since the method performs a uniform one-time 

approximation for the Taylor-expanded mathematical poly-

nomials (hereinafter abbreviated as the MTN-DA identifica-

tion model), the approximation accuracy still suffers from a 

large error, and furthermore, there are some limitations of 

these methods in the implementation of the application and in 

high-noise environments. Based on this, this paper proposes a 

multidimensional Taylor network step-by-step approximation 

identification scheme (hereinafter abbreviated as MTN-PA 

identification model) on the basis of multidimensional Taylor 

network, which expands the complex nonlinear function 

model in the form of first-order terms, second-order terms, 

third-order terms and other higher-order terms, and performs 

step-by-step approximation of each power, respectively, so as 

to improve the accuracy of the identification of the nonlinear 

system model. 

The commonly used MTN prediction algorithms include 

DRLS algorithm, L-M algorithm and BP algorithm with 

momentum factor [16]. The recursive least squares (RLS) [17, 

18] algorithm is also a commonly used algorithm for solving 

http://www.sciencepg.com/journal/ijdst


International Journal on Data Science and Technology http://www.sciencepg.com/journal/ijdst 

 

28 

the problem of recognizing nonlinear systems containing noise 

factors and time-varying characteristics [19]. However, in the 

identification of Gaussian nonlinear time-varying systems, the 

traditional RLS estimation algorithm suffers from the problems 

of slow adaptive tracking and low accuracy, in this paper, we 

will use the least squares with forgetting factor (VFF-RLS) 

algorithm [20] to track the dynamics of nonlinear time-varying 

systems. The algorithm is able to adaptively change the data 

weights so as to better reflect the current characteristics of the 

system, so it is able to perform effective tracking approxima-

tion of Gaussian nonlinear time-varying systems. 

The main contributions of this paper are as follows: a) 

based on the multidimensional Taylor network, a step-by-step 

approximation of the recognition model is proposed, and the 

proposed scheme is easy to implement; b) based on the least 

squares with forgetting factor as the learning algorithm of the 

recognition model, it can estimate the weights in real time, 

and it can dynamically allocate the weights during the task, so 

as to retain the more valuable information, and ultimately 

improve the accuracy of the model recognition; c) through the 

experimental simulation, it is proved that the recognition 

scheme based on multidimensional Taylor network 

step-by-step approximation can utilize the multilevel infor-

mation of the data to dynamically assign the weights and 

further improve the model recognition accuracy, which pro-

vides technical support for the modeling and recognition of 

multi-input multi-output nonlinear Gaussian time-varying 

systems. d) The proposed recognition scheme is of general 

and practical value for the recognition of MIMO nonlinear 

Gaussian time-varying systems. 

2. Nonlinear Systems with 

Multidimensional Taylor Network 

Approximation 

MTN is a dynamics modelling tool that can be used to solve 

the problem of dynamics modelling and identification of 

general nonlinear systems with unknown mechanisms. 

2.1. System Description 

Considering a MIMO nonlinear time-varying system with 

Gaussian noise: 

( ) ( ( ), ) ( )j j jy k f x k k v k           (1) 

where
1 1( ) ; ( )m n

jy k R x k R   , ( )jy k is the j -th compo-

nent of y , ( )jf is an unknown nonlinear function, ( )jv k is a 

Gaussian white noise with a mean of 0 and satisfies: 

( ) ( ) ( )i j ijv k v k R k              (2) 

where δ(x) is the Dirac delta function and satisfies: 

1,      

0,     
ij

k j

k j



 


              (3) 

2.2. Multi-dimensional Taylor Network Approaching 

 
Figure 1. Multi-dimensional Taylor Network Model Structure. 
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The multi-dimensional Taylor network (MTN) adopts a 

forward single hidden layer structure consisting of an input 

layer, a hidden layer, and an output layer, as shown in Figure 1. 

For the MIMO nonlinear system in equation (1), the j -th 

output component ( 1)jy k   can be expressed based on the 

multi-dimensional Taylor network as follows: 

,

( , )

1 1

( 1) ( ( ), ) ( ) 

( ) ( ) ( )t i

j j j

N n m n

t i j

t i

y k f x k k v k

k x k v k



 

  

  
       (4) 

Where ,

1

n

t i

t

m


 , t  represents the weight before the t

-th variable product term, ( , )N n m  represents the total num-

ber of terms in the expansion, ,t i represents the power of 

variable ix in the t -th variable product term. 

Therefore, f  is composed of the weighted sum of varia-

ble product terms where the sum of the powers of variables is 

less than or equal to m . 

Literature [21] demonstrated that for a continuous function

1 2( , , , )nf x x x , which is defined on a closed interval, it can be 

approximated by a 
,

( , )

1 1

t i

N n m n

t i

t i

x



 

  expansion. ( , )N n m  is 

the total number of terms in the product term of the approxima-

tion expansion, t  is the weight value before the j -th product 

term in the approximation expansion, and ,t i  is the degree of 

the variable ix  in the t -th product term of the expansion. 

The MTN utilizes an architecture consisting of an input 

layer, hidden layers, and an output layer. Moreover, based on 

Lemma 21, as long as the number of terms is sufficiently large, 

the multivariate Taylor network model can approximate any 

function and effectively replace traditional neural networks 

for dynamic system modeling and control. 

3. Progressive Approximation of the 

Multivariate Taylor Network 

The multivariate Taylor network model given by equation 

(4) can approximate any nonlinear function. The specific 

approximation methods can be divided into two categories: 

direct approximation and progressive approximation. Direct 

approximation refers to the original model, while progressive 

approximation involves expanding the nonlinear function 

model in terms of first-order, second-order, third-order, and 

higher-order terms using a Taylor series expansion. The 

VFF-RLS (Variable Forgetting Factor Recursive Least 

Squares) algorithm with a forgetting factor is then used to 

progressively approximate each order of power terms. 

If we perform a first-order MTN expansion on equation (1), 

based on equation (4), we obtain: 

,

( , )

1 1 1

( ) ( ( ), ) ( ) 

         ( ) ( ) [ ( ) ( )]+ ( )t i

j j j

N n m nn

t t t i j

t t i

y k f x k k v k

k x k k x k v k


 
  

 

   
 (5) 

where ,

1

 2

n

t i

t

m


  . 

The first-order term of the multivariate Taylor expansion is 

included in equation (5), represented by the function

1

( ) ( )

n

t t

t

k x k


 . The higher-order remainder term is

,

( , )

,

1 11

[ ( ) ( )]  , 2t i

N n m n n

t i t i

t ti

k x k m


 
 

   , Moreover, equa-

tion (5) also includes the noise ( )jv k . If we neglect the high-

er-order remainder term in equation (5), the input-output 

relationship can be approximately expressed as: 

1

( ) ( ) ( )+ ( )

n

j t t j

t

y k k x k v k


          (6) 

By utilizing equation (6), the VFF-RLS algorithm can be 

employed to estimate the value of the first-order weight pa-

rameters ( )t k as ˆ ( )t k . The VFF-RLS algorithm will be 

introduced in section 4.1. After obtaining ˆ ( )t k , we substitute 

ˆ ( )t k  into equation (6) to obtain the first-order predicted 

output value of the system, denoted as ˆ ( )jy k . 

1

ˆˆ ( ) ( ) ( )

n

j t t

t

y k k x k


              (7) 

If we perform a second-order MTN expansion on equation 

(1), based on equation (4), we obtain: 

,

( , )
(2)
,

1 1 1 1 1

( ) ( ( ), ) ( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]+ ( )    t i

N n m nn n n

j j j t t t i t i t i j

t t i t i

y k f x k k v k k x k k x k x k k x k v k


  
    

             (8) 
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where ,

1

3

n

t i

t

m


  . 

The first-order term of the multivariate Taylor expansion is 

included in equation (8), represented by the function, and the 

second-order term
(2)
,

1 1

( ) ( ) ( )

n n

t i t i

t i

k x k x k
 

 is included. 

,

( , )

1 1

[ ( ) ( )]t i

N n m n

t i

t i

k x k



 

  is the higher-order remainder term, 

and the noise term ( )jv k  is included. If we neglect the 

higher-order remainder term in equation (8), it can be ap-

proximated as: 

(2)
,

1 1 1

( ) ( ) ( ) ( ) ( ) ( )+ ( )

n n n

j t t t i t i j

t t i

y k k x k k x k x k v k 
  

    (9) 

Differencing equation (9) with equation (7): 

(2)
,

1 1 1 1

ˆˆ( ) ( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( )+ ( ) 

n n n n

j j j t t t t t i t i j

t t t i

y k y k y k k x k k x k k x k x k v k  
   

               (10) 

At this point,
1 1

ˆ( ) ( ) ( ) ( ) 0

n n

t t t t

t t

k x k k x k 
 

   . By employing the VFF-RLS algorithm, we can estimate the value of the 

second-order weight parameters
(2)
, ( )t i k  as their estimate

(2)
,

ˆ ( )t i k . After obtaining
(2)
,

ˆ ( )t i k , we substitute ˆ ( )t k and
(2)
,

ˆ ( )t i k  into 

equation (9) to acquire the second-order predicted output value of the system, denoted as
(2)ˆ ( )jy k . 

(2) (2)
,

1 1 1

ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( )

n n n

j t t t i t i

t t i

y k k x k k x k x k 
  

                             (11) 

Equation (11) is the approximation formula obtained through second-order approximation method based on the multidimen-

sional Taylor network model. 

Similarly, the approximation formula based on the MTN model obtained by the third-order approximation method is as fol-

lows: 

(3)(3) (2)
, , ,

1 1 1 1 1 1

ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n n n n n n

j t t t i t i t i ht i h

t t i t i h

y k k x k k x k x k k x k x k x k  
     

               (12) 

The approximation formula based on the MTN model obtained through m  order approximation method is as follows: 

1( , )(3) ( )( ) (2)
, , ,

1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) )

m
n m

m
m n m

C nn n n n n n
C imm

j t t t i t i t i h it i h

t t i t i h i

y k k x k k x k x k k x k x k x k k x






   


 

       

          (13) 

where ( )ˆ m
  represents the m  th-order weighted prediction 

value, and 1( , )
m

m n mC i    represents the power of each input 

component at n dimensions when expanding the MTN to the

m -order. 

4. Multi-dimensional Taylor Network 

Stepwise Approximation Learning 

Algorithm 

Based on the structure of the MTN model, a suitable parame-

ter training algorithm can approximate any nonlinear system. In 

this paper, the Variable Forgetting Factor Recursive Least 

Squares (VFF-RLS) algorithm with a forgetting factor is em-

ployed as the learning algorithm for the MTN-PA model. 

The learning process of MTN refers to the learning of pa-

rameter weights for each term of the expansion in MTN. In 

this paper, the parameters of MTN are obtained through the 

Least Squares Learning Algorithm with Forgetting Factor 

(VFF-RLS) algorithm. 

Denote: 
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1

(1)

1

(2) (2)

,

1 1

(3) (3)

, ,

1 1 1

( , )( ) ( )

1

ˆ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )

                                      

ˆ( ) ( ( ) )
m

m n m

n

j t t

t

n n

j t i t i

t i

n n n

j t i h t i h

t i h

n
C im m

j i

i

Y k k x k

Y k k x k x k

Y k k x k x k x k

Y k k x











  



 

  

 
















1

m
n mC 



                            (14) 

Based on the equation (13), the following expression can be defined: 

(1) (2) ( )

(1) (2) ( )
1 2

( )

1 1

( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( ) ( ) ( )

             = ( ) ( ) ( )

m
j j j j j

m
i j

i m
n

t j

t n

y k Y k Y k Y k v k

k X k k X k k X k v k

k X k v k

 

    

     

  

                   (15) 

where  t k  represents the weight matrix of the i -th power, 
( ) ( )m

jY k  denotes the m -order term of ( )jy k , ( ) ( )nX k  rep-

resents the variable of the polynomial with degree n . 

According to Eq. (15) one can get: 

     

       

         

1 2

1 2

1 2

1 2

1

1

2

1

1

                                     



  

    











 n

n

n

i

i

n

i i

i i n

n
n

i i i

i i i n

X k x k

X k x k x k

X k x k x k x k

                     (16) 

The specific steps of the VFF-RLS algorithm based on the 

MTN multi-order approximation are as follows: 

1. Initialization of the relevant parameters for the i -th order 

approximation. The initial weight value of the weight pa-

rameter ( )i   for the i -th order approximation is set to

ˆ (0) 0i  , and the initial value of ( )iP   is set to (0)iP I , 

where I  denotes the identity matrix. 

2. Compute the estimation error for the i -th order ap-

proximation and denote it as
( ) ( )i
jY  . 

              1 1( ) ( )     
ii

j j j j jY y Y Y Y         (17) 

3. Compute the weight iteration parameters. 

( ) ( ) ( )( ) ( ) ( ) / [ ( ) ( ) ( )]i T i i T
i i i iK P X X P X           (18) 

1 ( )( ) ( ) [ ( ) ( )] ( )i
i i i iP I K X P              (19) 

( )
(min) (min)( ) (1 )2 iL

i i i
               (20) 

( ) 2( ) ( [ ( )] )i
iL INT Y               (21) 

where ( )INT   represents the smallest integer close to 2 ( )e  ,

(min)i  is a constant,   is the sensitive gain that can control 

the rate at which   approaches 1, and it happens when the 

estimation error 
( ) ( )i
jY   approaches 0, 1  . 

  represents the forgetting factor that reflects the influ-

ence of input-output data on the Recursive Least Squares 

(RLS) algorithm. The basic principle is to adjust the weights 

of parameter estimation based on historical data, assigning a 

larger weight to data close to time step” k ” and a smaller 

weight to data farther away from time step” k ”. 
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When the parameters of a nonlinear Gaussian MIMO sys-

tem change over time, traditional gradient descent methods 

and ordinary least squares methods may struggle to identify 

the system parameters and adapt to the effects caused by 

parameter changes. However, the Variable Forgetting Factor 

Recursive Least Squares (VFF-RLS) method, which incor-

porates a forgetting factor, can effectively reduce the weight 

of past data and increase the weight of current data for pa-

rameter identification. 

In the VFF-RLS algorithm, 0 1   is usually chosen 

such that the larger the value of  , the greater the impact of 

new data on system parameter identification and the smaller 

the impact of old data. When 0.95 1   equals a certain 

value, the VFF-RLS algorithm can effectively track 

time-varying parameters. Based on the MTN's step-by-step 

approximation algorithm’s convergence speed, both the pa-

rameter identification capability and the learning algorithm 

performance are effectively improved. 

4. Weight update: 

( )ˆ ˆ( 1) ( ) ( ) ( 1)i
i i i jK Y                 (22) 

5. Repeat steps B to D until k  , in order to obtain the 

weight parameters ˆ ( )i k  for the i -th order approximation. 

6. Return to step A to calculate the weight parameters for 

the next order approximation, until the weight parameters 

ˆ ( )i k  are estimated for each order approximation. 

7. Repeat steps A to F to calculate the 1j  -th output 

component 1
ˆ ( )jy k . 

5. Simulation Results and Analysis 

Consider the following MIMO (Multiple-Input Multi-

ple-Output) nonlinear time-varying system:  

3 ( )2
1 1 2 4 1 3 1

2

0.25 ( )cos( )
( ) sin( ) ( ) ( ) ( ) cos( ( )) ( ) ( )

sin( ( ))

x kx k k
y k k x k e x k x k x k x k v k

k x k
    


                (23) 

4 2 1
2

( )cos( ( ) ( ))2 3
2 1 3 3

1

0.2 ( ) ( )
( ) cos( ) ( ) ( )0.03cos( ( )) ( ) 0.3

12.56 sin( ( ))

x k x k x kx k x k
y k k x k v k x k x k e

k k x k
   

 
       (24) 

In this case, we focus on a MIMO nonlinear Gaussian 

time-varying system. We compare the MTN-DA model and 

the MTN-PA model with the introduction of the VFF-RLS 

algorithm. Both models adopt a 5-56-2 structure, which 

means they have 5 input nodes expanded up to the 3rd order. 

The inputs, denoted as 1 2 3 4{ ( ), ( ), ( ), ( )}Tx k x k x k x k , are 

randomly sampled from a uniform distribution within the 

interval [ 0.5,0.5] . The iteration is performed for a total of 

400 iterations, with 300 samples used for learning and 100 

samples used for testing. 1y  and 2y  represent the system 

outputs. "MTN-PA+VFF-RLS" refers to the proposed identi-

fication scheme, and "MTN-DA+VFF-RLS" represents the 

comparative scheme. 

Figure 2, figure 3, and figure 4 as well as Figure 8, figure 9, 

and figure 10 show the identification results of subsystems 

1y  and 2y  based on the MTN multistage approximation. 

Figure 2, figure 8 represents the first-order approximation, 

Figure 3, figure 9 represents the second-order approximation, 

and Figure 4, figure 10 represents the third-order approxima-

tion. As the order of approximation increases, the approxi-

mation accuracy improves. When reaching the third-order 

approximation, the errors are reduced to 0.0131 and 0.0090, 

respectively. 

Figure 5 and figure 12 display the identification error 

curves of systems 1y  and 2y  using the MTN-DA+VFF-RL 

scheme. Compared to the MTN-PA+VFF-RLS identification 

scheme, the accuracy of the MTN-DA+VFF-RL scheme falls 

between the first-order and second-order approximations, 

indicating a poorer approximation performance. 

Figure 6 and figure 13 provide a comparison among the 

desired output, MTN-PA+VFF-RLS, and 

MTN-DA+VFF-RLS for subsystems 1y  and 2y  Experi-

mental results indicate that the MTN-PA+VFF-RLS identi-

fication scheme exhibits significant improvement in identifi-

cation accuracy compared to the MTN-DA+VFF-RLS 

scheme. 

Figure 7 and figure 13 depict the identification error curves 

of subsystems 1y  and 2y  for both the MTN-PA+VFF-RLS 

and MTN-DA+VFF-RL schemes. The tracking performance 

of MTN-PA+VFF-RL is significantly better than that of the 

MTN-DA+VFF-RLS scheme during the initial stages of 

identification under the influence of the forgetting factor, 

resulting in smaller identification errors. 

Table 1 and table 2 compares the MSE calculation results 

and the test Mean Square Error (MSE) results of the two 

identification schemes. For MIMO nonlinear Gaussian sys-

tems, the MTN-PA identification scheme outperforms the 

MTN-DA identification scheme in terms of identification 

accuracy. 
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Figure 2. First-order approximation (y1). 

 
Figure 3. Second-order approximation (y1). 

 
Figure 4. Third-order approximation (y1). 

 
Figure 5. Direct approximation (y1). 

 
Figure 6. Comparison of multilevel and direct approximation (y1). 

 
Figure 7. Identification error curve (y1). 
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Figure 8. First-order approximation (y2). 

 
Figure 9. Second-order approximation (y1). 

 
Figure 10. Third-order approximation (y1). 

 
Figure 11. Direct approximation (y1). 

 
Figure 12. Comparison of multilevel and direct approximation (y1). 

 
Figure 13. Identification error curve (y1). 
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Table 1. Comparison of MSE Calculation Results for Different Identification Methods (y1). 

Identification Method MSE Performance Enhancement 

Direct approximation 0.0764 - 

first-order approximation 0.1321 - 

Second-order approximation 0.0412 46.07% 

Third-order approximation 0.0131 82.85% 

Table 2. Comparison of MSE Calculation Results for Different Identification Methods (y2). 

Identification Method MSE Performance Enhancement 

Direct approximation 0.0802 - 

first-order approximation 0.1196 - 

Second-order approximation 0.0337 57.98% 

Third-order approximation 0.0090 88.78% 

 

6. Conclusions 

The study of multi-input multi-output nonlinear Gaussian 

time-varying systems is of great significance for system mod-

elling and control design. In this paper, a recognition scheme 

based on multi-dimensional Taylor network with step-by-step 

approximation is proposed, and in order to improve the recog-

nition accuracy, the least squares method based on with for-

getting factor is used as the learning algorithm of the recogni-

tion model, which is able to dynamically allocate the weights in 

the task to improve the recognition accuracy. The experimental 

results show that this scheme is feasible and effective, which 

not only can effectively simplify the system model and improve 

the recognition accuracy, but also can cope with the challenges 

of real-time applications and high-noise environments, and 

provide technical support for the wide application and devel-

opment of nonlinear system recognition technology. 
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