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Abstract 

With construction of large-capacity direct current transmission projects and large-scale integration of renewable energy, 

frequency security of the power system is facing severe challenges. For fast and accurate online assessment of frequency security, 

a data-driven frequency security assessment model based on Generative Adversarial Network (GAN) and Metric Learning (ML) 

is proposed in this paper. Firstly, the key frequency security indicators are selected as the outputs of the model, and the input 

feature set is constructed. Then, distribution information of historical operation scenarios is learned through Wasserstein 

Generative Adversarial Network (WGAN), in order to generate operation scenarios covering typical operation modes for training 

sample set establishment. The generated operation scenarios are adjusted based on rejection sampling and resampling 

techniques, in order to increase the density of training samples near key scenes. Finally, considering inapplicability of a single 

assessment model for frequency security assessment in power systems with complicated changes of operation conditions, a 

combined assessment model for frequency security assessment composed of multiple sub-models is constructed based on Metric 

Learning for Kernel Regression (MLKR). The original distance metric is adjusted with metric learning techniques to make 

samples with similar frequency dynamics close. Then the samples with similar frequency dynamics are clustered into the same 

cluster, and the corresponding sub-model is established. A simplified Shandong power system example is used to verify the 

effectiveness of the proposed method. 
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1. Introduction 

Driven by the development of High Voltage Direct Cur-

rent(HVDC) transmission and renewable energy generation, 

the equivalent inertia and rotating reserve capacity of grids 

decreases continuously. Meanwhile, risk of accidents with 

large power shortage increases [1]. Frequency security of 

modern power system faces great challenges after accidents 

with large power shortages such as DC blocking [2]. There is 

an urgent need to carry out research on frequency security 

assessment methods for enhancing frequency security stabil-

ity of power system [3]. 

Full-time domain simulation analyses frequency dynamics 

based on detailed models. Literature [4] takes into account 

impacts of boiler thermal dynamic process on unit output 

power to improve assessment accurac. Literature [5] estab-

lishes a detailed model describing frequency dynamics of 

large thermal power units for analysing frequency dynamic 
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process after unloading. The time-domain simulation method 

takes into account the detailed model of power system, which 

can comprehensively reflect frequency dynamics [6]. How-

ever, in this process, algebraic differential equations need to 

be solved to accurately simulate the frequency response pro-

cess after active perturbation, which is quite time-consuming. 

Therefore, full-time domain simulation is unsuitable for 

online frequency security assessment [7]. 

In order to speed up the assessment process, some simpli-

fied models are applied for frequency security assessment. 

Literature [8] proposes the Average System Frequency (ASF) 

model that ignores voltage dynamics and network effects. 

Further simplification based on the ASF model leads to the 

System Frequency Response (SFR) model [9]. Based on the 

SFR model, the analytical solution of the system frequency 

response can be obtained directly without stepwise integration. 

Literature [10] proposes a new method for analysing the fre-

quency response of power systems based on DC power flow 

calculation by ignoring the influence of reactive-voltage var-

iations on active-frequency dynamics. The simplified models 

above ignore network influence and coupling relationship 

between frequency dynamics and voltage dynamics, which 

leads to poor accuracy for assessing large-scale frequency 

deviation after severe power disturbance. 

In recent years, machine learning methods have been 

widely applied in the field of online frequency security as-

sessment. Once offline training completed, the assessment 

model can be used for frequency security online assessment 

without solving algebraic differential equations. In literature 

[11] and [12], Support Vector Regression (SVR) is applied to 

assess the minimum frequency after accidents. In literature 

[13] and [14], Extreme Learning Machine (ELM) are applied 

to assess the minimum frequency after accidents. In literature 

[15], the frequency assessment method based on Random 

Forest (RF) is proposed. 

Once offline training completed, the machine learning 

model can be used for online frequency security assessment 

without solving algebraic differential equations. Accuracy of 

the model depends on adequacy of training samples and rea-

sonableness of the model structure. In most studies, operation 

states of power systems are changed randomly within a cer-

tain range for generating training samples. In this way, gen-

eralisation ability of the frequency security assessment model 

can’t be guaranteed. For different operation scenarios, fre-

quency dynamics after serious power disturbance may differ 

greatly. Large assessment errors may arise with a single ma-

chine learning model. 

Considering the above problems, a data-driven frequency 

security online assessment method based on Generative Ad-

versarial Network(GAN) and Metric Learning(ML) is pro-

posed. Firstly, the corresponding frequency security indica-

tors are selected and input features are constructed; Then, 

distribution information of historical operation scenarios is 

learned through Wasserstein Generative Adversarial Net-

work(WGAN), in order to generate that operation scenarios 

cover typical operation modes of power systems; Finally, 

considering inapplicability of a single assessment model, a 

combined assessment model for frequency security assess-

ment composed of multiple sub-models is constructed based 

on Metric Learning for Kernel Regression (MLKR). Based on 

a simplified example of Shandong Power Grid, it is verified 

that the data-driven frequency security assessment model 

based on GAN and ML proposed in this paper can quickly and 

accurately assess the frequency security after severe power 

disturbances such like DC blocking under different operating 

scenarios. 

2. Frequency Security Indicator Selection 

and Input Feature Construction 

2.1. Frequency Security Indicator Selection 

The frequency assessment model developed in this paper 

focuses on transient frequency security of the power system 

after a sudden active power disturbance. The maximum tran-

sient frequency deviation maxf , the maximum frequency 

rate of change 
ROCOF

maxf  and the quasi-steady-state frequency 

deviation ssf are important indicators reflecting frequency 

security of power systems after power disturbance [16, 17]. 

maxf  is related to the inertia response process of units after 

the occurrence of power disturbance events, which determines 

action of relevant system protections; 
ROCOF

maxf  is related to 

the amount of power disturbance caused by power disturbance 

events and inertia of the system; ssf can be used to judge 

whether the steady frequency satisfies the corresponding 

requirements. In this paper, the data-driven frequency security 

assessment model is constructed with maxf ,
ROCOF

maxf and 

ssf  as frequency security indicators. 

2.2. Initial Input Feature Construction 

Both the pre-disturbance power flow features reflecting the 

information of the system operation mode and the system 

dynamic features reflecting the frequency dynamic response 

process after the power disturbance can be used as input fea-

tures of the frequency safety assessment model. However, the 

acquisition of post-disturbance dynamic information for 

online assessment of system frequency safety relies on 

time-domain simulation, which will affect the speed of model 

assessment. In order to meet the requirement of rapidity of 

assessment, this paper selects the pre-disturbance power flow 

features to construct the input features of the frequency safety 

assessment model, so as to avoid the dependence on the time 

domain simulation and ensure the rapidity of assessment. 

The frequency of power system is determined by the the 

inertia equation of units: 
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Where ( )f t  represents the frequency deviatio, H repre-

sents the inertia time constant, G
iP  represents the active 

power adjustment associated with the dynamic response of the 

prime mover-governor system, dP rrepresents the power 

disturbance, D represents damping of the system, and GN

represents the number of units. 

For the three key indicators of frequency dynamics after 

disturbance selected in this paper, maxf , 
ROCOF

maxf and ssf , 

they are closely related to the amount of disturbance and the 

system inertia level, and the larger the amount of disturbance 

and the lower the system inertia level are, the faster the change 

is; for maxf , the magnitude of its value is closely related to 

inertia level of the system, the reserve capacity, and regulation 

rate of units; and ssf  is mainly affected by factors such as 

the size of the power disturbance caused by the corresponding 

event, and the level of the reserve capacity of the power sys-

tem itself. The input characteristics should be as inclusive as 

possible of the operating characteristics of the power system. 

Based on the above analysis, this paper selects the conven-

tional unit output, reserve capacity, unit capacity, regulated 

power pwer unit, inertia time constant, output of the renewa-

ble energy units, system damping coefficient, load size, DC 

power, and disturbance amount as the original input features 

before the disturbance. 

3. Training Sample Generation Based on 

Generative Adversarial Network 

The frequency of serious power disturbances such as DC 

blocking is extremely low in the actual operation of the power 

system, and it is difficult to collect enough scenario infor-

mation from the historical operation data of the power system 

to generate training samples. It is necessary to construct a set 

of power system operation scenarios in the offline stage to 

simulate the frequency dynamics after power disturbances in 

the time domain, so as to obtain the frequency security in-

dexes such as the maximum frequency deviation of the system 

under the corresponding scenarios. And then training samples 

for the training of the frequency security assessment model 

are generated. Currently, the training sample generation 

method usually adopts the method of randomly varying the 

system operating states such as load level and new energy 

output within a certain range, so as to generate a batch of 

operating scenarios to construct the training sample set [18]. 

This training sample generation method is difficult to cover 

the actual operation of the power system, and cannot guar-

antee the ability of the frequency security assessment model 

to generalise to the future scenarios to be assessed. And it will 

generate a large number of training samples that are far away 

from the actual operation of the system, resulting in low effi-

ciency of model training. 

Generative Adversarial Network (GAN) [19], as a da-

ta-driven sample distribution learning method, can learn the 

sample distribution law without assuming the sample distri-

bution function. In this paper, based on the information of the 

historical operation mode of the power system, we use the 

improved Wasserstein Distance Metric-based Generative 

Adversarial Network (Wasserstein Generative Adversarial 

Network, WGAN) to learn the distribution law of the actual 

operation scenario of the system. Then a batch of scenarios in 

line with the actual operation of the system is generated for 

time-domain simulation to obtain the frequency security index 

after the predicted power perturbation event, which is used to 

construct the training sample set. 

3.1. Operational Scene Generation Based on 

Conventional GAN Networks 

Traditional GAN is an unsupervised learning method with a 

generator and a discriminator [19]. For the GAN used for 

power system operation scene generation, its generator sim-

ulates and generates the operation scene S that is as close as 

possible to the actual operation law of the power system by 

learning the historical operation scene distribution of the 

power system. The discriminator is used to judge whether the 

generated operation scene is close to the real scene distribu-

tion law of the power system. his (S)P  represents the realistic 

distribution of historical operating scenarios for the power 

system. Given a noise distribution noise (S)P , the goal of GAN 

is to map the sampled data obtained via noise (S)P through the 

game process of generator and discriminator to make it as 

close as possible to his (S)P . 

Operation characteristics of the power system include 

network topology characteristics, generation load pattern 

characteristics, and so on. The frequency security assessment 

model proposed in this paper is used to assess the frequency 

security indexes under a large number of different source-load 

scenarios corresponding to the operation modes, so the 

changes in the generation and load pattern information are 

mainly taken into account when constructing the operation 

scenarios, which are characterised by the power flow feature 

vectors composed of wind power, photovoltaic power, load 

and conventional thermal power unit power, and so on. 

For the generator 
G( ; )G W , the input is the sampled noise 

data noiseS  obtained via noise (S)P  and the output is the gen-

erated data samples 
G

noise(S ; )G W  that simulate the distri-

bution pattern of the real historical operating scenarios of the 

power system. The objective of the generator is to make the 

distribution of 
G

noise(S ; )G W , which is represented by 

G
noise( (S ; ))P G W , as close as possible to the distribution of 
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the real historical operating scenarios of the power system 

his (S)P , and its loss function GL  can be expressed as fol-

lows: 

noise noise

G
G S ~ (S) noise( ( (S ; )))PL E D G W        (2) 

where E() represents the expectation and D() represents out-

put of the discriminator network. 

For the discriminator, its input is the real historical opera-

tion scene of the power system or the simulated historical 

operation scene generated by the generator, and the output is 

the probability value of judging that the corresponding oper-

ation scene is the real historical operation scene, i.e., the goal 

of the discriminator network is to correctly discriminate the 

source of the input operation scene as much as possible. Its 

loss function is denoted as: 

his his noise noiseD S ~ (S) his S ~ (S) noise( (S ))+ ( ( (S )))P PL E D E D G   (3) 

In order to model the game between the generator and the 

discriminator so that they can be trained simultaneously, the 

game in Eq. (4) is modelled. 

his his noise noiseS ~ (S) his S ~ (S) noise

min  max  ( , )=

( (S )) ( ( (S ))) 

G D

P P

V G D

E D E D G
     (4) 

Through the game process between the generator and the 

discriminator, the generator that simulates the distribution law 

of the real historical operation scenario of the power system is 

finally obtained. 

3.2. Operational Scenario Generation Based on 

Improved WGAN Network 

The traditional GAN model has problems such as gradient 

vanishing and pattern collapsing, this paper further introduces 

an improved WGAN network model based on Wasserstein 

distance metric [20] to learn the distribution law of power 

system operation scene. The Wasserstein distance between 

and is calculated as shown in equation (5): 

noise his

noise his

( , )~
~Π( ( (S ; )), (S))

( ( (S ; )), (S))

= inf [ - ] 
G

G

u v
P G W P

W P G W P

E u v


       (5) 

where noise hisΠ( ( (S ; )), (S))GP G W P  represents the set of joint 

probability distributions γ with noise( (S ; ))GP G W  and 

his (S)P  as marginal distributions, and inf represents the 

maximum lower bound. 

There are difficulties in calculating the Wasserstein dis-

tance directly. In this paper, the Kantorovich-Rubinstein dy-

adic form is used to measure the Wasserstein distance, as 

shown in equation (6): 

his noise

noise his

S~ (S) S~ (S)
1

( ( (S ; )), (S))=

sup [ (S)]  [ ( (S))]

L

G

P P
D

W P G W P

E D E D G


       (6) 

Where sup denotes the upper bound, i.e., the minimum 

upper bound, 1
L

D   indicates that the discriminator net-

work needs to satisfy the 1-Lipschitz conditional restriction, 

i.e., constraining the variation of the network parameters 

within a certain range during the training time, in order to 

ensure the normal gradient optimisation. 

3.3. Generative Scene Adjustment Based on 

Rejection Sampling and Resampling 

Techniques 

Based on the simulated power system operation scenarios 

generated by the improved WGAN network. Detailed 

time-domain simulations of frequency dynamics after severe 

power disturbances, such as DC blocking, are performed to ob-

tain the corresponding frequency security indicators, such as the 

maximum frequency offset. So that the training sample set for 

the frequency security assessment model can be constructed. 

Some operating scenarios to be evaluated may lack training 

samples with similar operation modes. It’s difficult to learn the 

complex mapping relationship between frequency safety indi-

cators and powe flow characteristics under the corresponding 

operation modes based on sparse training samples. This makes 

the frequency safety assessment model has a large error in as-

sessing the frequency safety of these scenarios. Improving the 

density of training samples near these operating scenarios is the 

key to reduce the frequency safety assessment error. In this paper, 

we define these operational scenarios with large assessment 

errors as key scenarios, and increase the density of training 

samples near the key scenarios through repeated rejection sam-

pling [21] and resampling [22] to improve the accuracy of fre-

quency safety assessment. 

For the key scenarios key,S i , key,S j , and key,S k , the eval-

uation errors of the frequency safety indexes are ie , je  and 

ke , ie ≤ je ≤ ke . According to the principle that the newly 

generated scenarios newS  should be as close as possible to 

the key samples with large evaluation errors, there should be: 

new key, new key, new key,(S ,S ) (S ,S ) (S ,S )i j kd d d      (7) 

Where d() represents the distance between two scenes. 

The sequence { le ,1≤l≤ keyN } and the sequence {d( newS ,

key,S m ),1≤m≤ keyN  } should have a high negative correlation 

to ensure that Eq. (7) holds, so as to generate training samples 

as close as possible to the key scenarios. In this paper, 
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Spearman correlation coefficient is introduced to measure the 

correlation of two sequences, as shown in equation (8): 

key

key key

key

key new key, key

_ _

new key,

1

_ _
2 2

new key,

1 1

_

key 1

_

new key,
key 1

({ ,1 },{ (S ,S ),1 })

[ ( ) ( ) ][ ( (S ,S )) ( ) ]

[ ( ) ( ) ] [ ( (S ,S )) ( ) ]

1
( ) = ( )

1
( ) = ( (S ,S ))

l m

N

n n

n

N N

n n

n n

N

n

n

n

n

e l N d m N

R e R e R d R d

R e R e R d R d

R e R e
N

R d R d
N





 





    

 

 



 



keyN



    (8) 

Where ( )nR e  and new key,n( (S ,S ))R d  represent the rank of 

the sequence key{ ,1 }le l N   and the corresponding element 

in the sequence new key, key{ (S ,S ),1 }md m N  , respectively. 

Setting the threshold th , the rejection sampling function 

shown in equation (9) is constructed to screen out the training 

samples away from the critical scene. 
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new
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     (9) 

Each time a new scenario is added based on the generator 

G( ; )G W  to simulate the distribution pattern of historical 

actual operating scenarios of the power system. New scenes 

are randomly divided to generate training samples and test 

samples, respectively. The scenarios corresponding to the test 

samples with test errors larger than a set threshold are defined 

as critical scenarios. Based on the WGAN network generator 

and the rejection sampling function in Eq. (9), the density of 

training samples near the key scenes can be increased by 

rejection sampling and resampling. 

4. Frequency Safety Combined 

Assessment Model Structure and 

Learning Process 

4.1. Structure of the Frequency Safety 

Combined Assessment Model 

The frequency safety machine learning assessment model 

learns the functional relationship y=F(x) between the fre-

quency safety index y and the input features x based on his-

torical training samples, so that the frequency safety index of 

the scenario to be assessed can be obtained directly based on 

y=F(x) without solving the set of differential algebraic equa-

tions. Among them, y can be taken as maxf ,
ROCOF

maxf or ssf . 

x is the input feature of the model formed after the feature 

dimensionality reduction of the original current features. The 

power system inertia level, spinning reserve level, blocking 

DC, etc. may differ greatly under different operating scenarios, 

resulting in significant differences in the system frequency 

dynamic process after perturbation under different scenarios. 

In this case, the functional expression y=F(x) describing the 

relationship between the frequency safety index and the input 

features under different scenarios may have significant dif-

ferences, which makes it difficult to learn y=F(x) using a 

single machine learning model. In this paper, a combined 

frequency safety assessment model consisting of several 

sub-models is proposed for assessing the frequency safety of 

the system after severe disturbances such as DC blocking. 

In the process of establishing the frequency safety combi-

nation assessment model, the samples are clustered based on 

the principle of grouping the samples with similar mapping 

relationships between the frequency safety indexes and the 

input features into the same cluster as far as possible. and then 

the corresponding sub-models are established for each cluster. 

Traditional clustering algorithms are usually based on the 

distance between samples, according to the principle that the 

distance between samples in the same cluster is as small as 

possible while the distance between samples in different 

clusters is as large as possible for sample clustering. However, 

it is difficult to measure the similarity of the mapping rela-

tionship between the frequency safety index and the input 

features by the commonly used distance. In this paper, Metric 

Learning (ML) method is introduced to adjust the original 

distance metric, so that the adjusted distance reflects the sim-

ilarity between the frequency safety indexes of different 

samples and the function mapping relationship between the 

input features, and then the traditional distance-based clus-

tering algorithm is used to divide the similar samples into the 

same cluster. 

The process of frequency safety combination assessment 

model building can be divided into three steps: firstly, the 

original distance metric is adjusted with the goal of reflecting 

the similarity of the function mapping relationship between 

different samples of frequency safety indexes and input fea-

tures, i.e., the metric learning process; then, the similar sam-

ples are classified into the same clusters; and finally, the 

sub-models of frequency safety assessment are built for each 

cluster respectively. The whole process is shown in Figure 1, 

where the points of the same shape indicate the function 

mapping relationship similar samples. 
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Figure 1. The establishment process of the combined assessment model for frequency security assessment. 

4.2. Sample Distance Adjustment Based on 

MLKR Algorithm 

Metric learning adjusts the original distance metric, and the 

adjusted distance metric reflects the similarity of the function 

mapping relationship between different samples' frequency 

safety indicators and the input features. The more similar the 

samples are, the closer they are to each other. Thus, the sam-

ples can be divided into clusters according to the adjusted 

distance metric, and the similar samples can be divided into 

the same cluster. 

In this paper, Mahalanobis Distance [23] is introduced to 

measure the distance between different samples, and the 

Mahalanobis Distance is calculated as shown in Equation 

(10): 

2T
mah

M
(x ,x )= (x x ) M(x x ) x xi j i j i j i jd      (10) 

Where M is a semi-positive definite transformation matrix 

that can be tuned by metric learning, i.e., a martensian matrix. 

The metric learning process is the matrix M adjustment 

process. In the metric learning process it is firstly necessary to 

choose the F() form, i.e., to choose the appropriate machine 

learning method embedded in the metric learning process. 

Lazy Learning (LL) does not require an explicit training 

process [24] and is more suitable to be embedded in the metric 

learning process compared to Eager Learning (EL). In this 

paper, the classical lazy learning algorithm Kernel Regression 

(KR) algorithm is chosen to be embedded within the metric 

learning. The metric learning process for that is Metric 

Learning for Kernel Regression (MLKR) [24]. 

In this paper, the Gaussian kernel function [24] is chosen as 

the KR kernel function. Its radius is set to 1. The evaluation 

value of the frequency security index based on the KR method 
^

iy  is shown in Equation (11): 

mah

mah

(x ,x )

^
1

(x ,x )
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i j

i j

m
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j

i m
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y e
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
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






           (11) 

where jy  is the true value of the frequency safety index for 

the jth historical training sample and m is the number of 

training samples. 

The loss function of the MLKR learning process is shown 

in Eq. (12), and the MLKR learning process is the optimiza-

tion problem solving process of adjusting the matrix to 

minimize the loss function in Eq. (12). 

2
^

1

min 

m

i i

i

L y y



 
  

 
              (12) 

The semi-positive definite matrix M is decomposed into the 

form as in equation (13): 

TM A A                 (13) 

The Mahalanobis distance is redefined into the form shown 

in equation (14), and the MLKR learning process, i.e., the 

process of solving the matrix with the objective of minimising 

the loss function in equation (12). 

T T
mah

2

(x ,x )= (x x ) A A(x x )

= A(x x )

i j i j i j

i j

d  



   (14) 

In this paper, the Batch Gradient Descent (BGD) method 

[25] is used to solve A. The correction amount ΔA for each 

iteration of A during MLKR learning is calculated as shown in 

equations (15) and (16): 
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
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                (16) 

where ε represents the step size. 

4.3. Sample Clustering and Sub-model 

Construction 

After MLKR learning to adjust the distance between 

samples, the samples with similar frequency safety metrics 

and function mapping relationships between input features 

are close. Further clustering algorithm is needed to classify 

the similar samples into the same cluster, so as to build the 

frequency safety sub-evaluation model for each cluster. In 

this paper, we use the classical fuzzy k-means clustering [26] 

to divide the samples into clusters. In fuzzy k-means clus-

tering, the initial cluster centroids (j=1,2,.......,K) are ran-

domly selected from the samples, where K is the number of 

clusters. Then the affiliation degree u( xi ,q) of the sample 

xi  to the qth sample cluster is calculated as shown in 

equation (17): 

1
1

1
mah

mah1

(x ,c )
(x , )=

(x ,c )

K
i q

i
i jj

d
u q
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Where β is the set affiliation parameter. 

Cluster centers are updated using the average of the qth 

cluster sample affiliation: 
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Where qN  is the number of samples in the qth sample 

cluster. 

The iterative process of splitting clusters is repeated until 

the centre of the sample clusters does not change any more, 

and the final cluster centre can be obtained. The affiliation of 

the scene to be evaluated to each cluster is defined as the 

confidence level of its belonging to each cluster, and the 

corresponding scene is assigned to the sample cluster with the 

highest confidence level. 

Compared with lazy machine learning methods, eager 

machine learning methods construct explicit functional rela-

tionship expressions between frequency safety metrics, such 

as maximum frequency offset, and input features through 

offline learning, and the online evaluation of frequency safety 

is directly based on the constructed expressions, which makes 

the evaluation process rapid and does not need to carry out the 

calculation of distances between the scenarios to be evaluated 

and the training samples in lazy machine learning. Therefore, 

after completing the metric learning and sample clustering, 

this paper finally chooses the classical eager learning method 

SVR method [18] to construct the corresponding 

sub-evaluation model for each sample cluster. The expression 

between the frequency safety metrics and input features of the 

sub-evaluation model based on the SVR method is shown in 

Equation (19): 

T(x )=w (Ax )+i iF b               (19) 

Where w  is the coefficient vector, b is the bias, and φ is 

the mapping of functions corresponding to the kernel function, 

which is taken to be the Gaussian kernel function for the SVR 

model in this paper. 

5. Case Study 

5.1. Introduction of the Example System 

The simplified Shandong power grid shown in Figure 2 is 

used as an example to verify the effectiveness of the fre-

quency security machine learning assessment method pro-

posed in this paper. The total load of the example grid is 

58GW under the baseline operation mode, and there are three 

DC feeders, with a total DC feeder of 20GW, of which DC#1 

and DC#2 lines have a capacity of 8GW, and DC#3 line has a 

capacity of 4GW. The No.1 wind farm, the No.2 wind farm, 

the No.3 wind farm, and the No.4 wind farm, are connected to 

nodes 170, 178, 187, and 322 in the example system respec-

tively. 
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Figure 2. The single line diagram of simplified Shandong grid. 

5.2. Sample Set Construction 

Taking 15 min as the time interval, based on the wind 

power and load data under 2976 time sections of the system 

for 1 month, 2976 system operation scenarios are obtained by 

trend calculation with the goal of minimising network loss. 

Taking DC#2 blocking as the expected accident, 976 of the 

2976 scenarios are taken as the historical operation scenarios. 

Time domain simulation is performed to obtain the frequency 

safety indexes under the expected accident to construct the 

original training sample set. Based on the remaining 2000 

scenarios, time domain simulation is performed under the 

predicted accidents to construct the test sample set. 

In this paper, the detailed learning process of the model 

with maxf  as the output of the model assessment indicators 

is demonstrated. The learning process of the model with 

ROCOF
maxf  and ssf  as the assessment indicators is similar. In 

Section 4.6, the final assessment accuracy of the frequency 

security assessment model built based on the proposed 

method for each frequency security indicator is given uni-

formly. 

5.3. Generation of New Training Samples 

MLKR learning is performed based on 976 initial training 

samples, and the MLKR learning process converges with the 

assessment error converging to a larger value of about 0.137 

Hz. New scenarios are generated using the method proposed 

in this paper to generate new training samples for model 

training to improve accuracy of the frequency safety assess-

ment mode. A new set of operating scenarios is generated 

based on WGAN that conforms to the distribution pattern of 

historical scenarios, which is compared with the method in 

[22]. In order to visualise the comparison results, the scenar-

ios are downscaled using the t-SNE method [27] into the form 

of two-dimensional feature representations of x1
 and x2, as 

shown in Figure 3. From the figure, it can be seen that using 

the scene generation method via GAN proposed in this paper 

can generate scenes that follow the distribution law of the 

system's historica operation scenes. 

 
Figure 3. Comparison of scenario distributions with different scene generation methods. 
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The operation scenarios corresponding to the samples with 

evaluation errors greater than 0.1Hz based on the KR method 

are defined as key scenarios, and the newly generated sce-

narios are adjusted using the rejection sampling and 

resampling methods. By rejecting sampling and resampling, 

the density of training samples near the critical scenes is in-

creased until the evaluation errors of all the scenes to be 

evaluated are less than 0.1Hz, and the training sample set after 

increasing the training samples is finally obtained with a total 

of 2507 training samples. 

5.4. Learning Process of Combined Frequency 

Security Assessment Model 

MLKR learning is performed based on the training sample 

set and the learning effect is tested using the test set. Before 

MLKR learning, the maximum training error of maxf  is 

0.187 Hz, and the maximum testing error is 0.169 Hz. after 

MLKR learning, the maximum training error is reduced to 

0.0404 Hz, and the maximum testing error is reduced to 

0.0468 Hz. With the process of MLKR learning, the changes 

of training error and testing error are shown in Figure 4, where 

maxe  denotes the maximum evaluation error of all samples in 

each iteration. The evaluation error gradually converges as the 

number of MLKR learning iterations increases. 

 
Figure 4. The variation of the assessment error in the process of 

MLKR learning. 

After MLKR learning, the samples are clustered using 

fuzzy k-means clustering method and the corresponding 

evaluation sub-models for each cluster are built using the KR 

and SVR method, respectively. Before and after MLKR 

learning, with the increasement of the number of clusters K, 

the KR and SVR assessment errors are shown in Figure 5. 

 
Figure 5. Error of the KR and SVR sub-models with different K before and after MLKR learning. 

Before MLKR learning, the frequency dynamics of sam-

ples close to each other are not necessarily similar, and clus-

tering based on the original distance metric cannot ensure that 

samples with similar frequency safety metrics and input ei-

genfunction mapping relationships are grouped into the same 

cluster, and the frequency safety assessment error basically 

remains unchanged as the K-value increases. After learning 

by MLKR, the distance between samples is correlated with 

the dynamic similarity of frequency between samples, and the 

frequency safety indexes are close to the samples with similar 

mapping relationship with the input eigenfunction. With the 

increase of K value, the frequency dynamic similarity of 

samples in the same cluster increases, and the samples in each 

cluster are evaluated using KR and SVR, and the evaluation 

errors are all gradually reduced with the increase of K value, 

and the accuracy of the model evaluation is improved, as 

shown in Figure 5. Compared with the KR method, the SVR 

assessment model has better function fitting ability, and 
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therefore has higher frequency safety index assessment ac-

curacy. With the increase of K value, when K>6, the model 

evaluation error is no longer significantly reduced, so this 

paper finally takes K=6. 

5.5. Comparison with Other Methods 

Different frequency security assessment models are com-

pared with the combined assessment model proposed in this 

paper as shown in Figure 6, where ANN represents the as-

sessment model based on Artificial Neural Network, FLNN 

represents the assessment model based on Functional Link 

Neural Network, v-SVR represents the assessment model 

based on v-Support Vector Regression (v-SVR), ELM rep-

resents the assessment model based on Extreme Learning 

Machine (ELM), ML represents the assessment model based 

on Metric Learning, and CAM represents the combined as-

sessment model in this paper. 

 
Figure 6. The test errors of different models with different training sample sets. 

As shown in Figure 6, the combined frequency security 

assessment model proposed in this paper demonstrate better 

generalisation ability compared with other methods. The 

training samples obtained via the method in this paper can 

better cover the distribution of the actual operating scenarios. 

By using the rejection sampling and resampling techniques, 

the density of training samples near the key scenarios with 

large evaluation errors is increased, and the efficiency of 

model training is improved. Using the training sample gen-

eration method proposed in this paper, only 2507 training 

samples are needed to reduce the model testing error to 0.0113 

Hz. 

5.6. Accuracy of Assessment of Frequency 

Security Indicators 

The accuracy of each frequency security indicators ob-

tained based on the combined frequency security assessment 

model proposed in this paper is shown in Table 1. As shown in 

Table 1, the combination model for frequency security as-

sessmentproposed in this paper demonstrate high accuracy for 

each frequency security indicator. Based on the method pro-

posed in this paper, the frequency security indicators after 

severe power disturbance can be evaluated quickly and ac-

curately. 

Table 1. The maximum and average values of the assessment errors 

of each frequency security indicator. 

frequency security 

indicator 
maxf  ROCOF

maxf  ssf  

maximum of as-

sessment errors 
0.0113Hz 0.0098Hz•s-1 0.0092Hz 

average of assess-

ment errors 
0.0093Hz 0.0067Hz•s-1 0.0071Hz 

6. Conclusions 

In this paper, a data-driven frequency security assessment 

model based on Generative Adversarial Network(GAN) and 

Metric Learning(ML) is proposed. In terms of frequency 

security indicatos selection and input feature construction, 
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key indicators reflecting frequency dynamic process after 

perturbation are selected, and pre-perturbation power flow 

features are chosen to construct the input features. In terms of 

generation of training samples, the method of generating 

training samples based on GAN is proposed, and sampling 

techniques are applied to increase sample density near key 

scenes. In terms of assessment model structure, the combined 

model for frequency security assessment is proposed, in order 

to fully take into account the large differences in frequency 

dynamics after perturbation events in different scenario. 

Through the final simplified Shandong power grid example, it 

is verified that with the proposed method, frequency security 

can be quickly and accurately assessed after severe power 

disturbances such like DC blocking. 
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GAN: Generative Adversarial Network 

ML: Metric Learning 
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