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Abstract 

Crack detection in pavements is a critical task for infrastructure maintenance, but it often requires extensive manual labeling of 

training samples, which is both time-consuming and labor-intensive. To address this challenge, this paper proposes a 

semi-supervised learning approach based on a DenseNet classification model to detect pavement cracks more efficiently. The 

primary objective is to leverage a small set of labeled samples to improve the model's performance by incorporating a large 

number of unlabeled samples through semi-supervised learning. This method enhances the DenseNet model's ability to 

generalize by iteratively learning from new unlabeled datasets. As a result, the proposed approach not only reduces the need for 

extensive manual labeling but also mitigates issues related to label inconsistency and errors in the original labels. The 

experimental results demonstrate that the semi-supervised DenseNet model achieves a prediction precision of 96.77% and a 

recall of 94.17%, with an F1 score of 95.45% and an Intersectidn over Union (IoU) of 91.30%. These metrics highlight the 

model's high accuracy and effectiveness in crack detection. The proposed method not only improves label quality and model 

performance but also offers practical value for engineering applications in the field of pavement maintenance, making it a 

valuable tool for infrastructure management. 
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1. Introduction 

The fatigue stress caused by periodic loading and 

long-term bad environmental conditions will lead to struc-

tural degradation of a highway, and ultimately shorten its 

service life, and even affect the highway traffic safety [1, 2]. 

Therefore, highway disease detection, especially crack de-

tection, has become a main goal of road maintenance. In the 

process of pavement crack detection, the traditional manual 

measurement and other manual detection methods are 

time-consuming, subjective and unprecise, which is not 

conducive to road maintenance. Therefore, some vi-

sion-based techniques have been gradually introduced in 

crack detection to partially replace manual on-site inspection. 

These techniques include traditional image segmentation 

methods, such as the threshold-based [3-5], wavelet trans-
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form-based [6], edge detection-based [7], seed growth-based 

[8], and region-based segmentation method [9, 10], etc. The 

traditional crack segmentation method is widely used in a 

scene where the road image is simple and does not contain 

other redundant objects. However, the traditional image pro-

cessing methods based on specific rules usually encounter 

noise problems of different severity, such as the road signs, 

manhole covers, shadows, etc., thus noise elimination and 

crack extraction are needed, which usually involves complex 

post-processing procedures and many manually adjustable 

parameters. They are time-consuming, unstable and imprac-

tical; therefore, the scope of their uses is limited. Thus, the 

machine learning algorithms with knowledge learning as the 

core are gradually applied to the crack detection. 

Many researches on crack detection first use traditional 

image processing technology to extract key features, and 

then combine them with the machine learning (ML) algo-

rithms to detect cracks. The ML does not define some strict 

rules to detect the cracks, but trains the model based on 

learning experience to detect cracks from the background. A 

number of road crack detection methods, e.g., support vector 

machine (SVM) [11], CrackTree [12] and CrackForest [13], 

have been proposed. The advantage of these ML methods is 

that the detection model does not need the Ground Truth. 

However, these methods are not effective in different light-

ing conditions and crack images with the complex back-

grounds (such as the ground shadows and dirt), which make 

it difficult to detect all kinds of cracks. 

With the development of computing technology, the deep 

learning has shown advantages in the field of image detec-

tion [14]. The CNN, as a key algorithm of the deep learning, 

is an effective automatic crack detection method in the field 

of pavement health monitoring and pavement maintenance 

[15]. Some studies in recent literature [16-21] shows that the 

deep CNN (DCNN) is superior to traditional ML technology 

in pavement diseases detection. In order to overcome the 

challenges that the extensively varying real-world situations 

(e.g., lighting and shadow changes) may bring to the wide 

adoption of IPT, Cha et al. [22] proposed a vision-based 

method, which uses the deep architecture of CNN to detect 

concrete cracks by sliding the window of test image without 

calculating defect features. Gopalakrishnan et al. [23] 

adopted transfer learning to automatically detect cracks from 

images of hot mix asphalt and concrete pavement. Chen et al. 

[24] proposed a deep learning framework based on a CNN 

and naive Bayesian data fusion strategy, namely NB-CNN, 

to analyze each single video frame for crack detection. 

Compared with the CNN based method using sliding 

window, Maeda et al. [25], Wang et al. [26], Arya et al. [27] 

applied object detection frames to crack detection. To pro-

vide quasi real-time simultaneous detection of multiple types 

of damages, Cha et al. [28] proposed a structural crack de-

tection method based on the Faster R-CNN. However, the 

target detection model can only roughly locate the crack po-

sition, and unable to calculate the crack length and other re-

lated information. The CNN model that assigned category 

labels to a single pixel according to the local context around 

the pixel can accurately mark the crack pixels in the pave-

ment image. Yang et al. [29] proposed a new deep learning 

technology using a fully convolutional network (FCN) to 

detect and measure different cracks at the pixel level. Nev-

ertheless, the class label assigned to a single pixel is still 

based on the local context around the pixel, which leads to an 

overestimation of the crack width. Though the image detec-

tion technology based on deep learning has made great pro-

gress in crack detection, however, the application of neural 

networks to crack detection is limited by various complex 

situations. The CNN algorithm relies on a large number of 

labeled samples, but it is very expensive to obtain labeled 

samples. The cracks are generally divided into transverse 

cracks, longitudinal cracks and oblique cracks according to 

their shapes [30], but due to the variety of crack shapes and 

rich features in the actual situations, the real labels may de-

viate from the manual labels, thus it is difficult to improve 

the detection precision. At the same time, due to the unclear 

boundaries between cracks and the background, coupled with 

the influence of image noise (such as the changes of light 

and shadow) and the subjectivity of human beings, the man-

ual marking is prone to deviations, which leads to the inevi-

table noise in these samples. Because semi-supervised learn-

ing [31-34] can improve model learning performance by 

combining a small number of labeled samples and a large 

number of unlabeled samples, it has attracted extensive at-

tention in the field of deep learning. 

In view of the above problems, this paper proposes a road 

crack detection method using the DenseNet classification 

model based on the semi-supervised learning method, which 

improves the accuracy, efficiency and generalization ability 

of the road crack detection, and reduces laborious manual 

labeling workload. This method can detect cracks in complex 

road environment and improve the applicability of the CNN 

detection model. 

2. Methodology 

2.1. Overview of Model 

The semi-supervised learning method proposed in this pa-

per consists of two parts: pseudo labelling and self-learning. 

Pseudo labelling is a process of using the model trained on 

the labeled data to predict the unlabeled data, screening the 

samples according to the prediction results, and then input-

ting them into the model for training. The label removed 

from the training set is regarded as unlabeled dataset, then 

use the model pre-trained by the training set to relabel the 

dataset. The difference between the original label and the 

new label of each sample in the training set is compared. 

Samples with the same class label remain unchanged and 

discard samples with different class labels. This process is 

called self-learning. Table 1 shows the symbols commonly 
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used in the proposed scheme. The overall framework of the proposed scheme is shown in Figure 1. 

Table 1. Common symbols of the proposed scheme. 

Symbol Description 

 Initial training set 

( )n
if  

The network model used, n  denotes the number of pseudo labelling iterations, i  represents the iteration number s of 

self-learning in each round of pseudo labelling 

( )n
 Unlabeled dataset 

( )n  Pseudo labeled dataset 

( )n  The dataset obtained by replacing the label with the wrongly labeled sample 

( )n
i  The enhanced training set consist of initial training set and wrongly labeled sample dataset 

( )n
i  Unlabeled dataset generated after the training set is unlabeled 

( )n
i  The training set obtained by re-labeling the training set 

( )n
i  Filter the labels of the training set 

 

 
Figure 1. Semi-supervised learning framework diagram; outside the 

dotted box is pseudo labelling, inside the dotted box is self-learning. 

The basic principle of self-learning: for the training set 

which is obtained either by the manual labelling or pseudo 

labelling, it is necessary to detect the consistency of the la-

bels through model self-labeling, that is, whether the labels 

of the samples truly represent their features. The pre-trained 

model is used to label the unlabeled samples ( ( )n ), and 

then the labeled dataset is used as the training set to make the 

model learn. The trained model is used to label the originally 

unlabeled samples (
( )n

) again (Figure 2). The results be-

fore and after labeling are not necessarily the same. How to 

correct these deviations is important to improve the perfor-

mance of the model. It is necessary to replace or delete the 

inconsistent labels in the training set, so that the model can 

achieve consistent stability for the training set. 

 
Figure 2. Schematic diagram of self-learning framework. 

2.2. Semi-Supervised Learning 

The initial training set containing a small number of crack 

and background images are used to pretrain the CNN model, 

which is used to classify unlabeled road images to obtain the 

pseudo-labelled set. The samples in the pseudo-labelled set 

42
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with wrong labels need to be manually screened out, and 

replaced with the new correct class label sequence and com-

bined with the training set to form an enhanced training set. 

The model is trained again, and this process is repeated until 

the convergence conditions are satisfied. In this paper, the 

crack detection task is regarded as the modification of the 

"two-category classification" problem of the background and 

crack in the road images. The samples are divided into two 

main categories: background and crack. Meanwhile, accord-

ing to the specific features of the object, the two categories 

are further divided into multiple sequences. For example, the 

background is divided into road, sign line and so on. The 

trained model detects the unlabeled dataset, then replaces the 

samples wrongly labeled as cracks in the recognition results 

with new sequence background labels, and adds them to the 

training set. The background is the same. At the same time, 

in order to balance the number of samples of each class in 

the training set, and to ensure that the model has enough 

samples to learn the corresponding features for a single class 

in the training process, it is generally specified as a new class 

when the number of wrongly labeled samples under a single 

label reaches a specific threshold. Pseudo label learning en-

hances the number and category of training sets. 

Let ( , ), 1, ,i ix y i a    be the initial training sets of 

road crack images, d
ix  , {1, , }iy K . There are two 

kinds of labels: background and crack. Assuming that the 

background label has two sequences and the crack label has 

only one sequence, thus there are three labels: background 1, 

background 2 and crack 1 ( 3K  ), and each label contains a 

small number of samples. 

The unlabeled sample set ( )
1( ) ,n b

i iz b a   is given 

( n  is the batch of the sample set), which belongs to the 

same group as , and all of them are related datasets con-

taining pavement crack images, and the number of samples 

of  is significantly greater than . 

Given a neural network model ( ) : df x  , for a cer-

tain point x , the prediction probability distribution is Soft-

Max: 

( )

( )

1

ˆ ( )
s

l

f x

f K f x

l

e
p s x

e





             (1) 

The iterative scheme can be described as follows: 

1. Use the initial training set  to train the model ( )f x  

to get the initial model (1)
0 ( )f x . The initial model (1)

0f  is 

used to pseudo label all the samples in the first batch of the 

originally unlabeled sample set 
(1)

 to obtain the labeled 

sample set (1) ; 

2. According to the results of pseudo labels, the samples 

with wrong labels in (1)  are screened out, and are re-

placed with new correct class sequence labels to create a 

subset (1)
1( , )r

i i io v  , (  ), {1,..., }iv H . For ex-

ample, suppose that the sample labels of the initial training 

set corresponding to the model include: background 1, back-

ground 2, and crack 1, then in subset , all crack samples 

that were wrongly labeled as background 1 are labeled as 

crack 2, all crack samples that were wrongly labeled as 

background 2 are labeled as crack 3, and all background 

samples that were wrongly labeled as crack 1 are labeled as 

background 3, otherwise, no new class label will be added. 

3. The initial training set  and the sample set (1)  of 

the replacement label are combined to form a new sample set 
(1)

11 ( , )w
i i ie g  , w a r  , {1,..., },ig N N H K   . The 

specific process is shown in Figure 2. 

 
Figure 3. The training set is expanded by pseudo labelling. Each color dot represents a training set sample and its label, and each color 

triangle represents a pseudo labeled sample and its label. 
45
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4. The new model (1)
1f  is trained by minimizing the 

cross-entropy loss of the enhanced training set 
(1)

1 . Discard 

the labels in the enhanced training set (1)
1  to generate the 

unlabeled sample set (1)
1 ; all the samples in the (1)

1  are 

predicted by the model (1)
1f , and the results are used as the 

label of samples to obtain a new training set (1)
1 ; 

5. Compare 
(1)

1  with 
(1)

1 , filter the samples of differ-

ent labels, delete the samples with the original label as the 

background and the new label as the background, and get the 

updated training set (1)
1 . The specific process is shown in 

Figure 5; 

 
Figure 4. The training set is contracted by self-learning, and various color dots represent the samples and their labels. 

6. Take 
(1)

1 as the enhanced training set, replace 1i   

with i , and return to step 4. The new model 
(2)

0f  is 

trained by minimizing the cross-entropy loss of labeled sam-

ple 
(1)

: 

1

( , ( ; )) log ( ; )g e e

N

j j

j

f g f 


        (2) 

where   is the parameters in the model. 

7. Replace n  with 1n  and return to step 1. 

2.3. Evaluation Indicators 

In order to quantitatively evaluate the influence of the 

proposed method on the crack detection, the commonly used 

indexes, the P (precision), R (recall), harmonic mean F1 and 

IoU, in the ML are introduced: 

TP
P

TP+FP
                    (3) 

TP
R=

TP+FN
                  (4) 

2 P R
F1

P+R

 
                  (5) 

TP
IoU

TP+FP+FN
                (6) 

where, TP (true positive) is the number of images correctly 

classified as cracks, TN (true negative) is the number of im-

ages correctly classified as background, FP (false positive) is 

the number of images mistakenly classified as cracks, and 

FN (false negative) is the number of images mistakenly clas-

sified as background, as shown in Figure 5. 

Because the Precision does not take into account the situa-

tion of missing detection of cracks, and the recall does not 

take into account the situation of detecting the background as 

cracks, thus, the F1 value and IoU are used as the main 

evaluation indicators in this paper. 

background1 background2 background3 background4

background1 background2 background3 background4
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Figure 5. Example of classification of model test results. 

3. Experiment 

3.1. Data Sources 

The 480 road images used in this paper were taken under 

natural light conditions by an iPhone se, whose focus is 3 

mm, f / 1.8 aperture. The original images collected in this 

paper have the resolution of 1,920 × 1,080 pixels, which is 

adjusted to 2,048 × 2,048 pixels. Each image is clipped into 

64 blocks of 256 × 256 pixels, and the position information 

of each block image in the original image is retained. After 

clipping, the block images of 256 × 256 pixels are processed 

through the data augmentation techniques (rotation, mirror-

ing, etc.) to get the training sample set. 

The proposed method divides the dataset into 8 experi-

mental batches, each batch contains 60 images. In each batch, 

6 images are randomly selected as the batch validation set; 4 

images in each batch and totally 32 images are selected as 

the testing set, and the rest as the batch training set, which 

are used for the training of the crack detection model. 

Table 2. Details of training, validation and test sets, with block 

images in brackets. 

Training set (single 

batch) 

Validation set (single 

batch) 
Test set 

54 (3,456) 6 (384) 32 (2,048) 

After a round of iteration for a batch of training samples, 

the obtained model is used to detect the testing set, and the 

evaluation index is calculated for the detection results of 

each image in the testing set, and the training batch with the 

worst evaluation index is selected as the input of the next 

round of unlabeled samples. 

Totally 75 block images with cracks are selected and la-

beled as Crack 1, and then 250 block images without cracks 

are randomly selected and labeled as Background 1, which 

are used as the initial training set. Some images in the initial 

training sets, for example, are shown in Figure 6. 

 
Figure 6. Examples of initial training set. 

3.2. Model Training Configuration 

All the experiments were performed on an Intel Desktop 

with a quad core i7-4790 CPU@3.6 GHz processor, 8GB 

memory and NVIDIA GeForce GTX 1650 4GB GPU. The 

proposed semi-supervised learning method based on a 

DenseNet classification model. The realization of the 

DenseNet architecture is based on the deep learning toolbox 

of MATLAB. The minimum batch size of training is 16 and 

the learning rate is 3× 410 , all data were rotated fiveepochs. 

The DenseNet was trained with the dataset and used to detect 

every batch of images and relabel them according to the de-

tection results. The noise samples were added randomly in 

the training set, and the self-learning was performed for 34 

iterations. 

4. Results and Discussions 

4.1. Training Set Obtained 

In this paper, the training set of multiple sequences in-

cluding the cracks and backgrounds is obtained by the pseu-

do labelling. Figure 7 shows that the proposed method de-

tects 9 kinds of road cracks and 12 kinds of road background 

in the road image dataset. The sample number in the back-

ground sequence will change obviously with the increase of 

the number of iterations, while the sample number in the 

crack sequence remains relatively stable. It can be seen that 

the features of cracks are relatively simple, and the back-

ground will include a variety of categories with the change of 

road conditions. With pseudo labelling, the background of 

different features can be divided from a single label, and the 

cracks hidden in similar background features can be separat-

ed. 

TP

FN

TN

FP
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Figure 7. The change of the sample number of each label in the training set during the semi-supervised learning process of the model. 

As shown in Figure 8, the number of the background and crack samples in the training set is increasing with the increase of 

training rounds, and the performance of the model was also improved. It shows that the more samples the model has, the 

smaller the generalization error was. 

 
Figure 8. The change of the total number of samples of two types of labels in the training set during the iterative learning process of the model. 
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Through six rounds of the semi-supervised learning, nine series of crack categories were obtained, and six of them were 

shown in Figure 9. The figure shows that the model automatically separates the cracks with different features, which was simi-

lar to the manual classification of cracks into the transverse cracks, longitudinal cracks and oblique cracks. 

 
Figure 9. Example of crack sequence detected by the DenseNet. 

 
Figure 10. Background sequences detected by the DenseNet. 
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As shown in Figure 10, the proposed method divides the 

background into pavement, curb, manhole cover, sign line, 

etc. Background 1 and Background 4 were classified to the 

different category as Background 4 has shadow. Cracks and 

road markings were mixed in Background 3, which was dif-

ficult to separate from the background because the cracks 

coincide with the edges of road noise (road markings, shad-

ows, etc.). 

The validation accuracy of each iteration was shown in 

Figure 11. The results show that the performance of the 

model is greatly improved after the self-learning of the 

training set. The method can get high precision in the auto-

matic segmentation of pavement cracks, while the model of 

minimizing the error of training samples tends to overfit spe-

cific training samples. The model with strong fitting ability 

will be more complex and prone to overfitting. 

 
Figure 11. Validation accuracy of the training process. 

4.2. Test Set Detection Results 

After each round of training, the DenseNet classification 

model was tested with the testing set. It can be seen from 

Table 3 that the error rate of detecting the crack as the back-

ground is low, and most of the error rates are concentrated on 

detecting the background as crack. In the first five iterations, 

the error rate of Crack 3 was higher, which was always more 

than 50%. 

As shown in Figure 12, with the increase of the number of 

rounds, the value of the evaluation index shows an overall 

upward trend. When the number of rounds reached 6, the 

precision was 89.20%, the recall was 99.48%, the F1 value 

was 94.06%, and the IoU was 88.79%. Among the four indi-

cators, the recall has been on the rise, which indicates that 

the situation under which the model mistakenly detects the 

cracks as the background was gradually decreasing, while 

the precision value was relatively low, which indicates that 

the situation that the model mistakenly detects the back-

ground as cracks was more likely. 

Table 3. Error rate of single label in each iteration test set. 

Label 1 2 3 4 5 6 

background 1 3.85% 0.52% 0.67% 0.00% 0.00% 0.00% 

background 2 10.75% 2.92% 1.56% 1.78% 0.70% 0.00% 
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Label 1 2 3 4 5 6 

background 3 — 6.12% 6.90% 0.00% 0.00% 0.00% 

background 4 — 7.39% 3.63% 0.00% 0.00% 0.00% 

background 5 — — 0.00% 0.00% 0.00% 0.00% 

background 6 — — 1.05% 0.00% 0.00% 0.00% 

background 7 — — — 12.73% 0.00% 0.00% 

background 8 — — — 0.00% 0.00% 0.00% 

background 9 — — — — 0.00% 0.00% 

background 10 — — — — 0.00% 0.00% 

background 11 — — — — 0.00% 0.00% 

background 12 — — — — — 0.32% 

crack 1 16.67% 6.45% 0.00% 14.29% 0.00% 0.00% 

crack 2 42.20% 24.32% 19.35% 14.71% 23.40% 15.56% 

crack 3 — 82.42% 57.45% 52.78% 54.81% 7.32% 

crack 4 — 46.09% 11.94% 30.26% 48.84% 4.76% 

crack 5 — — 61.76% 42.31% 48.15% 30.00% 

crack 6 — — 54.93% 40.43% 24.14% 17.24% 

crack 7 — — — 34.78% 0.00% 0.00% 

crack 8 — — — 17.65% 31.25% 0.00% 

crack 9 — — — — 0.00% 0.00% 

 
Figure 12. Changes of evaluation indexes of test set with the iteration of the training model. 
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As shown in Figure 13, the method detects the testing set 

and uses the anchor box to locate and label the crack. After 

the first round of semi-supervised learning, only Crack 1 in 

the upper left corner of the model can correctly detect the 

cracks. After the second round of semi-supervised learning, 

all the cracks on the road surface are detected, and the cor-

responding labels were Crack 3 and Crack 4, respectively. 

However, a large number of cases of mistakenly detecting 

the background as cracks appear. After the third round of 

semi-supervised learning, the false-positive results were re-

duced on the premise of retaining the detected cracks com-

pletely. After the fourth round of semi-supervised learning, 

the false-positive results were further reduced, but some 

cracks were not detected. After the fifth round of 

semi-supervised learning, all the cracks were detected, while 

there were still false positive cases. After the sixth round of 

semi-supervised learning, the false-positive results were 

completely eliminated, and all the cracks were correctly 

identified. The crack labels identified were Crack 2, Crack 3, 

Crack 4 and Crack 9. 

 
Figure 13. Testing results of different test round. 

4.3. Comparative Test Results of Different 

Models 

Besides the DenseNet classification model, other deep 

learning models, AlexNet [35], GoogleNet [36], VGG16 [37], 

VGG19 [37], ResNet18 [38], ResNet50 [38], ResNet101 [38] 

were also tested in this paper. In the training process, the 

high-quality training set come from the DenseNet classifica-

tion model after the semi-supervised learning, and the vali-

dation set was also from the campus road crack dataset. In 

addition, the training parameters of these models are the op-

timal parameters, and the comparative evaluation indexes 

were shown in Table 4. 

Table 4. The detection performance index of the training set obtained by semi-supervised learning using different network models for the same 

test set. 

Model depth Number of layers parameter Precision (%) Recall (%) F1 (%) IoU (%) 

AlexNet 8 25 61 M 85.15% 86.28% 85.71% 75.00% 

GoogleNet 22 144 7 M 90.87% 83.63% 87.10% 77.14% 

VGG16 16 41 138 M 96.77% 94.17% 95.45% 91.30% 

Epoch 1 Epoch 2 Epoch 3

Epoch 4 Epoch 5 Epoch 6
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Model depth Number of layers parameter Precision (%) Recall (%) F1 (%) IoU (%) 

VGG19 19 47 144 M 91.63% 95.44% 93.50% 87.79% 

ResNet18 18 71 11.7 M 84.39% 76.89% 80.47% 67.32% 

ResNet50 50 177 25.6 M 83.09% 74.14% 78.36% 64.42% 

ResNet101 101 347 44.6 M 92.75% 84.21% 88.28% 79.01% 

DenseNet 201 708 20 M 83.80% 69.44% 75.95% 61.22% 

 

The prediction Precision of VGG16 was 96.77%, the re-

call rate was 94.17%, the F1 value was 95.45%, and the IoU 

was 91.30%. Although the recall rate was slightly lower than 

that of VGG19, the Precision was better than other models, 

and the F1 value was more than 7% higher than the third, 

which shows that the model structure has a great impact on 

the test results. It can be seen from the table that the more 

layers the model has, the better the model performs. The 

experimental results show that the more parameters, the bet-

ter the generalization effect. 

5. Conclusion 

This paper proposes a method combining the pseudo la-

belling and self-learning to enhance the performance of the 

model from the perspective of improving the quality of the 

training set. The pseudo labelling can realize the diversity of 

labels and improve the generalization ability of models, 

while the self-learning can improve the detection precision of 

models. 

This method can accurately detect the road crack area in 

the image and reduce the influence of water stains, shadows, 

road markings and other noises in the image after the 

semi-supervised learning. Through a large number of ex-

periments, it was proved that the proposed method can con-

tinuously improve the detection precision and recall, and it 

was proved that the proposed method can identify incon-

sistent labels and recommend consistent labels. 

This paper proves that the pseudo labelling can improve 

the precision of the benchmark model and reduce the rate of 

disease false detection. 

While the proposed method shows significant improve-

ments, there are several avenues for future research. One 

potential area is the exploration of advanced techniques for 

handling more complex noise types in road images, such as 

seasonal variations and lighting conditions. Additionally, 

integrating other semi-supervised learning techniques, such 

as consistency regularization or adversarial training, could 

further refine the model's robustness. Another interesting 

direction would be to apply the proposed method to other 

types of infrastructure defects or extend it to 

three-dimensional data sources, like LiDAR, to enhance the 

detection of surface irregularities. Lastly, investigating the 

method's scalability and performance in real-time applica-

tions could provide insights into its practical deployment in 

large-scale infrastructure monitoring systems. 
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