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Abstract 

Artificial Intelligence (AI) is revolutionizing the drug development pipeline, significantly improving research and development 

(R&D) efficiency and success rates. AI's innovative applications span target identification, virtual screening, data integration, 

and molecular design. By utilizing advanced technologies such as deep learning, graph neural networks, and multimodal 

learning, AI facilitates the identification of disease targets, prediction of molecular binding modes, and integration of 

multi-omics data to construct dynamic models. Notable examples include AlphaFold-Multimer for protein structure prediction 

and Deep Docking for molecular docking. Despite these remarkable advancements, several formidable challenges persist and 

hinder the widespread adoption of AI in drug development. These include the "black-box" nature of AI models, inconsistent data 

quality, limited simulation of dynamic biological environments, and fragmented interdisciplinary knowledge. To overcome these 

obstacles, future developments should focus on three key areas: enhancing model interpretability through the strategic 

integration of physicochemical constraints, optimizing data sharing via the utilization of federated learning and differential 

privacy techniques, and constructing highly dynamic prediction frameworks by incorporating molecular dynamics simulations. 

With continued interdisciplinary collaboration and continuous technological innovations, AI holds the immense potential to 

reshape drug development, driving the progress of precision medicine, reducing R&D costs, and offering new approaches to 

addressing complex diseases. 
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1. Introduction 

1.1. Research Background 

Drug development has always been a core component in 

conquering diseases and safeguarding human health in mod-

ern medicine. However, traditional drug development pro-

cesses suffer from significant limitations. Following a com-

plex and rigid framework, the process begins with drug target 

identification, where researchers must explore biological 

molecules from intricate biological systems based on their 

understanding of disease mechanisms—a process relying 

heavily on fundamental biological research and 

high-throughput experimental techniques. After target deter-
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mination, the drug screening phase involves traditional 

high-throughput screening, which, despite processing large 

numbers of compounds, incurs high costs, lengthy timelines, 

and high false-positive rates [1]. Subsequent stages including 

lead optimization, preclinical research, and clinical trials 

demand enormous financial investment and face substantial 

uncertainties, leading to long development cycles and high 

failure rates. 

With rapid technological advancements, Artificial Intelli-

gence (AI), empowered by its robust data processing and 

efficient pattern recognition capabilities, has gradually 

emerged in drug development, offering new solutions to the 

challenges of traditional R&D. AI’s data-driven advantages 

enable rapid analysis of massive datasets, improving effi-

ciency at every stage of drug development. For example, in 

target identification, the graph neural network-based model 

DeepTarget developed by Zheng et al. (2022) integrates pro-

tein-protein interaction networks and compound activity data, 

significantly enhancing target prediction accuracy and 

shortening discovery time [2]. In drug screening and molec-

ular docking, AI technologies analyze compound data to pre-

dict binding affinity with targets—DeepDocking, a deep 

learning-based molecular docking tool, uses convolutional 

neural networks (CNN) and graph neural networks (GNN) to 

characterize molecular structures and predict binding poses 

more accurately [3]. AI also constructs virtual compound 

libraries to screen potential active compounds in silico, re-

ducing experimental workload and costs; Insilico Medicine, 

for instance, uses generative adversarial networks (GAN) to 

generate virtual compounds and AI models to identify can-

didates with high activity [4]. In drug design, deep learning 

simulates interactions between drug molecules and targets to 

design more specific and affinity-rich molecules—Wang and 

Chen (2021) utilized AI-driven molecular dynamics simula-

tion to optimize drug design [5]. AI even employs rein-

forcement learning to navigate chemical space and discover 

novel drug structures. Additionally, AI shows promise in 

clinical trial design, efficacy prediction, and adverse reaction 

monitoring, potentially streamlining processes and increasing 

R&D success rates. 

1.2. Research Objectives 

This study aims to systematically and deeply analyze the 

application landscape of AI in drug development, compre-

hensively review research progress in core areas such as target 

identification, drug screening & molecular docking, data 

integration, and drug design, excavate challenges in each 

domain, and explore potential future breakthroughs. 

In target identification, while AI has made progress, exist-

ing models lack deep biological context understanding, 

struggle with complex biological networks and rare disease 

target prediction, and suffer from interpretability issues that 

restrict practical utility. This study focuses on strategies to 

enhance models’ biological context comprehension, complex 

network processing capabilities, and interpretability. 

In drug screening and molecular docking, although AI 

demonstrates advantages, current models inadequately simu-

late dynamic molecular interactions in biological environ-

ments and face challenges including poor interpretability, 

insufficient data quality/quantity, and low drug repurposing 

accuracy. Research efforts center on optimizing AI models to 

better predict molecular dynamics, improve interpretability, 

data processing, and repurposing accuracy. 

For data integration in drug discovery, AI confronts chal-

lenges such as multi-source heterogeneous data fusion, une-

ven data quality, interpretability gaps, privacy risks, compu-

tational bottlenecks, and lacking standardization. This study 

explores efficient data fusion and model integration strategies 

to address quality disparities, strengthen data annota-

tion/standardization, and enhance model generalization. 

Deep learning holds great potential in drug design but is 

hindered by poor interpretability, lack of physicochemical 

constraints, and data limitations. Research focuses on inte-

grating deep learning with traditional physicochemical theo-

ries—constructing physics-informed architectures, develop-

ing interpretable methods, optimizing training with physico-

chemical principles, and promoting interdisciplinarity—to 

improve design accuracy and interpretability. 

2. Key Application Advances of AI in 

Drug Development 

2.1. Target Identification 

AI has made remarkable progress in drug target identifica-

tion by accelerating the mining and validation of potential 

disease targets through data-driven approaches. Traditional 

methods rely on extensive biological research and 

high-throughput experiments, which are time-consuming, 

costly, and inefficient. AI, through deep learning models and 

multi-omics integration, has revolutionized this landscape [2]. 

Data-driven methods leverage AI’s computational and 

pattern recognition strengths to mine targets from vast bio-

medical datasets. The graph neural network (GNN)-based 

model Deep Target, for example, integrates protein-protein 

interaction networks and compound activity data to automat-

ically identify disease-related targets by learning interaction 

patterns between proteins and compound-target relationships 

[2]. This approach improves prediction accuracy and shortens 

discovery timelines while capturing nonlinear relationships 

and hidden targets beyond traditional methods. 

Multi-omics data integration, a current research hotspot, 

combines diverse biomedical data to reveal disease mecha-

nisms and targets. Encompassing genomics, transcriptomics, 

proteomics, and metabolomics, multi-omics data reflect bio-

logical states from multiple dimensions [6]. Chen et al. (2023) 

developed Metatag, a multimodal AI framework, integrating 

single-cell RNA sequencing, epigenomics, and clinical phe-
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notype data to identify novel Alzheimer’s disease tar-

gets—overcoming single-data limitations and providing 

comprehensive biological context for precise target determi-

nation. 

Moreover, multi-omics integration uncovers dis-

ease-related molecular markers and pathways. By analyzing 

gene expression and protein interaction networks, AI models 

identify key pathways and molecular nodes—AlphaFold2’s 

protein structure prediction, for instance, aids target validation 

with high-precision structures, boosting identification effi-

ciency [7]. Network pharmacology also plays a role: Wang et 

al. (2023) used systems biology networks and AI-driven per-

turbation analysis to reveal multi-target synergies in cancer 

immunotherapy, supporting multi-target drug development 

[8]. 

2.2. Drug Screening and Molecular Docking 

AI has revolutionized drug screening and molecular dock-

ing, enhancing discovery efficiency and accuracy. Traditional 

high-throughput screening (HTS) is limited by high costs and 

long cycles, prompting the adoption of AI-driven solutions [9]. 

Machine learning and deep learning algorithms analyze 

compound data to predict binding affinity, accelerating 

screening. 

In molecular docking, AI models simulate interactions 

between small molecules and biological targets, predicting 

binding modes and affinities more accurately through deep 

learning. Using CNN and GNN, models characterize molec-

ular 3D structures, capturing chemical bonds, functional 

groups, and conformations [3]. They learn non-covalent in-

teractions like hydrogen bonds and hydrophobic ef-

fects—Deep Docking, for example, integrates CNN and GNN 

to generate high-precision docking conformations, improving 

prediction accuracy [3]. Combining with quantum chemistry 

and molecular dynamics (MD) simulation further optimizes 

results [5]. 

In virtual screening, AI constructs virtual compound li-

braries to efficiently screen potential candidates, reducing 

experimental scope through multi-dimensional feature ex-

traction. Models generate molecular fingerprints reflecting 

interaction key information and predict binding affinity by 

learning known patterns—Insilco Medicine’s GAN-generated 

compounds and AI screening identify high-affinity molecules, 

boosting efficiency [4]. 

AI also excels in drug repurposing, predicting new uses for 

existing drugs by analyzing drug-target interac-

tions—successfully identifying COVID-19 applications for 

approved drugs [10]. 

2.3. Data Integration and Multimodal Learning 

Data integration in AI-driven drug discovery has become a 

core driver, enhancing target discovery, molecular design, and 

efficacy prediction by integrating genomics, proteomics, and 

clinical data [6]. 

2.3.1. Breakthroughs in Multimodal Data Fusion 

Multimodal learning frameworks offer new paradigms for 

cross-omics integration. AlphaFold-Multimer integrates pro-

tein sequences, domain information, and evolutionary data to 

predict complex structures [7], while Synergy Net combines 

single-cell transcriptomics with drug databases for anti-cancer 

screening [8, 12], improving data correlation through feature 

alignment and cross-modal attention [11]. 

2.3.2. Synergy Between Dynamic Simulation and AI 

Molecular dynamics (MD) simulation combined with deep 

learning is reshaping drug design. Stanford’s DynaMOL 

framework inputs MD trajectories into graph convolutional 

networks (GCN) to predict binding free energy changes for 

GPCR ligands, reducing errors by 37% [13]. MIT’s Deep-

Fusion uses reinforcement learning to optimize docking paths, 

achieving a 19.3% hit rate in SARS-CoV-2 protease inhibitor 

screening [4]. 

Multimodal learning integrates genomic, phenotypic, and 

chemical structure data, enabling AI to mimic human complex 

analysis—mining hidden correlations and revealing insights 

beyond single data types, thus enhancing R&D efficiency and 

success rates. 

3. Core Challenges and Academic Gaps 

3.1. Interdisciplinary Barriers 

Despite progress in target identification, AI models lack 

deep biological context understanding. Data-driven ap-

proaches struggle to explain the biological significance of 

predictions, such as target protein functions in cellular net-

works or disease mechanisms—critical for complex networks 

and rare disease targets requiring system-level insights rather 

than just data patterns [6]. Integrating interdisciplinary 

knowledge (biology, physics, chemistry, and computation) is 

also challenging; most models neglect physicochemical prin-

ciples essential for protein-ligand interaction stability, limit-

ing application scope and accuracy [14]. 

3.2. Computational Bottlenecks 

Combining MD simulation with AI introduces complexity 

due to biological system dynamics (solvent effects, tempera-

ture, protein interactions), increasing computational costs and 

training/prediction times—hindering practical use [14]. Bal-

ancing computational efficiency and prediction accuracy 

remains unaddressed. 

Improving AI interpretability may compromise accuracy, 

as complex models with high accuracy often lack transpar-

ency. Explaining deep neural networks with numerous hidden 

layers remains a key challenge. 
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3.3. Data Issues 

3.3.1. Diversity and Complexity of Data Sources 

Drug discovery involves diverse data (genomics, tran-

scriptomics, clinical data) with noise and inconsistencies. 

Existing methods focus on single sources, while fusing mul-

ti-source heterogeneous data—addressing quality disparities 

(e.g., missing clinical data)—remains challenging, potentially 

amplifying noise and degrading model performance [9, 14]. 

3.3.2. Data Quality and Consistency 

Integrating multi-source data exacerbates noise due to 

varying quality (e.g., accurate genomics vs. biased clinical 

data). Developing preprocessing and feature extraction 

methods to ensure reliable inputs for AI models is critical [9]. 

3.4. Critical Comparison of Different AI 

Methodologies 

3.4.1. Target Identification Process 

Deep learning models have demonstrated remarkable fea-

ture-learning capabilities, enabling them to extract potential 

targets from vast amounts of data. For example, the graph 

neural network-based DeepTarget can integrate data like 

protein-protein interaction networks and compound activity 

data, thereby enhancing the accuracy of target prediction. 

However, these models often lack interpretability. It is chal-

lenging to understand the biological significance underlying 

their predictions, and they struggle to accurately predict 

complex biological networks and rare-disease targets. 

On the other hand, multi-omics data integration methods 

offer a multi-dimensional perspective for revealing disease 

mechanisms and targets. The Metatag framework, for in-

stance, combines single-cell RNA sequencing, epigenomics, 

and clinical phenotype data to identify novel Alzheimer's 

disease targets. Despite this advantage, multi-omics data 

integration faces difficulties such as inconsistent data quality 

and complex integration processes. These issues can intro-

duce noise, which may compromise the accuracy of target 

identification. 

3.4.2. Drug Screening and Molecular Docking 

Process 

Machine learning and deep learning-based methods have 

shown great potential in predicting binding affinity, signifi-

cantly accelerating the drug screening process. DeepDocking, 

which utilizes CNN and GNN, can better characterize mo-

lecular structures and predict binding poses, thus improving 

the accuracy of molecular docking predictions. However, 

these methods encounter problems when simulating dynamic 

molecular interactions in biological environments. Addition-

ally, they are highly dependent on high - quality and suffi-

cient data. Incomplete or inaccurate data can lead to a de-

cline in their performance. 

Generative Adversarial Network (GAN)-based methods in 

virtual screening are efficient in constructing virtual com-

pound libraries and rapidly screening potential drug candi-

dates. Insilico Medicine's use of GAN to generate com-

pounds for screening is a prime example. Nevertheless, the 

compounds generated by GAN may not be easily synthesized 

in reality, and the effectiveness of the screened drugs in sub-

sequent experimental verification remains uncertain. 

3.4.3. Data Integration Process 

Multimodal learning frameworks play a crucial role in in-

tegrating diverse data types, enabling the discovery of hidden 

correlations and ultimately enhancing R&D efficiency. Al-

phaFold-Multimer, for example, combines protein sequences, 

domain information, and evolutionary data to predict com-

plex protein structures. However, the integration of different 

modal data is complex due to their distinct features. This 

may result in the loss of important information during the 

fusion process, and the high complexity of the models also 

leads to substantial computational costs. 

Methods that combine Molecular Dynamics (MD) simula-

tion with deep learning can more realistically simulate mo-

lecular behavior, providing a more reliable basis for drug 

design. The DynaMOL framework, which predicts binding 

free energy changes, is a good illustration. However, the dy-

namic complexity of biological systems poses a significant 

challenge. These methods require extremely high computa-

tional resources and long simulation times, restricting their 

widespread application. 

4. Future Research Directions 

4.1. Interpretable Methods 

To address the lack of physical constraints in deep learning, 

integrate physicochemical knowledge into model architec-

tures. For example, mimic DynaMOL’s approach by design-

ing neural network layers to simulate molecular interaction 

energies, incorporating quantum chemistry and force field 

concepts to ensure models follow physicochemical 

laws—improving interpretability and enabling researchers to 

understand decisions from a chemical perspective [13]. 

Tackle the "black-box" problem using feature importance 

analysis (e.g., SHAP values) to identify key input factors in 

predictions and visualization techniques (3D animations of 

binding processes) to intuitively display model reasoning, 

enhancing trust and usability [15]. 

4.2. Optimized Data Strategies 

Federated learning and homomorphic encryption break 

data sharing barriers—PharmaFL platform, for example, 

enables cross-institutional model training without sharing raw 
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data, identifying 5 new IBD targets [16]. Differential privacy 

protects patient privacy in clinical data integration while 

maintaining high prediction accuracy (＞92% in Novartis’ 

ADMET model) [17]. 

Leverage data augmentation, transfer learning, and 

self-supervised learning to optimize AI performance with 

scarce data—using existing drug data for transfer learning to 

predict new compound activities, reducing dependency on 

large datasets [18]. 

5. Conclusion 

The deep integration of AI in drug development is reshap-

ing traditional R&D paradigms, driving revolutionary ad-

vances in target identification, molecular screening, data 

integration, and drug design. Through deep learning and 

multimodal techniques, AI has improved target prediction, 

accelerated virtual screening, and enabled efficient mul-

ti-omics fusion—with GNN-based models, MD-integrated 

simulations, and federated learning strategies demonstrating 

immense potential in boosting efficiency and reducing costs. 

However, widespread adoption faces challenges: poor in-

terpretability, data quality/privacy issues, limited dynamic 

environment simulation, and interdisciplinary gaps. Existing 

models struggle with target protein dynamics, clinical trans-

lation is hindered by "black-box" opacity, and data 

noise/standardization issues limit generalization. 

Future breakthroughs require three focus areas: techno-

logical integration (embedding MD into deep learning for 

dynamic modeling), optimized data strategies (federated 

learning, differential privacy to address data scarcity/privacy), 

and interdisciplinary collaboration (incorporating physico-

chemical principles into models for interpretability and bio-

logical consistency). 

Looking ahead, AI and drug development will co-evolve to 

accelerate new drugs discovery, lower costs, and offer new 

solutions for rare and complex diseases. Interdisciplinary 

innovation will drive R&D toward precision and intelligence, 

opening broader prospects for human health. 
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